© Author(s) 2021. CC BY 4.0 License.

Supplement of

Technical note: RAT - a robustness assessment test for calibrated and uncalibrated hydrological models

Pierre Nicolle et al.
Correspondence to: Vazken Andréassian (vazken.andreassian@inrae.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material 1: plots showing streamflow bias obtained with the RAT and the GSST as a function of temperature, precipitation and humidity index anomalies, for all test catchments

Figure 1. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment A1080330

Figure 2. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment B2220010

Figure 3. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment H 2342020

Figure 4. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment H 4252010

Figure 5. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment H 7401010

Figure 6. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment H8212010

Figure 7. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment 15221010

Figure 8. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment J7483010

Figure 9. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment K1321810

Figure 10. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment K6402520

Figure 11. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment L0563010

Figure 12. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment L4411710

Figure 13. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment M0243010

Figure 14. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment M7112410

Figure 15. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment 00592510

Figure 16. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment O7101510

Figure 17. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment Q5501010

Figure 18. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment S2242510

Figure 19. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment U4644010

Figure 20. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment V4264010

Figure 21. Streamflow bias obtained with the RAT (red squares) and the GSST (black dots), as a function of temperature, precipitation and humidity index anomalies, for the catchment Y4624010

Supplementary Material 2: Plots showing streamflow annual bias obtained with the RAT function of (i) time, (ii) temperature anomalies (iii) precipitation anomalies (iv) humidity index anomalies, for all test catchments

Figure 1. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment A1080330

Figure 2. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment B2220010

Figure 3. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment H 2342020

Figure 4. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment H4252010

Figure 5. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment H7401010

Figure 6. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment H8212010

Figure 7. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment I5221010

Figure 8. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment J7483010

Figure 9. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment K1321810

Figure 10. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment K6402520

Figure 11. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment L0563010

Figure 12. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment L4411710

Figure 13. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment M0243010

Figure 14. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment M7112410

Figure 15. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment O0592510

Figure 16. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment 07101510

Figure 17. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment Q5501010

Figure 18. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment S2242510

Figure 19. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment U4644010

Figure 20. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment V4264010

Figure 21. Streamflow annual bias obtained with the RAT function of time (top), temperature absolute anomalies (bottom left) and precipitation P (bottom centre) and humidity index P/E0 (bottom right) anomalies, for the catchment Y4624010

