Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4807-2021
https://doi.org/10.5194/hess-25-4807-2021
Research article
 | 
03 Sep 2021
Research article |  | 03 Sep 2021

Spatio-temporal soil moisture retrieval at the catchment scale using a dense network of cosmic-ray neutron sensors

Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald

Related authors

Brief communication: Stay local or go global? On the construction of plausible counterfactual scenarios to assess flash flood hazards
Paul Voit and Maik Heistermann
Nat. Hazards Earth Syst. Sci., 24, 4609–4615, https://doi.org/10.5194/nhess-24-4609-2024,https://doi.org/10.5194/nhess-24-4609-2024, 2024
Short summary
Brief Communication: A new drought monitoring network in the state of Brandenburg (Germany) using cosmic-ray neutron sensing
Daniel Altdorff, Maik Heistermann, Till Francke, Martin Schrön, Sabine Attinger, Albrecht Bauriegel, Frank Beyrich, Peter Biró, Peter Dietrich, Rebekka Eichstädt, Peter Martin Grosse, Arvid Markert, Jakob Terschlüsen, Ariane Walz, Steffen Zacharias, and Sascha E. Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2024-3848,https://doi.org/10.5194/egusphere-2024-3848, 2024
Short summary
The ability of a stochastic regional weather generator to reproduce heavy precipitation events across scales
Xiaoxiang Guan, Dung Viet Nguyen, Paul Voit, Bruno Merz, Maik Heistermann, and Sergiy Vorogushyn
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-143,https://doi.org/10.5194/nhess-2024-143, 2024
Revised manuscript under review for NHESS
Short summary
Virtual joint field campaign: a framework of synthetic landscapes to assess multiscale measurement methods of water storage
Till Francke, Cosimo Brogi, Alby Duarte Rocha, Michael Förster, Maik Heistermann, Markus Köhli, Daniel Rasche, Marvin Reich, Paul Schattan, Lena Scheiffele, and Martin Schrön
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-106,https://doi.org/10.5194/gmd-2024-106, 2024
Revised manuscript accepted for GMD
Short summary
Brief Communication: Training of AI-based nowcasting models for rainfall early warning should take into account user requirements
Georgy Ayzel and Maik Heistermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1945,https://doi.org/10.5194/egusphere-2024-1945, 2024
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
High-resolution operational soil moisture monitoring for forests in central Germany
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024,https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Technical Note: Revisiting the general calibration of cosmic-ray neutron sensors to estimate soil water content
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024,https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Technical note: A fast and objective autosampler for direct vapor equilibration isotope measurements
Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-528,https://doi.org/10.5194/egusphere-2024-528, 2024
Short summary
Effects of changes in climatic conditions on soil water storage patterns
Annelie Ehrhardt, Jannis S. Groh, and Horst H. Gerke
EGUsphere, https://doi.org/10.5194/egusphere-2024-118,https://doi.org/10.5194/egusphere-2024-118, 2024
Short summary
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023,https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary

Cited articles

Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., and Looms, M. C.: Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications, Vadose Zone J., 16, 1–11, https://doi.org/10.2136/vzj2017.04.0086, 2017. a
Baatz, R., Bogena, H. R., Hendricks-Franssen, H.-J., Huisman, J. A., Montzka, C., and Vereecken, H.: An empirical vegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030–2046, https://doi.org/10.1002/2014WR016443, 2015. a
Baroni, G. and Oswald, S. E.: A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing, J. Hydrol., 525, 264–276, https://doi.org/10.1016/j.jhydrol.2015.03.053, 2015. a
Baroni, G., Scheiffele, L. M., Schrön, M., Ingwersen, J., and Oswald, S. E.: Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing, J. Hydrol., 564, 873–887, doi10.1016/j.jhydrol.2018.07.053, 2018. a
Bayerisches Landesamt für Umwelt: Übersichtsbodenkarte TK25-Blatt 8132, available at: https://www.lfu.bayern.de/index.htm (last access: 26 July 2021), 2014. a, b
Download
Short summary
Cosmic-ray neutron sensing (CRNS) is a powerful technique for retrieving representative estimates of soil moisture in footprints extending over hectometres in the horizontal and decimetres in the vertical. This study, however, demonstrates the potential of CRNS to obtain spatio-temporal patterns of soil moisture beyond isolated footprints. To that end, we analyse data from a unique observational campaign that featured a dense network of more than 20 neutron detectors in an area of just 1 km2.