Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4759-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4759-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
Chenghao Wang
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
Hui Peng
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
Shangbin Xiao
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
Denghua Yan
CORRESPONDING AUTHOR
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, Water Resources Department, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
Related authors
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024, https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Short summary
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution for WAM2layers, while for FLEXPART coupled with WaterSip, we suggest applying bias corrections to optimize the filtering of precipitation particles and adjust evaporation estimates.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Yuqi Huang, Chenghao Wang, Tyler Danzig, Temple R. Lee, and Sandip Pal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3397, https://doi.org/10.5194/egusphere-2025-3397, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We evaluated a high-resolution numerical weather prediction model in a small, semi-arid U.S. city using dense ground-based measurements. While the forecasts showed good skill for temperature and humidity, they consistently overestimated wind and underestimates nighttime cooling, with inaccurate heat advection predictions. The results highlight the need for improved urban representation in forecast models to better support heat warning systems for small cities.
Keke Zhao, Denghua Yan, Tianling Qin, Chenhao Li, Dingzhi Peng, and Yifan Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-291, https://doi.org/10.5194/essd-2025-291, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a high-quality daily weather dataset for all of China from 1961 to 2021, including air temperature, atmospheric pressure, relative humidity, and sunshine duration. It was produced using a reconstruction framework that combines thousands of ground observations with landform and elevation data. The dataset provides consistent weather information even in mountainous regions and supports studies on land surface and water processes, climate change, and environmental impacts.
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024, https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Short summary
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution for WAM2layers, while for FLEXPART coupled with WaterSip, we suggest applying bias corrections to optimize the filtering of precipitation particles and adjust evaporation estimates.
Haiwei Li, Yongling Zhao, Chenghao Wang, Diana Ürge-Vorsatz, Jan Carmeliet, and Ronita Bardhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-234, https://doi.org/10.5194/egusphere-2024-234, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We investigated the cooling efficacy of urban trees in different climate zones through a robust meta-analysis, we determine that the cooling efficacy of trees is significantly influenced by the interplay of urban morphology, tree traits, and climate zones. We complement the study by an interactive map, offering a visual and quantitative examination and comparison of the cooling effects of urban trees in different climate zones.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Baisha Weng, Zhaoyu Dong, Yuheng Yang, Denghua Yan, Mengyu Li, and Yuhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-1290, https://doi.org/10.5194/egusphere-2022-1290, 2022
Preprint archived
Short summary
Short summary
The study selected a structural equation model to construct the turnover rate of amino sugars with soil physicochemical properties and extracellular enzymes under the warming and increased precipitation scenarios. The results of this study answer the mechanism of action of warming and precipitation on the effect of soil amino sugars which will play an important scientific and technical support role in the development of plateau agriculture and carbon and nitrogen cycles.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Cited articles
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke,
J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge
and irrigation water supply during the 20th century, Water Resour. Res.,
47, W03509, https://doi.org/10.1029/2009WR008929, 2011.
Bosilovich, M. G., Robertson, F. R., Takacs, L., Molod, A., and Mocko, D.:
Atmospheric water balance and variability in the MERRA-2 reanalysis, J.
Climate, 30, 1177–1196, https://doi.org/10.1175/JCLI-D-16-0338.1, 2017.
Chen, B., Xu, X. D., and Zhao, T.: Main moisture sources affecting lower
Yangtze River Basin in boreal summers during 2004–2009, Int. J. Climatol.,
33, 1035–1046, https://doi.org/10.1002/joc.3495, 2013.
China Meteorological Data Service Center: China Monthly Surface Precipitation 0.5∘ × 0.5∘ Gridded Data Set (V2.0), available at: http://data.cma.cn/site/showSubject/id/46.html, last access: 26 August 2021.
Dee, D.P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system, Q. J.
Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011.
Duerinck, H. M., van der Ent, R. J., van de Giesen, N., Schoups, G.,
Babovic, V., and Yeh, P. J.-F.: Observed soil moisture–precipitation
feedback in Illinois: A systematic analysis over different scales, J.
Hydrometeorol., 17, 1645–1660, https://doi.org/10.1175/JHM-D-15-0032.1,
2016.
European Centre for Medium-Range Weather Forecast (ECMWF): The ERA-Interim reanalysis dataset, available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/, last access: 26 August 2021.
Fremme, A. and Sodemann, H.: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley, Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, 2019.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L.,
Drumond, A., Durán-Quesada, A. M., and Nieto, R.: Oceanic and
terrestrial sources of continental precipitation, Rev. Geophys., 50,
RG4003, https://doi.org/10.1029/2012RG000389, 2012.
Gimeno, L., Vazquez, M., Eiras-Barca, J., Sorí, R., Stojanovic, M.,
Algarra, I., Nieto, R., Ramos, A. M., Durán-Quesada, A. M., and
Dominguez, F.: Recent progress on the sources of continental precipitation
as revealed by moisture transport analysis, Earth-Sci. Rev., 201, 103070,
https://doi.org/10.1016/j.earscirev.2019.103070, 2020.
Goessling, H. F. and Reick, C. H.: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture, Atmos. Chem. Phys., 13, 5567–5585, https://doi.org/10.5194/acp-13-5567-2013, 2013.
Hossain, F., Jeyachandran, I., and Pielke, R.: Have large dams altered
extreme precipitation patterns?, EOS T. AGU, 90, 453–454,
https://doi.org/10.1029/2009EO480001, 2009.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Archived at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, available at: https://rda.ucar.edu/datasets/ds628.0/, last access: 26 August 2021.
Keys, P. W., Barnes, E. A., van der Ent, R. J., and Gordon, L. J.: Variability of moisture recycling using a precipitationshed framework, Hydrol. Earth Syst. Sci., 18, 3937–3950, https://doi.org/10.5194/hess-18-3937-2014, 2014.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001,
2015.
Li, K., Zhu, C., Wu, L., and Huang, L.: Problems caused by the Three Gorges
Dam construction in the Yangtze River basin: a review, Environ. Rev., 21,
127–135, https://doi.org/10.1139/er-2012-0051, 2013.
Li, Y., Zhou, W., Chen, X., Fang, D., and Zhang, Q.: Influences of the Three
Gorges Dam in China on precipitation over surrounding regions, J.
Meteorol. Res., 31, 767–773,
https://doi.org/10.1007/s13351-017-6177-4, 2017.
Li, Y., Su, F., Chen, D., and Tang, Q.: Atmospheric water transport to the
endorheic Tibetan Plateau and its effect on the hydrological status in the
region, J. Geophys. Res.-Atmos., 124, 12864–12881,
https://doi.org/10.1029/2019jd031297, 2019a.
Li, Y., Wu, L., Chen, X., and Zhou, W.: Impacts of Three Gorges Dam on
regional circulation: A numerical simulation, J. Geophys. Res.-Atmos.,
124, 7813–7824, https://doi.org/10.1029/2018jd029970, 2019b.
Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., and
Riegger, J.: Large-scale runoff from landmasses: a global assessment of the
closure of the hydrological and atmospheric water balances, J.
Hydrometeorol., 15, 2111–2139, https://doi.org/10.1175/JHM-D-13-0157.1,
2014.
Lü, M., Jiang, Y., Chen, X., Chen, J., Wu, S., and Liu, J.:
Spatiotemporal variations of extreme precipitation under a changing climate
in the Three Gorges Reservoir area (TGRA), Atmosphere, 9, 24,
https://doi.org/10.3390/atmos9010024, 2018.
Lv, M.-q., Chen, J.-L., Mirza, Z. A., Chen, C.-D., Wen, Z.-F., Jiang, Y.,
Ma, M.-h., and Wu, S.-J.: Spatial distribution and temporal variation of
reference evapotranspiration in the Three Gorges Reservoir area during
1960–2013, Int. J. Climatol., 36, 4497–4511,
https://doi.org/10.1002/joc.4646, 2016.
Miller, N. L., Jin, J., and Tsang, C.-F.: Local climate sensitivity of the
Three Gorges Dam, Geophys. Res. Lett., 32, L16704,
https://doi.org/10.1029/2005gl022821, 2005.
Morgan, T. K. K. B., Sardelic, D. N., and Waretini, A. F.: The Three Gorges
Project: How sustainable?, J. Hydrol., 460–461, 1–12,
https://doi.org/10.1016/j.jhydrol.2012.05.008, 2012.
NASA Goddard Earth Sciences Data and Information Services Center (GES DISC): Modern-Era Retrospective analysis for Research and Applications, Version 2, available at: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last access: 26 August 2021a.
NASA Goddard Earth Sciences Data and Information Services Center (GES DISC): Tropical Rainfall Measuring Mission (TRMM) (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree × 0.25 degree V7, available at: https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary?keywords=TMPA, last access: 26 August 2021b.
Pihl, E., Martin, M. A., Blome, T., Hebden, S., Jarzebski, M. P., Lambino,
R. A., Köhler, C., Canadell, J. G., Ebi, K. L., Edenhofer, O., Gaffney,
O., Rockström, J., Roy, J., Srivastava, L., Payne, D. R., Adler, C.,
Watts, S., Jacobsson, L., and Sonntag, S.: 10 New Insights in Climate
Science 2019, Future Earth & The Earth League, Stockholm, Sweden, 38 pp., available at: https://futureearth.org/publications/science-insights/10-new-insights-in-climate-science-2019/ (last access: 17 September 2020),
2019.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2078,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2016.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric moisture
transports from ocean to land and global energy flows in reanalyses, J.
Climate, 24, 4907–4924, https://doi.org/10.1175/2011JCLI4171.1, 2011.
van der Ent, R. J.: A new view on the hydrological cycle over continents,
Ph.D. thesis, Delft University of Technology, Netherlands, 96 pp., https://doi.org/10.4233/uuid:0ab824ee-6956-4cc3-b530-3245ab4f32be, 2014.
van der Ent, R. J. and Savenije, H. H. G.: Oceanic sources of continental
precipitation and the correlation with sea surface temperature, Water
Resour. Res., 49, 3993–4004, https://doi.org/10.1002/wrcr.20296, 2013.
van der Ent, R. J. and Tuinenburg, O. A.: The residence time of water in the atmosphere revisited, Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, 2017.
van der Ent, R. J., Savenije, H. H., Schaefli, B., and Steele-Dunne, S. C.:
Origin and fate of atmospheric moisture over continents, Water Resour. Res.,
46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
van der Ent, R. J., Tuinenburg, O. A., Knoche, H.-R., Kunstmann, H., and Savenije, H. H. G.: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, 2013.
Wang, N., Zeng, X.-M., Guo, W.-D., Chen, C., You, W., Zheng, Y., and Zhu,
J.: Quantitative diagnosis of moisture sources and transport pathways for
summer precipitation over the mid-lower Yangtze River Basin, J. Hydrol.,
559, 252–265, https://doi.org/10.1016/j.jhydrol.2018.02.003, 2018.
Wei, J., Dirmeyer, P. A., Bosilovich, M. G., and Wu, R.: Water vapor sources
for Yangtze River Valley rainfall: Climatology, variability, and
implications for rainfall forecasting, J. Geophys. Res., 117, D05126,
https://doi.org/10.1029/2011JD016902, 2012.
Wu, L., Zhang, Q., and Jiang, Z.: Three Gorges Dam affects regional
precipitation, Geophys. Res. Lett., 33, L13806,
https://doi.org/10.1029/2006gl026780, 2006.
Xiao, C., Yu, R., and Fu, Y.: Precipitation characteristics in the Three
Gorges Dam vicinity, Int. J. Climatol., 30, 2021–2024,
https://doi.org/10.1002/joc.1963, 2010.
Xu, X., Chen, L., Wang, X., Miao, Q., and Tao, S.: Moisture transport
source/sink structure of the Meiyu rain belt along the Yangtze River valley,
Chinese Sci. Bull., 49, 181–188, https://doi.org/10.1360/03wd0047, 2004.
Xu, X., Tan, Y., and Yang, G.: Environmental impact assessments of the Three
Gorges Project in China: Issues and interventions, Earth-Sci. Rev., 124,
115–125, https://doi.org/10.1016/j.earscirev.2013.05.007, 2013.
Xu, X., Dong, L., Zhao, Y., and Wang, Y.: Effect of the Asian Water Tower
over the Qinghai-Tibet Plateau and the characteristics of atmospheric water
circulation, Chinese Sci. Bull., 64, 2830–2841,
https://doi.org/10.1360/TB-2019-0203, 2019.
Xu, X. D., Shi, X. Y., Wang, Y. Q., Peng, S. Q., and Shi, X. H.: Data
analysis and numerical simulation of moisture source and transport
associated with summer precipitation in the Yangtze River Valley over China,
Meteorol. Atmos. Phys., 100, 217–231,
https://doi.org/10.1007/s00703-008-0305-8, 2008.
Yigzaw, W., Hossain, F., and Kalyanapu, A.: Impact of artificial reservoir
size and land use/land cover patterns on probable maximum precipitation and
flood: case of Folsom Dam on the American River, J. Hydrol. Eng., 18,
1180–1190, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000722, 2013.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014.
Zeng, Y., Zhou, Z., Yan, Z., Teng, M., and Huang, C.: Climate change and its
attribution in Three Gorges Reservoir Area, China, Sustainability, 11,
7206, https://doi.org/10.3390/su11247206, 2019.
Zhang, C., Tang, Q., and Chen, D.: Recent changes in the moisture source of
precipitation over the Tibetan Plateau, J. Climate, 30, 1807–1819,
https://doi.org/10.1175/JCLI-D-15-0842.1, 2017.
Zhao, F., Hang, D., and Xinyi, Z.: Rainfall regime in Three Gorges area in
China and the control factors, Int. J. Climatol., 30, 1396–1406,
https://doi.org/10.1002/joc.1978, 2010.
Zhao, T., Zhao, J., Hu, H., and Ni, G.: Source of atmospheric moisture and
precipitation over China's major river basins, Front. Earth Sci., 10,
159–170, https://doi.org/10.1007/s11707-015-0497-4, 2016.
Zhao, Y., Zhu, J., and Xu, Y.: Establishment and assessment of the grid
precipitation datasets in China for recent 50 years, J. Meteorol. Sci,
34, 414–420, https://doi.org/10.3969/2013jms.0008, 2014.
Zhou, T.-J. and Yu, R.-C.: Atmospheric water vapor transport associated
with typical anomalous summer rainfall patterns in China, J. Geophys. Res.,
110, D08104, https://doi.org/10.1029/2004JD005413, 2005.
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the...