Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-4759-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-4759-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of moisture sources to precipitation changes in the Three Gorges Reservoir Region
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
Chenghao Wang
Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
Hui Peng
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
Shangbin Xiao
College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
Denghua Yan
CORRESPONDING AUTHOR
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, Water Resources Department, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
Related authors
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Baisha Weng, Zhaoyu Dong, Yuheng Yang, Denghua Yan, Mengyu Li, and Yuhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-1290, https://doi.org/10.5194/egusphere-2022-1290, 2022
Preprint archived
Short summary
Short summary
The study selected a structural equation model to construct the turnover rate of amino sugars with soil physicochemical properties and extracellular enzymes under the warming and increased precipitation scenarios. The results of this study answer the mechanism of action of warming and precipitation on the effect of soil amino sugars which will play an important scientific and technical support role in the development of plateau agriculture and carbon and nitrogen cycles.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020, https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4:
t95 % = 12 s; CO2:
t95 % = 10 s) while retaining a high equilibration ratio and accuracy.
Wenli Zhang, Shangbin Xiao, Heng Xie, Jia Liu, Dan Lei, and Andreas Lorke
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-178, https://doi.org/10.5194/bg-2020-178, 2020
Manuscript not accepted for further review
Short summary
Short summary
We analyzed CH4 emissions from a shallow and small eutrophic pond and found that 88.6 % of CH4 emissions was directly released by bubbling. The higher the temperature, the higher the eutrophication level and the greater the amount of methane released. Our study highlights that increasing eutrophication by anthropogenic impacts and climate warming will increase CH4 emissions from ponds, thus representing a positive feedback mechanism to global warming.
Denghua Yan, Baisha Weng, Tianling Qin, Hao Wang, Xiangnan Li, Yuheng Yang, Kun Wang, Zhenyu Lv, Jianwei Wang, Meng Li, Shan He, Fang Liu, Shanshan Liu, Wuxia Bi, Ting Xu, Xiaoqing Shi, Zihao Man, Congwu Sun, Meiyu Liu, Mengke Wang, Yinghou Huang, Haoyu Long, Yongzhen Niu, Batsuren Dorjsuren, Mohammed Gedefaw, Abel Girma, and Asaminew Abiyu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-224, https://doi.org/10.5194/essd-2019-224, 2020
Publication in ESSD not foreseen
Short summary
Short summary
This paper provides a complete data set of global water withdrawal. There is almost no continuous long series of water withdrawal data globally. Moreover, most of the data released by international organizations is based on national scale and lacks finer regional data. Therefore, appropriate methods are needed to modify the data. This dataset has important practical significance in promoting the harmonious and sustainable development of economy and resources of the world.
Wuxia Bi, Baisha Weng, Denghua Yan, Meng Li, Zhilei Yu, Lin Wang, and Hao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-185, https://doi.org/10.5194/hess-2019-185, 2019
Preprint withdrawn
Short summary
Short summary
This study focuses on solving the
land useand
water usecompetitions between lake-marsh wetland system and its surrounding socio-economic system, also inside the system. An optimal lake-marsh pattern determination method was proposed on considering the ecological services values and water shortage amount. We explored the optimal lake-marsh pattern in both annual and monthly scales. This study could provide references for the ecological spatial management and ecological water control.
Jia Liu, Jiyang Tian, Denghua Yan, Chuanzhe Li, Fuliang Yu, and Feifei Shen
Hydrol. Earth Syst. Sci., 22, 4329–4348, https://doi.org/10.5194/hess-22-4329-2018, https://doi.org/10.5194/hess-22-4329-2018, 2018
Short summary
Short summary
Both radar reflectivity and GTS data are good choices for assimilation in improving high-resolution rainfall of the NWP systems, which always fails in providing satisfactory rainfall products for hydrological use. Simultaneously assimilating GTS and radar data always performs better than assimilating radar data alone. The assimilation efficiency of the GTS data is higher than both radar reflectivity and radial velocity considering the number of data assimilated and its effect.
Jiyang Tian, Jia Liu, Denghua Yan, Chuanzhe Li, and Fuliang Yu
Nat. Hazards Earth Syst. Sci., 17, 563–579, https://doi.org/10.5194/nhess-17-563-2017, https://doi.org/10.5194/nhess-17-563-2017, 2017
Short summary
Short summary
Accurately simulating and predicting the precipitation by numerical weather prediction is a difficult task for medium-sized catchments in semi-humid regions. This study shows that using multiphysics ensembles is a good method to reduce the uncertainties of rainfall simulation. This paper provides more guidance for choosing the physical parameterizations for accurate rainfall simulations of different storm types in semi-humid regions.
B. S. Weng, D. H. Yan, H. Wang, J. H. Liu, Z. Y. Yang, T. L. Qin, and J. Yin
Nat. Hazards Earth Syst. Sci., 15, 1889–1906, https://doi.org/10.5194/nhess-15-1889-2015, https://doi.org/10.5194/nhess-15-1889-2015, 2015
B. B. Huang, D. H. Yan, H. Wang, B. F. Cheng, and X. H. Cui
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-14463-2013, https://doi.org/10.5194/hessd-10-14463-2013, 2013
Manuscript not accepted for further review
D. H. Yan, D. Wu, R. Huang, L. N. Wang, and G. Y. Yang
Hydrol. Earth Syst. Sci., 17, 2859–2871, https://doi.org/10.5194/hess-17-2859-2013, https://doi.org/10.5194/hess-17-2859-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
Investigating the Response of Land-Atmosphere Interactions and Feedbacks to Spatial Representation of Irrigation in a Coupled Modeling Framework
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Linking the complementary evaporation relationship with the Budyko framework for ungauged areas in Australia
Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 °C warmer worlds – how anthropogenic aerosols change the story
Pan evaporation is increased by submerged macrophytes
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
A principal component based strategy for regionalisation of precipitation intensity-duration-frequency (IDF) statistics
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Hydrological concept formation inside long short-term memory (LSTM) networks
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations
Recent decrease in summer precipitation over the Iberian Peninsula closely links to reduction in local moisture recycling
Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity
Critical transitions in the hydrological system: early-warning signals and network analysis
Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation
The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy
Impact of correcting sub-daily climate model biases for hydrological studies
The Mesoamerican mid-summer drought: the impact of its definition on occurrences and recent changes
Reconstructing climate trends adds skills to seasonal reference crop evapotranspiration forecasting
Influence of initial soil moisture in a regional climate model study over West Africa – Part 1: Impact on the climate mean
Influence of initial soil moisture in a regional climate model study over West Africa – Part 2: Impact on the climate extremes
Compound flood impact forecasting: integrating fluvial and flash flood impact assessments into a unified system
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
Flexible and consistent quantile estimation for intensity–duration–frequency curves
Evaluation of Asian summer precipitation in different configurations of a high-resolution general circulation model in a range of decision-relevant spatial scales
Rainfall-induced shallow landslides and soil wetness: comparison of physically based and probabilistic predictions
Land use and climate change effects on water yield from East African forested water towers
Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy
Improved parameterization of snow albedo in Noah coupled with Weather Research and Forecasting: applicability to snow estimates for the Tibetan Plateau
A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
EGUsphere, https://doi.org/10.5194/egusphere-2023-91, https://doi.org/10.5194/egusphere-2023-91, 2023
Short summary
Short summary
Irrigation is sometimes included in weather models because it can make the air cooler and more humid, possibly even changing local cloud and rainfall patterns. We used 3 different irrigation maps in a weather model, evaluated with field campaign data, and found that the irrigation map, especially how it represents irrigation boundaries, is important in determining the humidity, temperature, and other weather metrics produced by the model.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
EGUsphere, https://doi.org/10.5194/egusphere-2022-1279, https://doi.org/10.5194/egusphere-2022-1279, 2022
Short summary
Short summary
For the rainfall-runoff simulation from a certain area hydrological models are used, which require precipitation and temperature data as input. Since these are often not available as observations, we tested simulation results from atmospheric models. Two products were tested (ERA5-Land & COSMO-REA6) for Slovenian catchments, both lead to good simulations results. Their usage enables the of rainfall-runoff simulation in unobserved catchments as a requisite for e.g. flood protection measures.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Daeha Kim, Minha Choi, and Jong Ahn Chun
Hydrol. Earth Syst. Sci., 26, 5955–5969, https://doi.org/10.5194/hess-26-5955-2022, https://doi.org/10.5194/hess-26-5955-2022, 2022
Short summary
Short summary
We proposed a practical method that predicts the evaporation rates on land surfaces (ET) where only atmospheric data are available. Using a traditional equation that describes partitioning of precipitation into ET and streamflow, we could approximately identify the key parameter of the predicting formulation based on land–atmosphere interactions. The simple method conditioned by local climates outperformed sophisticated models in reproducing water-balance estimates across Australia.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Brigitta Simon-Gáspár, Gábor Soós, and Angela Anda
Hydrol. Earth Syst. Sci., 26, 4741–4756, https://doi.org/10.5194/hess-26-4741-2022, https://doi.org/10.5194/hess-26-4741-2022, 2022
Short summary
Short summary
Due to climate change, it is extremely important to determine evaporation as accurately as possible. In nature, there are sediments and macrophytes in the open waters; thus, one of the aims was to investigate their effect on evaporation. The second aim of this paper was to estimate daily evaporation by using different models, which, according to results, have high priority in the evaporation prediction. Water management can obtain useful information from the results of the current research.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Yaozhi Jiang, Kun Yang, Hua Yang, Hui Lu, Yingying Chen, Xu Zhou, Jing Sun, Yuan Yang, and Yan Wang
Hydrol. Earth Syst. Sci., 26, 4587–4601, https://doi.org/10.5194/hess-26-4587-2022, https://doi.org/10.5194/hess-26-4587-2022, 2022
Short summary
Short summary
Our study quantified the altitudinal precipitation gradients (PGs) over the Third Pole (TP). Most sub-basins in the TP have positive PGs, and negative PGs are found in the Himalayas, the Hengduan Mountains and the western Kunlun. PGs are positively correlated with wind speed but negatively correlated with relative humidity. In addition, PGs tend to be positive at smaller spatial scales compared to those at larger scales. The findings can assist precipitation interpolation in the data-sparse TP.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-233, https://doi.org/10.5194/hess-2022-233, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Intensity-Duration-Frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, e.g., for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 75 or 90 min of forecast the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h the skills are equivalent in general. Using these nowcasting systems for flash flood forecasting is also promising.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Shakirudeen Lawal, Stephen Sitch, Danica Lombardozzi, Julia E. M. S. Nabel, Hao-Wei Wey, Pierre Friedlingstein, Hanqin Tian, and Bruce Hewitson
Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, https://doi.org/10.5194/hess-26-2045-2022, 2022
Short summary
Short summary
To investigate the impacts of drought on vegetation, which few studies have done due to various limitations, we used the leaf area index as proxy and dynamic global vegetation models (DGVMs) to simulate drought impacts because the models use observationally derived climate. We found that the semi-desert biome responds strongly to drought in the summer season, while the tropical forest biome shows a weak response. This study could help target areas to improve drought monitoring and simulation.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Short summary
We have analyzed the spatial dependence of rainfall extremes upon elevation and morphology in Italy. Regression analyses show that previous rainfall–elevation relations at national scale can be substantially improved with new data, both using topography attributes and constraining the analysis within areas stemming from geomorphological zonation. Short-duration mean rainfall depths can then be estimated, all over Italy, using different parameters in each area of the geomorphological subdivision.
Mina Faghih, François Brissette, and Parham Sabeti
Hydrol. Earth Syst. Sci., 26, 1545–1563, https://doi.org/10.5194/hess-26-1545-2022, https://doi.org/10.5194/hess-26-1545-2022, 2022
Short summary
Short summary
The diurnal cycles of precipitation and temperature generated by climate models are biased. This work investigates whether or not impact modellers should correct the diurnal cycle biases prior to conducting hydrological impact studies at the sub-daily scale. The results show that more accurate streamflows are obtained when the diurnal cycles biases are corrected. This is noticeable for smaller catchments, which have a quicker reaction time to changes in precipitation and temperature.
Edwin P. Maurer, Iris T. Stewart, Kenneth Joseph, and Hugo G. Hidalgo
Hydrol. Earth Syst. Sci., 26, 1425–1437, https://doi.org/10.5194/hess-26-1425-2022, https://doi.org/10.5194/hess-26-1425-2022, 2022
Short summary
Short summary
The mid-summer drought (MSD) is common in Mesoamerica. It is a short (weeks-long) period of reduced rainfall near the middle of the rainy season. When it occurs, how long it lasts, and how dry it is all have important implications for smallholder farmers. Studies of changes in MSD characteristics rely on defining characteristics of an MSD. Different definitions affect whether an area would be considered to experience an MSD as well as the changes that have happened in the last 40 years.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Josias Láng-Ritter, Marc Berenguer, Francesco Dottori, Milan Kalas, and Daniel Sempere-Torres
Hydrol. Earth Syst. Sci., 26, 689–709, https://doi.org/10.5194/hess-26-689-2022, https://doi.org/10.5194/hess-26-689-2022, 2022
Short summary
Short summary
During flood events, emergency managers such as civil protection authorities rely on flood forecasts to make informed decisions. In the current practice, they monitor several separate forecasts, each one of them covering a different type of flooding. This can be time-consuming and confusing, ultimately compromising the effectiveness of the emergency response. This work illustrates how the automatic combination of flood type-specific impact forecasts can improve decision support systems.
Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao
Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022, https://doi.org/10.5194/hess-26-265-2022, 2022
Short summary
Short summary
Hourly streamflow ensemble forecasts with the CSSPv2 land surface model and ECMWF meteorological forecasts reduce both the probabilistic and deterministic forecast error compared with the ensemble streamflow prediction approach during the first week. The deterministic forecast error can be further reduced in the first 72 h when combined with the long short-term memory (LSTM) deep learning method. The forecast skill for LSTM using only historical observations drops sharply after the first 24 h.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Charles Nduhiu Wamucii, Pieter R. van Oel, Arend Ligtenberg, John Mwangi Gathenya, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 25, 5641–5665, https://doi.org/10.5194/hess-25-5641-2021, https://doi.org/10.5194/hess-25-5641-2021, 2021
Short summary
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.
Chuanfa Chen, Baojian Hu, and Yanyan Li
Hydrol. Earth Syst. Sci., 25, 5667–5682, https://doi.org/10.5194/hess-25-5667-2021, https://doi.org/10.5194/hess-25-5667-2021, 2021
Short summary
Short summary
This study proposes an easy-to-use downscaling-calibration method based on a spatial random forest with the incorporation of high-resolution variables. The proposed method is general, robust, accurate and easy to use as it shows more accurate results than the classical methods in the study area with heterogeneous terrain morphology and precipitation. It can be easily applied to other regions where precipitation data with high resolution and high accuracy are urgently required.
Lian Liu, Yaoming Ma, Massimo Menenti, Rongmingzhu Su, Nan Yao, and Weiqiang Ma
Hydrol. Earth Syst. Sci., 25, 4967–4981, https://doi.org/10.5194/hess-25-4967-2021, https://doi.org/10.5194/hess-25-4967-2021, 2021
Short summary
Short summary
Albedo is a key factor in land surface energy balance, which is difficult to successfully reproduce by models. Here, we select eight snow events on the Tibetan Plateau to evaluate the universal improvements of our improved albedo scheme. The RMSE relative reductions for temperature, albedo, sensible heat flux and snow depth reach 27%, 32%, 13% and 21%, respectively, with remarkable increases in the correlation coefficients. This presents a strong potential of our scheme for modeling snow events.
Nicolas Gasset, Vincent Fortin, Milena Dimitrijevic, Marco Carrera, Bernard Bilodeau, Ryan Muncaster, Étienne Gaborit, Guy Roy, Nedka Pentcheva, Maxim Bulat, Xihong Wang, Radenko Pavlovic, Franck Lespinas, Dikra Khedhaouiria, and Juliane Mai
Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, https://doi.org/10.5194/hess-25-4917-2021, 2021
Short summary
Short summary
In this paper, we highlight the importance of including land-data assimilation as well as offline precipitation analysis components in a regional reanalysis system. We also document the performance of the first multidecadal 10 km reanalysis performed with the GEM atmospheric model that can be used for seamless land-surface and hydrological modelling in North America. It is of particular interest for transboundary basins, as existing datasets often show discontinuities at the border.
Cited articles
Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R. W. A., Heinke,
J., von Bloh, W., and Gerten, D.: Impact of reservoirs on river discharge
and irrigation water supply during the 20th century, Water Resour. Res.,
47, W03509, https://doi.org/10.1029/2009WR008929, 2011.
Bosilovich, M. G., Robertson, F. R., Takacs, L., Molod, A., and Mocko, D.:
Atmospheric water balance and variability in the MERRA-2 reanalysis, J.
Climate, 30, 1177–1196, https://doi.org/10.1175/JCLI-D-16-0338.1, 2017.
Chen, B., Xu, X. D., and Zhao, T.: Main moisture sources affecting lower
Yangtze River Basin in boreal summers during 2004–2009, Int. J. Climatol.,
33, 1035–1046, https://doi.org/10.1002/joc.3495, 2013.
China Meteorological Data Service Center: China Monthly Surface Precipitation 0.5∘ × 0.5∘ Gridded Data Set (V2.0), available at: http://data.cma.cn/site/showSubject/id/46.html, last access: 26 August 2021.
Dee, D.P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
Configuration and performance of the data assimilation system, Q. J.
Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011.
Duerinck, H. M., van der Ent, R. J., van de Giesen, N., Schoups, G.,
Babovic, V., and Yeh, P. J.-F.: Observed soil moisture–precipitation
feedback in Illinois: A systematic analysis over different scales, J.
Hydrometeorol., 17, 1645–1660, https://doi.org/10.1175/JHM-D-15-0032.1,
2016.
European Centre for Medium-Range Weather Forecast (ECMWF): The ERA-Interim reanalysis dataset, available at: https://apps.ecmwf.int/datasets/data/interim-full-daily/, last access: 26 August 2021.
Fremme, A. and Sodemann, H.: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley, Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, 2019.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gimeno, L., Stohl, A., Trigo, R. M., Dominguez, F., Yoshimura, K., Yu, L.,
Drumond, A., Durán-Quesada, A. M., and Nieto, R.: Oceanic and
terrestrial sources of continental precipitation, Rev. Geophys., 50,
RG4003, https://doi.org/10.1029/2012RG000389, 2012.
Gimeno, L., Vazquez, M., Eiras-Barca, J., Sorí, R., Stojanovic, M.,
Algarra, I., Nieto, R., Ramos, A. M., Durán-Quesada, A. M., and
Dominguez, F.: Recent progress on the sources of continental precipitation
as revealed by moisture transport analysis, Earth-Sci. Rev., 201, 103070,
https://doi.org/10.1016/j.earscirev.2019.103070, 2020.
Goessling, H. F. and Reick, C. H.: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture, Atmos. Chem. Phys., 13, 5567–5585, https://doi.org/10.5194/acp-13-5567-2013, 2013.
Hossain, F., Jeyachandran, I., and Pielke, R.: Have large dams altered
extreme precipitation patterns?, EOS T. AGU, 90, 453–454,
https://doi.org/10.1029/2009EO480001, 2009.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor
precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007.
IPCC: Climate Change 2014: Synthesis Report, Contribution of Working Groups
I, II and III to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, edited by: Core Writing Team, Pachauri, R. K., and Meyer, L. A., IPCC, Geneva, Switzerland, 151 pp., 2014.
Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Archived at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, available at: https://rda.ucar.edu/datasets/ds628.0/, last access: 26 August 2021.
Keys, P. W., Barnes, E. A., van der Ent, R. J., and Gordon, L. J.: Variability of moisture recycling using a precipitationshed framework, Hydrol. Earth Syst. Sci., 18, 3937–3950, https://doi.org/10.5194/hess-18-3937-2014, 2014.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 reanalysis: General specifications and basic characteristics, J.
Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001,
2015.
Li, K., Zhu, C., Wu, L., and Huang, L.: Problems caused by the Three Gorges
Dam construction in the Yangtze River basin: a review, Environ. Rev., 21,
127–135, https://doi.org/10.1139/er-2012-0051, 2013.
Li, Y., Zhou, W., Chen, X., Fang, D., and Zhang, Q.: Influences of the Three
Gorges Dam in China on precipitation over surrounding regions, J.
Meteorol. Res., 31, 767–773,
https://doi.org/10.1007/s13351-017-6177-4, 2017.
Li, Y., Su, F., Chen, D., and Tang, Q.: Atmospheric water transport to the
endorheic Tibetan Plateau and its effect on the hydrological status in the
region, J. Geophys. Res.-Atmos., 124, 12864–12881,
https://doi.org/10.1029/2019jd031297, 2019a.
Li, Y., Wu, L., Chen, X., and Zhou, W.: Impacts of Three Gorges Dam on
regional circulation: A numerical simulation, J. Geophys. Res.-Atmos.,
124, 7813–7824, https://doi.org/10.1029/2018jd029970, 2019b.
Lorenz, C., Kunstmann, H., Devaraju, B., Tourian, M. J., Sneeuw, N., and
Riegger, J.: Large-scale runoff from landmasses: a global assessment of the
closure of the hydrological and atmospheric water balances, J.
Hydrometeorol., 15, 2111–2139, https://doi.org/10.1175/JHM-D-13-0157.1,
2014.
Lü, M., Jiang, Y., Chen, X., Chen, J., Wu, S., and Liu, J.:
Spatiotemporal variations of extreme precipitation under a changing climate
in the Three Gorges Reservoir area (TGRA), Atmosphere, 9, 24,
https://doi.org/10.3390/atmos9010024, 2018.
Lv, M.-q., Chen, J.-L., Mirza, Z. A., Chen, C.-D., Wen, Z.-F., Jiang, Y.,
Ma, M.-h., and Wu, S.-J.: Spatial distribution and temporal variation of
reference evapotranspiration in the Three Gorges Reservoir area during
1960–2013, Int. J. Climatol., 36, 4497–4511,
https://doi.org/10.1002/joc.4646, 2016.
Miller, N. L., Jin, J., and Tsang, C.-F.: Local climate sensitivity of the
Three Gorges Dam, Geophys. Res. Lett., 32, L16704,
https://doi.org/10.1029/2005gl022821, 2005.
Morgan, T. K. K. B., Sardelic, D. N., and Waretini, A. F.: The Three Gorges
Project: How sustainable?, J. Hydrol., 460–461, 1–12,
https://doi.org/10.1016/j.jhydrol.2012.05.008, 2012.
NASA Goddard Earth Sciences Data and Information Services Center (GES DISC): Modern-Era Retrospective analysis for Research and Applications, Version 2, available at: https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last access: 26 August 2021a.
NASA Goddard Earth Sciences Data and Information Services Center (GES DISC): Tropical Rainfall Measuring Mission (TRMM) (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree × 0.25 degree V7, available at: https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary?keywords=TMPA, last access: 26 August 2021b.
Pihl, E., Martin, M. A., Blome, T., Hebden, S., Jarzebski, M. P., Lambino,
R. A., Köhler, C., Canadell, J. G., Ebi, K. L., Edenhofer, O., Gaffney,
O., Rockström, J., Roy, J., Srivastava, L., Payne, D. R., Adler, C.,
Watts, S., Jacobsson, L., and Sonntag, S.: 10 New Insights in Climate
Science 2019, Future Earth & The Earth League, Stockholm, Sweden, 38 pp., available at: https://futureearth.org/publications/science-insights/10-new-insights-in-climate-science-2019/ (last access: 17 September 2020),
2019.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling
system, B. Am. Meteorol. Soc., 96, 2059–2078,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2016.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric moisture
transports from ocean to land and global energy flows in reanalyses, J.
Climate, 24, 4907–4924, https://doi.org/10.1175/2011JCLI4171.1, 2011.
van der Ent, R. J.: A new view on the hydrological cycle over continents,
Ph.D. thesis, Delft University of Technology, Netherlands, 96 pp., https://doi.org/10.4233/uuid:0ab824ee-6956-4cc3-b530-3245ab4f32be, 2014.
van der Ent, R. J. and Savenije, H. H. G.: Oceanic sources of continental
precipitation and the correlation with sea surface temperature, Water
Resour. Res., 49, 3993–4004, https://doi.org/10.1002/wrcr.20296, 2013.
van der Ent, R. J. and Tuinenburg, O. A.: The residence time of water in the atmosphere revisited, Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, 2017.
van der Ent, R. J., Savenije, H. H., Schaefli, B., and Steele-Dunne, S. C.:
Origin and fate of atmospheric moisture over continents, Water Resour. Res.,
46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
van der Ent, R. J., Tuinenburg, O. A., Knoche, H.-R., Kunstmann, H., and Savenije, H. H. G.: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, 2013.
Wang, N., Zeng, X.-M., Guo, W.-D., Chen, C., You, W., Zheng, Y., and Zhu,
J.: Quantitative diagnosis of moisture sources and transport pathways for
summer precipitation over the mid-lower Yangtze River Basin, J. Hydrol.,
559, 252–265, https://doi.org/10.1016/j.jhydrol.2018.02.003, 2018.
Wei, J., Dirmeyer, P. A., Bosilovich, M. G., and Wu, R.: Water vapor sources
for Yangtze River Valley rainfall: Climatology, variability, and
implications for rainfall forecasting, J. Geophys. Res., 117, D05126,
https://doi.org/10.1029/2011JD016902, 2012.
Wu, L., Zhang, Q., and Jiang, Z.: Three Gorges Dam affects regional
precipitation, Geophys. Res. Lett., 33, L13806,
https://doi.org/10.1029/2006gl026780, 2006.
Xiao, C., Yu, R., and Fu, Y.: Precipitation characteristics in the Three
Gorges Dam vicinity, Int. J. Climatol., 30, 2021–2024,
https://doi.org/10.1002/joc.1963, 2010.
Xu, X., Chen, L., Wang, X., Miao, Q., and Tao, S.: Moisture transport
source/sink structure of the Meiyu rain belt along the Yangtze River valley,
Chinese Sci. Bull., 49, 181–188, https://doi.org/10.1360/03wd0047, 2004.
Xu, X., Tan, Y., and Yang, G.: Environmental impact assessments of the Three
Gorges Project in China: Issues and interventions, Earth-Sci. Rev., 124,
115–125, https://doi.org/10.1016/j.earscirev.2013.05.007, 2013.
Xu, X., Dong, L., Zhao, Y., and Wang, Y.: Effect of the Asian Water Tower
over the Qinghai-Tibet Plateau and the characteristics of atmospheric water
circulation, Chinese Sci. Bull., 64, 2830–2841,
https://doi.org/10.1360/TB-2019-0203, 2019.
Xu, X. D., Shi, X. Y., Wang, Y. Q., Peng, S. Q., and Shi, X. H.: Data
analysis and numerical simulation of moisture source and transport
associated with summer precipitation in the Yangtze River Valley over China,
Meteorol. Atmos. Phys., 100, 217–231,
https://doi.org/10.1007/s00703-008-0305-8, 2008.
Yigzaw, W., Hossain, F., and Kalyanapu, A.: Impact of artificial reservoir
size and land use/land cover patterns on probable maximum precipitation and
flood: case of Folsom Dam on the American River, J. Hydrol. Eng., 18,
1180–1190, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000722, 2013.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A.: On the importance of cascading moisture recycling in South America, Atmos. Chem. Phys., 14, 13337–13359, https://doi.org/10.5194/acp-14-13337-2014, 2014.
Zeng, Y., Zhou, Z., Yan, Z., Teng, M., and Huang, C.: Climate change and its
attribution in Three Gorges Reservoir Area, China, Sustainability, 11,
7206, https://doi.org/10.3390/su11247206, 2019.
Zhang, C., Tang, Q., and Chen, D.: Recent changes in the moisture source of
precipitation over the Tibetan Plateau, J. Climate, 30, 1807–1819,
https://doi.org/10.1175/JCLI-D-15-0842.1, 2017.
Zhao, F., Hang, D., and Xinyi, Z.: Rainfall regime in Three Gorges area in
China and the control factors, Int. J. Climatol., 30, 1396–1406,
https://doi.org/10.1002/joc.1978, 2010.
Zhao, T., Zhao, J., Hu, H., and Ni, G.: Source of atmospheric moisture and
precipitation over China's major river basins, Front. Earth Sci., 10,
159–170, https://doi.org/10.1007/s11707-015-0497-4, 2016.
Zhao, Y., Zhu, J., and Xu, Y.: Establishment and assessment of the grid
precipitation datasets in China for recent 50 years, J. Meteorol. Sci,
34, 414–420, https://doi.org/10.3969/2013jms.0008, 2014.
Zhou, T.-J. and Yu, R.-C.: Atmospheric water vapor transport associated
with typical anomalous summer rainfall patterns in China, J. Geophys. Res.,
110, D08104, https://doi.org/10.1029/2004JD005413, 2005.
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the...