Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3471-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3471-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Changes in the simulation of atmospheric instability over the Iberian Peninsula due to the use of 3DVAR data assimilation
Santos J. González-Rojí
CORRESPONDING AUTHOR
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Climate and Environmental Physics, University of Bern, Bern, Switzerland
Sheila Carreno-Madinabeitia
Department of Mathematics, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Vitoria-Gasteiz, Spain
Jon Sáenz
Department of Physics, University of the Basque Country (UPV/EHU), Leioa, Spain
Plentziako Itsas Estazioa (BEGIK), University of the Basque Country (UPV/EHU), Plentzia, Spain
Gabriel Ibarra-Berastegi
Department of Energy Engineering, University of the Basque Country (UPV/EHU), Bilbao, Spain
Plentziako Itsas Estazioa (BEGIK), University of the Basque Country (UPV/EHU), Plentzia, Spain
Related authors
Woon Mi Kim and Santos Jose González-Rojí
EGUsphere, https://doi.org/10.5194/egusphere-2025-503, https://doi.org/10.5194/egusphere-2025-503, 2025
Short summary
Short summary
Understanding how and when droughts begin and end is crucial for improving predictions and developing effective mitigation strategies. This study investigates the onset and termination of soil moisture droughts in Europe, exploring their duration, seasons of occurrence, and related atmospheric circulation factors. The findings reveal noticeable differences between drought onset and termination, as well as variations in the temporal characteristics across datasets.
Woon Mi Kim, Santos J. González-Rojí, Isla R. Simpson, and Daniel Kennedy
EGUsphere, https://doi.org/10.5194/egusphere-2024-252, https://doi.org/10.5194/egusphere-2024-252, 2024
Preprint archived
Short summary
Short summary
This study investigates temporal characteristics and typical circulation conditions associated with onsets and terminations of soil moisture droughts in Europe. More understanding of drought onsets and terminations can aid in improving early predictions for devastating intense droughts.
Woon Mi Kim, Santos J. González-Rojí, and Christoph C. Raible
Clim. Past, 19, 2511–2533, https://doi.org/10.5194/cp-19-2511-2023, https://doi.org/10.5194/cp-19-2511-2023, 2023
Short summary
Short summary
In this study, we investigate circulation patterns associated with Mediterranean droughts during the last millennium using global climate simulations. Different circulation patterns driven by internal interactions in the climate system contribute to the occurrence of droughts in the Mediterranean. The detected patterns are different between the models, and this difference can be a potential source of uncertainty in model–proxy comparison and future projections of Mediterranean droughts.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Woon Mi Kim and Santos Jose González-Rojí
EGUsphere, https://doi.org/10.5194/egusphere-2025-503, https://doi.org/10.5194/egusphere-2025-503, 2025
Short summary
Short summary
Understanding how and when droughts begin and end is crucial for improving predictions and developing effective mitigation strategies. This study investigates the onset and termination of soil moisture droughts in Europe, exploring their duration, seasons of occurrence, and related atmospheric circulation factors. The findings reveal noticeable differences between drought onset and termination, as well as variations in the temporal characteristics across datasets.
Woon Mi Kim, Santos J. González-Rojí, Isla R. Simpson, and Daniel Kennedy
EGUsphere, https://doi.org/10.5194/egusphere-2024-252, https://doi.org/10.5194/egusphere-2024-252, 2024
Preprint archived
Short summary
Short summary
This study investigates temporal characteristics and typical circulation conditions associated with onsets and terminations of soil moisture droughts in Europe. More understanding of drought onsets and terminations can aid in improving early predictions for devastating intense droughts.
Woon Mi Kim, Santos J. González-Rojí, and Christoph C. Raible
Clim. Past, 19, 2511–2533, https://doi.org/10.5194/cp-19-2511-2023, https://doi.org/10.5194/cp-19-2511-2023, 2023
Short summary
Short summary
In this study, we investigate circulation patterns associated with Mediterranean droughts during the last millennium using global climate simulations. Different circulation patterns driven by internal interactions in the climate system contribute to the occurrence of droughts in the Mediterranean. The detected patterns are different between the models, and this difference can be a potential source of uncertainty in model–proxy comparison and future projections of Mediterranean droughts.
Santos J. González-Rojí, Martina Messmer, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 15, 2859–2879, https://doi.org/10.5194/gmd-15-2859-2022, https://doi.org/10.5194/gmd-15-2859-2022, 2022
Short summary
Short summary
Different configurations of physics parameterizations of a regional climate model are tested over southern Peru at fine resolution. The most challenging regions compared to observational data are the slopes of the Andes. Model configurations for Europe and East Africa are not perfectly suitable for southern Peru. The experiment with the Stony Brook University microphysics scheme and the Grell–Freitas cumulus parameterization provides the most accurate results over Madre de Dios.
Martina Messmer, Santos J. González-Rojí, Christoph C. Raible, and Thomas F. Stocker
Geosci. Model Dev., 14, 2691–2711, https://doi.org/10.5194/gmd-14-2691-2021, https://doi.org/10.5194/gmd-14-2691-2021, 2021
Short summary
Short summary
Sensitivity experiments with the WRF model are run to find an optimal parameterization setup for precipitation around Mount Kenya at a scale that resolves convection (1 km). Precipitation is compared against many weather stations and gridded observational data sets. Both the temporal correlation of precipitation sums and pattern correlations show that fewer nests lead to a more constrained simulation with higher correlation. The Grell–Freitas cumulus scheme obtains the most accurate results.
Cited articles
Alexander, G. D. and Young, G. S.: The Relationship between EMEX Mesoscale
Precipitation Feature Properties and Their Environmental Characteristics,
Mon. Weather Rev., 120, 554–564,
https://doi.org/10.1175/1520-0493(1992)120<0554:TRBEMP>2.0.CO;2, 1992. a
Angus, P., Rasmussen, S., and Seiter, K.: Short-term prediction of thunderstorm
probability and intensity by screening observational and derived predictors,
in: Reprints AMS 15th Conference on Severe Local Storms, Baltimore, MA,
368–371, 1988. a
Argüeso, D., Hidalgo-Muñoz, J. M., Gámiz-Fortis, S. R.,
Esteban-Parra, M. J., Dudhia, J., and Castro-Díez, Y.: Evaluation of
WRF Parameterizations for Climate Studies over Southern Spain Using a
Multistep Regionalization, J. Climate, 24, 5633–5651,
https://doi.org/10.1175/JCLI-D-11-00073.1, 2011. a, b
Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S.,
Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y.-R.,
Henderson, T., Huang, W., Lin, H.-C., Michalakes, J., Rizvi, S., and Zhang,
X.: The Weather Research and Forecasting Model's Community
Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843,
https://doi.org/10.1175/BAMS-D-11-00167.1, 2012. a, b
Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, A. J., and Xiao, Q. N.: A
Three-Dimensional Variational Data Assimilation System for MM5:
Implementation and Initial Results, Mon. Weather Rev., 132, 897–914,
https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2, 2004. a, b
Blanchard, D. O.: Assessing the Vertical Distribution of Convective Available
Potential Energy, Weather Forecast., 13, 870–877,
https://doi.org/10.1175/1520-0434(1998)013<0870:ATVDOC>2.0.CO;2, 1998. a
Brooks, H.: Severe thunderstorms and climate change, Atmos. Res., 123,
129–138, https://doi.org/10.1016/j.atmosres.2012.04.002, 2013. a
Brooks, H. E., Lee, J. W., and Craven, J. P.: The spatial distribution of
severe thunderstorm and tornado environments from global reanalysis data,
Atmos. Res., 67–68, 73–94,
https://doi.org/10.1016/S0169-8095(03)00045-0, 2003. a
Calbó, J. and Sanchez-Lorenzo, A.: Cloudiness climatology in the Iberian
Peninsula from three global gridded datasets (ISCCP, CRU TS 2.1, ERA-40),
Theor. Appl. Climatol., 96, 105–115,
https://doi.org/10.1007/s00704-008-0039-z, 2009. a
Correoso, J. F., Hernández, E., García-Herrera, R., Barriopedro, D.,
and Paredes, D.: A 3-year study of cloud-to-ground lightning flash
characteristics of Mesoscale convective systems over the Western
Mediterranean Sea, Atmos. Res., 79, 89–107,
https://doi.org/10.1016/j.atmosres.2005.05.002, 2006. a
Craven, J. P., Jewell, R. E., and Brooks, H. E.: Comparison between Observed
Convective Cloud-Base Heights and Lifting Condensation Level for Two
Different Lifted Parcels, Weather Forecast., 17, 885–890,
https://doi.org/10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2, 2002. a
Dai, A.: Recent changes in the diurnal cycle of precipitation over the United
States, Geophys. Res. Lett., 26, 341–344,
https://doi.org/10.1029/1998GL900318, 1999. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
DeRubertis, D.: Recent Trends in Four Common Stability Indices Derived from
U.S. Radiosonde Observations, J. Climate, 19, 309–323,
https://doi.org/10.1175/JCLI3626.1, 2006. a
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust increases in severe
thunderstorm environments in response to greenhouse forcing, P.
Natl. Acad. Sci. USA, 110, 16361–16366,
https://doi.org/10.1073/pnas.1307758110, 2013. a
Doswell, C. A. and Rasmussen, E. N.: The Effect of Neglecting the Virtual
Temperature Correction on CAPE Calculations, Weather Forecast., 9,
625–629, https://doi.org/10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2, 1994. a
Doswell, C. A., Ramis, C., Romero, R., and Alonso, S.: A Diagnostic Study of
Three Heavy Precipitation Episodes in the Western Mediterranean Region,
Weather Forecast., 13, 102–124,
https://doi.org/10.1175/1520-0434(1998)013<0102:ADSOTH>2.0.CO;2, 1998. a
Efron, B. and Gong, G.: A Leisurely Look at the Bootstrap, the Jackknife, and
Cross-Validation, Am. Stat., 37, 36–48,
https://doi.org/10.1080/00031305.1983.10483087, 1983. a
Enno, S.-E., Sugier, J., Alber, R., and Seltzer, M.: Lightning flash density in
Europe based on 10 years of ATDnet data, Atmos. Res., 235,
104769, https://doi.org/10.1016/j.atmosres.2019.104769, 2020. a, b, c
Eshel, G. and Farrell, B. F.: Thermodynamics of Eastern Mediterranean Rainfall
Variability, J. Atmos. Sci., 58, 87–92,
https://doi.org/10.1175/1520-0469(2001)058<0087:TOEMRV>2.0.CO;2, 2001. a
Esteban-Parra, M. J., Rodrigo, F. S., and Castro-Diez, Y.: Spatial and temporal
patterns of precipitation in Spain for the period 1880–1992, International
J. Climatol., 18, 1557–1574,
https://doi.org/10.1002/(SICI)1097-0088(19981130)18:14<1557::AID-JOC328>3.0.CO;2-J,
1998. a, b
Fernández, J., Montávez, J. P., Sáenz, J., González-Rouco,
J. F., and Zorita, E.: Sensitivity of the MM5 mesoscale model to physical
parameterizations for regional climate studies: Annual cycle, J.
Geophys. Res.-Atmos., 112, D04101, https://doi.org/10.1029/2005JD006649, 2007. a
Galway, J. G.: The lifted index as a predictor of latent instability, B. Am. Meteorol. Soc., 37, 528–529, 1956. a
Gascón, E., Merino, A., Sánchez, J., Fernández-González, S.,
García-Ortega, E., López, L., and Hermida, L.: Spatial distribution
of thermodynamic conditions of severe storms in southwestern Europe,
Atmos. Res., 164–165, 194–209,
https://doi.org/10.1016/j.atmosres.2015.05.012, 2015. a
Gayà, M., Homar, V., Romero, R., and Ramis, C.: Tornadoes and waterspouts
in the Balearic Islands: phenomena and environment characterization,
Atmos. Res., 56, 253–267,
https://doi.org/10.1016/S0169-8095(00)00076-4, 2001. a
George, J. J.: Weather forecasting for aeronautics, Academic Press, San Diego,
p. 411, 1960. a
González-Rojí, S. J., Sáenz, J., Ibarra-Berastegi, G., and
Díaz de Argandoña, J.: Moisture balance over the Iberian Peninsula
according to a regional climate model: The impact of 3DVAR data
assimilation, J. Geophys. Res.-Atmos., 123, 708–729,
https://doi.org/10.1002/2017JD027511, 2018. a, b, c, d, e
González-Rojí, S. J., Wilby, R. L., Sáenz, J., and
Ibarra-Berastegi, G.: Harmonized evaluation of daily precipitation downscaled
using SDSM and WRF+WRFDA models over the Iberian Peninsula, Clim. Dynam.,
53, 1413–1433, https://doi.org/10.1007/s00382-019-04673-9, 2019. a
González-Rojí, S. J., Sáenz, J., Díaz de Argandoña, J.,
and Ibarra-Berastegi, G.: Moisture Recycling over the Iberian Peninsula:
The Impact of 3DVAR Data Assimilation, Atmosphere, 11, 19,
https://doi.org/10.3390/atmos11010019, 2020a. a
González-Rojí, S. J., Carreno-Madinabeitia, S., Sáenz, J., and Ibarra-Berastegi, G.: Pseudo-Soundings for Publication “Changes in the simulation of instability indices over the Iberian Peninsula due to the use of 3DVAR data assimilation” [data set], Zenodo, https://doi.org/10.5281/zenodo.3611343, 2020b. a
Graf, M. A., Sprenger, M., and Moore, R. W.: Central European tornado
environments as viewed from a potential vorticity and Lagrangian
perspective, Atmos. Res., 101, 31–45,
https://doi.org/10.1016/j.atmosres.2011.01.007, 2011. a
Haklander, A. J. and Van Delden, A.: Thunderstorm predictors and their
forecast skill for the Netherlands, Atmos. Res., 67–68, 273–299, https://doi.org/10.1016/S0169-8095(03)00056-5, 2003. a
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A Revised Approach to Ice
Microphysical Processes for the Bulk Parameterization of Clouds and
Precipitation, Mon. Weather Rev., 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2, 2004. a
Huntrieser, H., Schiesser, H. H., Schmid, W., and Waldvogel, A.: Comparison of
Traditional and Newly Developed Thunderstorm Indices for Switzerland,
Weather Forecast., 12, 108–125,
https://doi.org/10.1175/1520-0434(1997)012<0108:COTAND>2.0.CO;2, 1997. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J.
Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a
Iturrioz, I., Hernández, E., Ribera, P., and Queralt, S.: Instability and its relation to precipitation over the Eastern Iberian Peninsula, Adv. Geosci., 10, 45–50, https://doi.org/10.5194/adgeo-10-45-2007, 2007. a, b, c
Jerez, S., Montavez, J. P., Gomez-Navarro, J. J., Jimenez, P. A.,
Jimenez-Guerrero, P., Lorente, R., and Gonzalez-Rouco, J. F.: The role of the
land-surface model for climate change projections over the Iberian
Peninsula, J. Geophys. Res.-Atmos., 117, D01109,
https://doi.org/10.1029/2011JD016576, 2012. a
Johns, R. H. and Doswell, C. A.: Severe Local Storms Forecasting, Weather
Forecast., 7, 588–612,
https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2, 1992. a
Jones, R. G., Murphy, J. M., and Noguer, M.: Simulation of climate change over
europe using a nested regional-climate model. I: Assessment of control
climate, including sensitivity to location of lateral boundaries, Q. J. Roy. Meteor. Soc., 121, 1413–1449,
https://doi.org/10.1002/qj.49712152610, 1995. a
Kunz, M.: The skill of convective parameters and indices to predict isolated
and severe thunderstorms, Natural Hazards and Earth System Sciences, 7,
327–342, https://doi.org/10.5194/nhess-7-327-2007, 2007. a, b
Lee, J.: Tornado Proximity Soundings from the NCEP/NCAR Reanalysis Data,
PhD thesis, University of Oklahoma, Grand Forks, North Dakota, 2002. a
Letkewicz, C. E. and Parker, M. D.: Forecasting the Maintenance of Mesoscale
Convective Systems Crossing the Appalachian Mountains, Weather
Forecast., 25, 1179–1195, https://doi.org/10.1175/2010WAF2222379.1, 2010. a
López, L., Marcos, J. L., Sánchez, J. L., Castro, A., and Fraile, R.:
CAPE values and hailstorms on northwestern Spain, Atmos. Res.,
56, 147–160, https://doi.org/10.1016/S0169-8095(00)00095-8, 2001. a, b, c
Lucas, C., Zipser, E. J., and LeMone, M. A.: Convective Available Potential
Energy in the Environment of Oceanic and Continental Clouds: Correction and
Comments, J. Atmos. Sci., 51, 3829–3830,
https://doi.org/10.1175/1520-0469(1994)051<3829:CAPEIT>2.0.CO;2, 1994. a
Marsh, P. T., Brooks, H. E., and Karoly, D. J.: Preliminary investigation into
the severe thunderstorm environment of Europe simulated by the Community
Climate System Model 3, Atmos. Res., 93, 607–618,
https://doi.org/10.1016/j.atmosres.2008.09.014, 2009. a, b
McNulty, R. P.: Severe and Convective Weather: A Central Region Forecasting
Challenge, Weather Forecast., 10, 187–202,
https://doi.org/10.1175/1520-0434(1995)010<0187:SACWAC>2.0.CO;2, 1995. a, b
Mohr, S., Kunz, M., and Geyer, B.: Hail potential in Europe based on a
regional climate model hindcast, Geophys. Res. Lett., 42,
10904–10912, https://doi.org/10.1002/2015GL067118, 2015. a, b
Molina, D. S., Fernández-González, S., González, J. C. S., and
Oliver, A.: Analysis of sounding derived parameters and application to severe
weather events in the Canary Islands, Atmos. Res., 237, 104865,
https://doi.org/10.1016/j.atmosres.2020.104865, 2020. a
Moncrieff, M. W.: A theory of organized steady convection and its transport
properties, Q. J. Roy. Meteor. Soc., 107,
29–50, https://doi.org/10.1002/qj.49710745103, 1981. a, b
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its
Numerical Stability and Application to a Regional Prediction of Advection
Fog, Bound.-Lay. Meteorol., 119, 397–407,
https://doi.org/10.1007/s10546-005-9030-8, 2006. a
Owens, R. G. and Hewson, T.: ECMWF Forecast User Guide, ECMWF,
https://doi.org/10.21957/m1cs7h, 2018. a
Parrish, D. F. and Derber, J. C.: The National Meteorological Center's
Spectral Statistical-Interpolation Analysis System, Mon. Weather
Rev., 120, 1747–1763,
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992. a
Piper, D. and Kunz, M.: Spatiotemporal variability of lightning activity in Europe and the relation to the North Atlantic Oscillation teleconnection pattern, Nat. Hazards Earth Syst. Sci., 17, 1319–1336, https://doi.org/10.5194/nhess-17-1319-2017, 2017. a
Púčik, T., Groenemeijer, P., Rýva, D., and Kolář, M.:
Proximity Soundings of Severe and Nonsevere Thunderstorms in Central
Europe, Mon. Weather Rev., 143, 4805–4821,
https://doi.org/10.1175/MWR-D-15-0104.1, 2015. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
available at: https://www.R-project.org/ (last access: 5 May 2021), 2020. a
Rädler, A. T., Groenemeijer, P., Faust, E., and Sausen, R.: Detecting
Severe Weather Trends Using an Additive Regressive Convective Hazard Model
(AR-CHaMo), J. Appl. Meteor. Clim., 57, 569–587,
https://doi.org/10.1175/JAMC-D-17-0132.1, 2018. a
Rädler, A. T., Groenemeijer, P. H., Faust, E., Sausen, R., and Púčik, T.: Frequency of severe thunderstorms across Europe expected to
increase in the 21st century due to rising instability, Npj Climate and
Atmospheric Science, 2, 30, https://doi.org/10.1038/s41612-019-0083-7, 2019. a
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and
Schlax, M. G.: Daily High-Resolution-Blended Analyses for Sea Surface
Temperature, J. Climate, 20, 5473–5496,
https://doi.org/10.1175/2007JCLI1824.1, 2007. a
Riemann-Campe, K., Fraedrich, K., and Lunkeit, F.: Global climatology of
Convective Available Potential Energy (CAPE) and Convective Inhibition
(CIN) in ERA-40 reanalysis, Atmos. Res., 93, 534–545,
https://doi.org/10.1016/j.atmosres.2008.09.037, 2009. a, b
Rodríguez-Puebla, C., Encinas, A. H., Nieto, S., and Garmendia, J.:
Spatial and temporal patterns of annual precipitation variability over the
Iberian Peninsula, Int. J. Climatol., 18, 299–316,
https://doi.org/10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L, 1998. a, b
Romero, R., Ramis, C., and Guijarro, J.: Daily rainfall patterns in the
Spanish Mediterranean area: an objective classification, Int.
J. Climatol., 19, 95–112,
https://doi.org/10.1002/(SICI)1097-0088(199901)19:1<95::AID-JOC344>3.0.CO;2-S, 1999. a, b
Romero, R., Gayà, M., and Doswell, C. A.: European climatology of severe
convective storm environmental parameters: A test for significant tornado
events, Atmos. Res., 83, 389–404,
https://doi.org/10.1016/j.atmosres.2005.06.011, 2007. a, b, c, d
Rummukainen, M.: State-of-the-art with regional climate models, Wiley
Interdisciplinary Reviews: Climate Change, 1, 82–96, https://doi.org/10.1002/wcc.8,
2010. a
Sáenz, J., González-Rojí, S. J., Carreno-Madinabeitia, S., and
Ibarra-Berastegi, G.: Analysis of atmospheric thermodynamics using the R
package aiRthermo, Comput. Geosci., 122, 113–119,
https://doi.org/10.1016/j.cageo.2018.10.007, 2019. a, b
Showalter, A. K.: A Stability Index for Thunderstorm Forecasting, B.
Am. Meteorol. Soc., 34, 250–252, 1953. a
Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model
evaluation in the present climate, J. Geophys. Res.-Atmos., 118, 1716–1733, https://doi.org/10.1002/jgrd.50203, 2013. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, NCAR Technical Note NCAR/TN-475+STR,
https://doi.org/10.5065/D68S4MVH, 2008. a
Taszarek, M., Brooks, H. E., and Czernecki, B.: Sounding-Derived Parameters
Associated with Convective Hazards in Europe, Mon. Weather Rev., 145,
1511–1528, https://doi.org/10.1175/MWR-D-16-0384.1, 2017. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, 2001. a
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M., Mitchell, K., Ek, M.,
Gayno, G., Wegiel, J., and Cuenca, R.: Implementation and verification of the
unified NOAH land surface model in the WRF model, in: 20th conference on
weather analysis and forecasting/16th conference on numerical weather
prediction, vol. 1115, available at: https://ams.confex.com/ams/84Annual/webprogram/Paper69061.html (last access: 15 June 2021), 2004. a
Tiedtke, M.: Comprehensive Mass Flux Scheme for Cumulus Parameterization in
Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Tullot, I. F.: Climatología de España y Portugal, vol. 76,
Universidad de Salamanca, Salamanca, Spain, 2000. a
Ulazia, A., Sáenz, J., Ibarra-Berastegui, G., González-Rojí,
S. J., and Carreno-Madinabeitia, S.: Using 3DVAR data assimilation to
measure offshore wind energy potential at different turbine heights in the
West Mediterranean, Appl. Energ., 208, 1232–1245,
https://doi.org/10.1016/j.apenergy.2017.09.030, 2017. a, b
Ulazia, A., Ibarra-Berastegi, G., Sáenz, J., Carreno-Madinabeitia, S., and
González-Rojí, S. J.: Seasonal Correction of Offshore Wind Energy
Potential due to Air Density: Case of the Iberian Peninsula, Sustainability,
11, 3648, https://doi.org/10.3390/su11133648, 2019. a
van Delden, A.: The synoptic setting of thunderstorms in western Europe,
Atmos. Res., 56, 89–110,
https://doi.org/10.1016/S0169-8095(00)00092-2, 2001. a, b, c
Virts, K. S., Wallace, J. M., Hutchins, M. L., and Holzworth, R. H.:
Highlights of a New Ground-Based, Hourly Global Lightning Climatology,
B. Am. Meteorol. Soc., 94, 1381–1391,
https://doi.org/10.1175/BAMS-D-12-00082.1, 2013. a, b
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, vol. 100,
Academic Press, 2011. a
Xu, G., Xi, B., Zhang, W., Cui, C., Dong, X., Liu, Y., and Yan, G.: Comparison
of atmospheric profiles between microwave radiometer retrievals and
radiosonde soundings, J. Geophys. Res.-Atmos., 120,
10313–10323, https://doi.org/10.1002/2015JD023438, 2015. a
Ye, B., Del Genio, A. D., and Lo, K. K.-W.: CAPE Variations in the Current
Climate and in a Climate Change, J. Climate, 11, 1997–2015,
https://doi.org/10.1175/1520-0442-11.8.1997, 1998. a
Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary
Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified
Tiedtke Cumulus Parameterization Scheme, Mon. Weather Rev., 139,
3489–3513, https://doi.org/10.1175/MWR-D-10-05091.1, 2011.
a
Zheng, D., Van Der Velde, R., Su, Z., Wen, J., and Wang, X.: Assessment of
Noah land surface model with various runoff parameterizations over a
Tibetan river, J. Geophys. Res.-Atmos, 122,
1488–1504, https://doi.org/10.1002/2016JD025572, 2017. a
Short summary
The simulation of precipitation extreme events is a known problem in modelling. That is why the atmospheric conditions favourable for its development as simulated by two WRF experiments are evaluated in this paper. The experiment including 3DVAR data assimilation outperforms the one without in simulating the TT index, CAPE, and CIN over the Iberian Peninsula. The ingredients for convective precipitation in winter are found at the Atlantic coast, but in summer they are at the Mediterranean coast.
The simulation of precipitation extreme events is a known problem in modelling. That is why the...