Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
Ontario N2L 3C5, Canada
Kristine Haynes
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
Ontario N2L 3C5, Canada
Ryan Connon
Environment and Natural Resources, Government of the Northwest
Territories, Yellowknife, Northwest Territories X1A 2L9, Canada
James Craig
Department of Civil and Environmental Engineering, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
Élise Devoie
Department of Civil and Environmental Engineering, University of
Waterloo, Waterloo, Ontario N2L 3G1, Canada
William Quinton
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo,
Ontario N2L 3C5, Canada
Related authors
No articles found.
Alexandre Lhosmot, Gabriel Hould Gosselin, Manuel Helbig, Julien Fouché, Youngryel Ryu, Matteo Detto, Ryan Connon, William Quinton, Tim Moore, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 29, 4871–4892, https://doi.org/10.5194/hess-29-4871-2025, https://doi.org/10.5194/hess-29-4871-2025, 2025
Short summary
Short summary
Thawing permafrost changes how water is stored and moves across landscapes. We measured water inputs and outputs in a basin with thawing peatland complexes and three sub-basins. In addition to yearly changes in precipitation and evapotranspiration, we found that hydrological responses are shaped by thaw-driven landscape connectivity. These findings highlight the need for long-term monitoring of ecosystem service shifts.
Robert Chlumsky, James R. Craig, and Bryan A. Tolson
Geosci. Model Dev., 18, 3387–3403, https://doi.org/10.5194/gmd-18-3387-2025, https://doi.org/10.5194/gmd-18-3387-2025, 2025
Short summary
Short summary
We aim to improve mapping of floods and present a new method for hydraulic modelling that uses a combination of novel geospatial analysis and existing hydraulic modelling approaches. This method is wrapped into a modelling software called Blackbird. We compared Blackbird with two other existing options for flood mapping and found that the Blackbird model outperformed both. The Blackbird model has the potential to support real-time and large-scale flood mapping applications in the future.
Eunji Byun, Fereidoun Rezanezhad, Stephanie Slowinski, Christina Lam, Saraswati Bhusal, Stephanie Wright, William L. Quinton, Kara L. Webster, and Philippe Van Cappellen
SOIL, 11, 309–321, https://doi.org/10.5194/soil-11-309-2025, https://doi.org/10.5194/soil-11-309-2025, 2025
Short summary
Short summary
To investigate how added nutrient nitrogen (N) and phosphorus (P) affect subarctic peatlands, we sampled peat soils from bog and fen type peatlands in the Northwest Territories, Canada, and measured CO2 and CH4 production rates by means of laboratory incubations. Our short-term experiments show that changes in nutrient concentrations in soil water can significantly affect microbial carbon cycling, suggesting the necessity of additional considerations of wildfire and permafrost thaw impacts on peatland carbon storage.
Bastien Charonnat, Michel Baraer, Eole Valence, Janie Masse-Dufresne, Chloé Monty, Kaiyuan Wang, Elise Devoie, and Jeffrey M. McKenzie
EGUsphere, https://doi.org/10.5194/egusphere-2025-117, https://doi.org/10.5194/egusphere-2025-117, 2025
Short summary
Short summary
Climate change is altering water cycle in mountain regions as glaciers melt, but slower-degrading rock glaciers remain influential. This study examines how a rock glacier in Yukon, Canada, interacts with a riverbed, using advanced methods like thermal and time-lapse imagery. It shows that rock glaciers shape river channels, affect groundwater flow, and encourage ice formation in winter. These findings reveal how rock glaciers link mountain ice to deep groundwater, impacting water resources.
Robert Chlumsky, Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-69, https://doi.org/10.5194/hess-2023-69, 2023
Revised manuscript not accepted
Short summary
Short summary
A blended model allows multiple hydrologic processes to be represented in a single model, which allows for a model to achieve high performance without the need to modify its structure for different catchments. Here, we improve upon the initial blended version by testing more than 30 blended models in twelve catchments to improve the overall model performance. We validate our proposed, updated blended model version with independent catchments, and make this version available for open use.
Robert Chlumsky, James R. Craig, Simon G. M. Lin, Sarah Grass, Leland Scantlebury, Genevieve Brown, and Rezgar Arabzadeh
Geosci. Model Dev., 15, 7017–7030, https://doi.org/10.5194/gmd-15-7017-2022, https://doi.org/10.5194/gmd-15-7017-2022, 2022
Short summary
Short summary
We introduce the open-source RavenR package, which has been built to support the use of the hydrologic modelling framework Raven. The R package contains many functions that may be useful in each step of the model-building process, including preparing model input files, running the model, and analyzing the outputs. We present six reproducible use cases of the RavenR package for the Liard River basin in Canada to demonstrate how it may be deployed.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Juliane Mai, Hongren Shen, Bryan A. Tolson, Étienne Gaborit, Richard Arsenault, James R. Craig, Vincent Fortin, Lauren M. Fry, Martin Gauch, Daniel Klotz, Frederik Kratzert, Nicole O'Brien, Daniel G. Princz, Sinan Rasiya Koya, Tirthankar Roy, Frank Seglenieks, Narayan K. Shrestha, André G. T. Temgoua, Vincent Vionnet, and Jonathan W. Waddell
Hydrol. Earth Syst. Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, https://doi.org/10.5194/hess-26-3537-2022, 2022
Short summary
Short summary
Model intercomparison studies are carried out to test various models and compare the quality of their outputs over the same domain. In this study, 13 diverse model setups using the same input data are evaluated over the Great Lakes region. Various model outputs – such as streamflow, evaporation, soil moisture, and amount of snow on the ground – are compared using standardized methods and metrics. The basin-wise model outputs and observations are made available through an interactive website.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Chris M. DeBeer, Howard S. Wheater, John W. Pomeroy, Alan G. Barr, Jennifer L. Baltzer, Jill F. Johnstone, Merritt R. Turetsky, Ronald E. Stewart, Masaki Hayashi, Garth van der Kamp, Shawn Marshall, Elizabeth Campbell, Philip Marsh, Sean K. Carey, William L. Quinton, Yanping Li, Saman Razavi, Aaron Berg, Jeffrey J. McDonnell, Christopher Spence, Warren D. Helgason, Andrew M. Ireson, T. Andrew Black, Mohamed Elshamy, Fuad Yassin, Bruce Davison, Allan Howard, Julie M. Thériault, Kevin Shook, Michael N. Demuth, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 25, 1849–1882, https://doi.org/10.5194/hess-25-1849-2021, https://doi.org/10.5194/hess-25-1849-2021, 2021
Short summary
Short summary
This article examines future changes in land cover and hydrological cycling across the interior of western Canada under climate conditions projected for the 21st century. Key insights into the mechanisms and interactions of Earth system and hydrological process responses are presented, and this understanding is used together with model application to provide a synthesis of future change. This has allowed more scientifically informed projections than have hitherto been available.
Juliane Mai, James R. Craig, and Bryan A. Tolson
Hydrol. Earth Syst. Sci., 24, 5835–5858, https://doi.org/10.5194/hess-24-5835-2020, https://doi.org/10.5194/hess-24-5835-2020, 2020
Cited articles
Baltzer, J., Veness, T., Chasmer, L., Sniderhan, A., and Quinton, W.:
Forests on thawing permafrost: Fragmentation, edge effects, and net forest
loss, Global Change Biol., 20, 824–834, https://doi.org/10.1111/gcb.12349, 2014.
Beilman, D., Vitt, D., and Halsey, L.: Localized Permafrost Peatlands in Western Canada: Definition, Distributions, and Degradation, Arct. Antarct. Alp. Res., 33, 70–77, https://doi.org/10.1080/15230430.2001.12003406, 2001.
Beilman, D. W. and Robinson, S. D.: Peatland permafrost thaw and landcover type along a climate gradient, in: Proceedings of the Eighth International Conference on Permafrost, edited by: Phillips, M., Springman, S. M., and Arenson, L. U., Balkema, Zurich, Switzerland, 61–65, 21–25 July 2003.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Bolin Centre for Climate Research: The Northern Circumpolar Soil Carbon
Database, available at: https://bolin.su.se/data/ncscd/
(last access: 20 March 2019), 2013.
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M.,
Parmentier, F. W., Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky,
V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W., Meier, W. N.,
Wouters, B., Mernild, S., Mård, J., Pawlak, J., and Olsen, M. S.: Key
indicators of arctic climate change: 1971–2017, Environ. Res. Lett., 14, 045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019.
Brown, R. J. E.: Permafrost Investigations on the Mackenzie Highway in
Alberta and Mackenzie District, Technical Paper No. 175, Division of Building Research, National Research Council, 1–71, Ottawa, Canada, 1964.
Brown, J., Ferrians, O., Heginbottom, J. A., and Melnikov, E.: Circum-Arctic
Map of Permafrost and Ground-Ice Conditions, Version 2 [Permaice subset
used], National Snow and Ice Data Center (NSIDC), Boulder, Colorado, USA, 2002.
Camill, P.: Peat accumulation and succession following permafrost thaw in
the boreal peatlands of Manitoba, Canada, Ecoscience, 6, 592–602, 1999.
Camill, P.: How much do local factors matter for predicting transient
ecosystem dynamics? Suggestions from permafrost formation in boreal
peatlands, Global Change Biol., 6, 169–182, https://doi.org/10.1046/j.1365-2486.2000.00293.x, 2000.
Camill, P. and Clark, J. S.: Climate change disequilibrium of boreal
permafrost peatlands caused by local processes, Am. Nat., 151, 207–222, https://doi.org/10.1086/286112, 1998.
Carpino, O. A., Berg, A. A., Quinton, W. L., and Adams, J. R.: Climate change
and permafrost thaw- induced boreal forest loss in northwestern Canada, Environ. Res. Lett., 13, 084018, https://doi.org/10.1088/1748-9326/aad74e, 2018.
Carpino, O. and Quinton, W.: Four Component Radiation Data at Scotty Creek, NWT, Canada 2004–2019, https://doi.org/10.5683/SP2/JTIQDO, 2021.
Chasmer, L. and Hopkinson, C.: Threshold loss of discontinuous permafrost
and landscape evolution, Global Change Biol., 23, 2672–2686, 2017.
Chasmer, L., Hopkinson, C., and Quinton, W.: Quantifying errors in
discontinuous permafrost plateau change from optical data, Northwest
Territories, Canada: 1947–2008, Can. J. Remote Sens., 36, 211–223, https://doi.org/10.1111/gcb.13537, 2010.
Chasmer, L., Quinton, W., Hopkinson, C., Petrone, R., and Whittington, P.:
Vegetation Canopy and Radiation Controls on Permafrost Plateau Evolution
within the Discontinuous Permafrost Zone, Northwest Territories, Canada,
Permafrost Periglac., 22, 199–213, https://doi.org/10.1002/ppp.724, 2011.
Connon, R. F., Quinton, W. L., Craig, J. R., and Hayashi, M.: Changing
hydrologic connectivity due to permafrost thaw in the lower Liard River
valley, NWT, Canada, Hydrol. Process., 28, 4163–4178, https://doi.org/10.1002/hyp.10206, 2014.
Connon, R. F., Quinton, W. L., Craig, J. R., Hanisch, J., and Sonnentag, O.:
The hydrology of interconnected bog complexes in discontinuous permafrost
terrains, Hydrol. Process., 29, 3831–3847, https://doi.org/10.1002/hyp.10604, 2015.
Connon, R. F., Devoie, É., Hayashi, M., Veness, T., and Quinton, W.: The
influence of shallow taliks on permafrost thaw and active layer dynamics in
subarctic Canada, J. Geophys. Res.-Earth, 123, 281–297, https://doi.org/10.1002/2017JF004469, 2018.
Connon, R. F., Chasmer, L. E., Haughton, E., Helbig, M., Hopkinson, C., Sonnentag, O., and Quinton, W. L.: The implications of permafrost thaw and land cover change on snow water equivalent accumulation, melt and runoff in discontinuous permafrost peatlands, Hydrol. Process., submitted, 2021.
Devoie, É. G., Craig, J. R., Connon, R. F., and Quinton, W. L.: Taliks: A
tipping point in discontinuous permafrost degradation in peatlands,
Water Resour. Res., 55, 9838–9857, https://doi.org/10.1029/2018WR024488, 2019.
Disher, B. S.: Characterising the hydrological function of treed bogs in the
zone of discontinuous permafrost, M.Sc. Thesis, Wilfrid Laurier University,
Waterloo, Ontario, Canada, 72 pp., 2020.
Disher, B. S., Connon, R. F., Haynes, K. M., Hopkinson, C., and Quinton, W. L.: The hydrology of treed wetlands in thawing discontinuous permafrost regions, Ecohydrology, e2296, https://doi.org/10.1002/eco.2296, 2021.
Dymond, S. F., D'Amato, A. W., Kolka, R. K., Bolstad, P. V., Sebestyen, S. D., Gill, K., and Curzon, M. T.: Climatic controls on peatland black spruce
growth in relation to water table variation and precipitation,
Ecohydrology, 12, e2137, https://doi.org/10.1002/eco.2137, 2019.
Environment and Climate Change Canada: Adjusted and homogenized Canadian
climate data, available at:
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html, last access: 1 June 2020.
Eppinga, M. B., Rietkerk, M., Wassen, M. J., and De Ruiter, P. C.: Linking
habitat modification to catastrophic shifts and vegetation patterns in bogs,
Plant Ecol., 200, 53–68, https://doi.org/10.1007/s11258-007-9309-6, 2007.
Garon-Labreque, M. É., Léveillé-Bourret, É., Higgins, K., and
Sonnentag, O.: Additions to the boreal flora of the Northwest Territories
with a preliminary vascular flora of Scotty Creek, Can. Field Nat., 129, 349–367, https://doi.org/10.22621/cfn.v129i4.1757, 2015.
Gibson, C. M., Chasmer, L. E., Thompson, D. K., Quinton, W. L., Flannigan, M. D., and Olefeldt, D.: Wildfire as a major driver of recent permafrost thaw in
boreal peatlands, Nat. Commun., 9, 3041, https://doi.org/10.1038/s41467-018-05457-1, 2018.
Halsey, L. A., Vitt, D. H., and Zoltai, S. C.: Disequilibrium response of permafrost in boreal continental western Canada to climate change, Climatic Change, 30, 57–73, https://doi.org/10.1007/BF01093225, 1995.
Hayashi, M., Quinton, W. L., Pietroniro, A., and Gibson, J. J.: Hydrologic
functions of wetlands in a discontinuous permafrost basin indicated by
isotopic and chemical signatures, J. Hydrol., 296, 81–97, https://doi.org/10.1016/j.jhydrol.2004.03.020, 2004.
Hayashi, M., Goeller, N., Quinton, W. L., and Wright, N.: A simple heat-conduction method for simulating the frost-table depth in hydrological models, Hydrol. Process., 21, 2610–2622, https://doi.org/10.1002/hyp.6792, 2007.
Haynes, K. M., Connon, R. F., and Quinton, W. L.: Permafrost thaw induced
drying of wetlands at Scotty Creek, NWT, Canada, Environ. Res. Lett., 13, 114001, https://doi.org/10.1088/1748-9326/aae46c, 2018.
Haynes, K. M., Connon, R. F., and Quinton, W. L.: Hydrometeorological
measurements in peatland-dominated, discontinuous permafrost at Scotty
Creek, Northwest Territories, Canada, Geosci. Data J., 6, 85–96, https://doi.org/10.1002/gdj3.69, 2019.
Haynes, K. M., Smart, J., Disher, B., Carpino, O., and Quinton, W. L.: The
role of hummocks in re- establishing black spruce forest following
permafrost thaw, Ecohydrology, 14, e2273, https://doi.org/10.1002/eco.2273, 2020.
Helbig, M., Pappas, C., and Sonnentag, O.: Permafrost thaw and wildfire:
Equally important drivers of boreal tree cover changes in the Taiga Plains,
Canada, Geophys. Res. Lett., 43, 1598–1606, https://doi.org/10.1002/2015GL067193, 2016a.
Helbig, M., Wischnewski, K., Kljun, N., Chasmer, L. E., Quinton, W. L., Detto, M., and Sonnentag, O.: Regional atmospheric cooling and wetting effect of permafrost thaw- induced boreal forest loss, Global Change Biol., 22, 4048–4066, https://doi.org/10.1111/gcb.13348, 2016b.
Holloway, J. E. and Lewkowicz, A. G.: Half a century of discontinuous
permafrost persistence and degradation in western Canada,
Permafrost Periglac., 31, 85–96, https://doi.org/10.1002/ppp.2017, 2019.
Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., Johnson, K., Jorgenson, T., Koven, C. D., Kuhry, P., Michaelson, G., Mishra, U., Palmtag, J., Ping, C.-L., O'Donnell, J., Schirrmeister, L., Schuur, E. A. G., Sheng, Y., Smith, L. C., Strauss, J., and Yu, Z.: A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region, Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, 2013a.
Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth Syst. Sci. Data, 5, 3–13, https://doi.org/10.5194/essd-5-3-2013, 2013b.
Iversen, C. M., Childs, J., Norby, R. J., Ontl, T. A., Kolka, R. K., Brice,
D. J., McFarlane, K. J., and Hanson, P. J.: Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat, Plant Soil, 424, 123–143, https://doi.org/10.1007/s11104-017-3231-z, 2018.
Ketteridge, N., Thompson, D. K., Bombonato, L., Turetsky, M. R., Benscoter,
B. W., and Waddington, J. M.: The ecohydrology of forested peatlands: simulating the effects of tree shading on moss evaporation and species composition, J. Geophys. Res.-Biogeo., 118, 422–435, https://doi.org/10.1002/jgrg.20043, 2013.
Kokelj, S. V., Palmer, M. J., Lantz, T. C., and Burn, C. R.: Ground Temperatures
and Permafrost Warming from Forest to Tundra, Tuktoyaktuk Coastlands and
Anderson Plain, NWT, Canada, Permafrost Periglac., 28, 543–551, https://doi.org/10.1002/ppp.1934, 2017.
Korosi, J. B., Thienpont, J. R., Pisaric, M. F. J., deMontigny, P., Perreault,
J. T., McDonald, J., Simpson, M. J., Armstrong, T., Kokelj, S. V., Smol, J. P., and Blais, J. M.: Broad-scale lake expansion and flooding inundates
essential wood bison habitat, Nat. Commun., 8, 14510, https://doi.org/10.1038/ncomms14510, 2017.
Kurylyk, B., Hayashi, M., Quinton, W., McKenzie, J., and Voss, C.: Influence
of vertical and lateral heat transfer on permafrost thaw, peatland landscape
transition, and groundwater flow, Water Resour. Res., 52, 1286–1305, https://doi.org/10.1002/2015WR018057, 2016.
Kwong, J. T. and Gan, T. Y.: Northward migration of permafrost along the
Mackenzie Highway and climatic warming, Climate Change, 26, 399–419, https://doi.org/10.1007/BF01094404, 1994.
Lieffers, V. J. and Rothwell, R. L.: Rooting of peatland black spruce and
tamarack in relation to depth of water table, Can. J. Botany, 65, 817–821, 1987.
Loisel, J. and Yu, Z.: Surface vegetation patterning controls carbon
accumulation in peatlands, Geophys. Res. Lett., 40, 5508–5513, https://doi.org/10.1002/grl.50744, 2013.
McClymont, A. F., Hayashi, M., Bentley, L. R., and Christensen, B. S.: Geophysical imaging and thermal modeling of subsurface morphology and thaw evolution of discontinuous permafrost, J. Geophys. Res.-Earth, 118, 1826–1837, https://doi.org/10.1002/jgrf.20114, 2013.
McKenzie, J. M. and Voss, C. I.: Permafrost thaw in a nested
groundwater-flow system, Hydrogeol. J., 21, 299–316, 2013.
Mekis, É. and Vincent, L. A.: An overview of the second generation
adjusted daily precipitation dataset for trend analysis in Canada, Atmos. Ocean, 49, 163–177, https://doi.org/10.1080/07055900.2011.583910, 2011.
Natural Resources Canada: Wooded areas, saturated soils and landscape in
Canada – CanVec series – Land features, available at:
https://open.canada.ca/data/en/dataset/80aa8ec6-4947-48de-bc9c-7d09d48b4cad (last access: 10 July 2019), 2017.
NWWG.: Wetlands of Canada, Ecological Land Classification Series No. 24,
Sustainable Development Branch, Environment Canada, Polyscience Publications Inc., Québec, Canada, 452 pp., 1988.
Olefeldt, D., Persson, A., and Turetsky, M. R.: Influence of the permafrost
boundary on dissolved organic matter characteristics in rivers within the
Boreal and Taiga plains of western Canada, Environ. Res. Lett., 9, 035005, https://doi.org/10.1088/1748-9326/9/3/035005, 2014.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and
Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Overland, J. E., Hanna, E., Hanssen-Bauer, I., Kim, S. J., Walsh, J. E., Wang, M., Bhatt, U. S., Thoman, R. L., and Ballinger, T. J.: Surface Air
Temperature, in: Arctic Report Card 2019, edited by: Richter-Menge, J., Druckenmiller, M. L., and Jeffries, M., available at: https://arctic.noaa.gov/Report-Card/Report-Card-2019 (last access: 11 July 2020), 2019.
Pelletier, N., Talbot, J., Olefeldt, D., Turetsky, M., Blodau, C.,
Sonnentag, O., and Quinton, W. L.: Influence of Holocene permafrost aggradation and thaw on the paleoecology and carbon storage of a peatland complex in northwestern Canada, Holocene, 27, 1391–1405, https://doi.org/10.1177/0959683617693899, 2017.
Porter, T. J., Schoenemann, S. W., Davies, L. J., Steig, E. J., Bandara, S., and Froese, D. G.: Recent summer warming in northwestern Canada exceeds the Holocene thermal maximum, Nat. Commun., 10, 1631, https://doi.org/10.1038/s41467-019-09622-y, 2019.
Quinton, W., Berg, A., Braverman, M., Carpino, O., Chasmer, L., Connon, R., Craig, J., Devoie, É., Hayashi, M., Haynes, K., Olefeldt, D., Pietroniro, A., Rezanezhad, F., Schincariol, R., and Sonnentag, O.: A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada, Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019, 2019.
Quinton, W. L., Hayashi, M., and Chasmer, L. E.: Peatland hydrology of
discontinuous permafrost in the Northwest Territories: overview and
synthesis, Can. Water Resour. J., 34, 311–328, https://doi.org/10.4296/cwrj3404311, 2009.
Quinton, W. L., Hayashi, M., and Chasmer, L.: Permafrost-thaw-induced land-
cover change in the Canadian subarctic: Implications for water resources, Hydrol. Process., 25, 152–158, https://doi.org/10.1002/hyp.7894, 2011.
Robinson, S. D. and Moore, T. R.: The influence of permafrost and fire
upon carbon accumulation in high boreal peatlands, Northwest Territories,
Canada, Arct. Antarct. Alp. Res., 32, 155–166, https://doi.org/10.1080/15230430.2000.12003351, 2000.
Rowland, J. C., Jones, C. E., Altmann, G., Bryan, R., Crosby, B. T., Hinzman, L. D., Kane, D. L., Lawrence, D. M., Mancino, A., Marsh, P., McNamara, J. P., Romanvosky, V. E., Toniolo, H., Travis, B. J., Trochim, E., Wilson, C. J., and Geernaert, G. L.: Arctic Landscapes in Transition: Responses to Thawing Permafrost, 91, 229–230, https://doi.org/10.1029/2010EO260001, 2010.
St. Jacques, J. M. and Sauchyn, D. J.: Increasing winter baseflow and mean
annual streamflow from possible permafrost thawing in the Northwest
Territories, Canada, Geophys. Res. Lett., 36, L01401, https://doi.org/10.1029/2008GL035822, 2009.
Stofferahn, E., Fisher, J. B., Haynes, D. J., Schwalm, C. R., Huntzinger, D. N., Hantson, W., Poulter, B., and Zhang, Z.: The Arctic-Boreal vulnerability
experiment model benchmarking system, Environ. Res. Lett., 14, 055002,
https://doi.org/10.1088/1748-9326/ab10fa, 2019.
Thie, J.: Distribution and thawing of permafrost in the southern part of the
discontinuous permafrost zone in Manitoba,
Arctic Journal of the Arctic Institute of North America, 34, 189–200, https://doi.org/10.14430/arctic2873, 1974.
Treat, C. C. and Jones, M. C.: Near-surface permafrost aggradation in
Northern Hemisphere peatlands shows regional and global trends during the
past 6000 years, Holocene, 28, 998–1010, https://doi.org/10.1177/0959683617752858, 2018.
Vincent, L. A., Wang, X. L., Milewska, E. J., Wan, H., Yang, F., and Swail,
V.: A second generation of homogenized Canadian monthly surface air
temperature for climate trend analysis, J. Geophys. Res.-Atmos., 117, D18110, https://doi.org/10.1029/2012JD017859, 2012.
Vincent, L. A., Zhang, X., Brown, R., Feng, Y., Mekis, E., Milewska, E., Wan,
H., and Wang, X.: Observed trends in Canada's climate and influence of
low-frequency variability modes, J. Climate, 28, 4545–4560, https://doi.org/10.1175/JCLI-D-14-00697.1, 2015.
Vitt, D. H., Halsey, L. A., and Zoltai, S. C.: The bog landcovers of
continental Western Canada in relation to climate and permafrost patterns, Arct. Antarct. Alp. Res., 26, 1–13, https://doi.org/10.1080/00040851.1994.12003032, 1994.
Vonk, J. E., Tank, S. E., and Walvoord, M. A.: Integrating hydrology and biogeochemistry across frozen landscapes, Nat. Commun., 10, 5377, https://doi.org/10.1038/s41467-019-13361-5, 2019.
Walvoord, M. A. and Kurylyk, B.: Hydrologic Impacts of Thawing Permafrost – A Review, Vadose Zone J., 15, 1–20, https://doi.org/10.2136/vzj2016.01.0010, 2016.
Warren, R. K., Pappas, C., Helbig, M., Chasmer, L. E., Berg, A. A., Baltzer,
J. L., Quinton, W. L., and Sonnetag, O.: Minor contribution of overstory
transpiration to landscape evapotranspiration in boreal permafrost
peatlands, Ecohydrology, 11, 1975, https://doi.org/10.1002/eco.1975, 2018.
Webster, C., Rutter, N., Zahnner, F., and Jonas, T.: Measurement of Incoming
Radiation below Forest Canopies: A Comparison of Different Radiometer
Configurations, J. Hydrometeorol., 17, 853–864, https://doi.org/10.1175/JHM-D-15-0125.1, 2016.
Wright, N., Hayashi, M., and Quinton, W.: Spatial and temporal variations
in active layer thawing and their implication on runoff generation in
peat-covered permafrost terrain, Water Resour. Res., 45, W05414, https://doi.org/10.1029/2008WR006880, 2009.
Zoltai, S. C.: Cyclic development of permafrost in the peatlands of
Northwestern Alberta, Canada, Arct. Antarct. Alp. Res., 25, 240–246, https://doi.org/10.1080/00040851.1993.12003011, 1993.
Zoltai, S. C. and Tarnocai, C.: Perennially frozen peatlands in the
Western Arctic and Subarctic of Canada, Can. J. Earth Sci., 12, 28–43, https://doi.org/10.1139/e75-004, 1975.
Short summary
This study demonstrates how climate warming in peatland-dominated regions of discontinuous permafrost is changing the form and function of the landscape. Key insights into the rates and patterns of such changes in the coming decades are provided through careful identification of land cover transitional stages and characterization of the hydrological and energy balance regimes for each stage.
This study demonstrates how climate warming in peatland-dominated regions of discontinuous...