Articles | Volume 25, issue 1
https://doi.org/10.5194/hess-25-121-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-121-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure
Marloes Gutenstein
CORRESPONDING AUTHOR
Deutscher Wetterdienst, Offenbach, Germany
Karsten Fennig
Deutscher Wetterdienst, Offenbach, Germany
Marc Schröder
Deutscher Wetterdienst, Offenbach, Germany
Tim Trent
Earth Observation Science, University of Leicester, Leicester, UK
Stephan Bakan
Max Planck Institute for Meteorology, Hamburg, Germany
J. Brent Roberts
NASA Marshall Space Flight Center, Huntsville, AL, USA
Franklin R. Robertson
NASA Marshall Space Flight Center, Huntsville, AL, USA
Related authors
Holger Sihler, Steffen Beirle, Steffen Dörner, Marloes Gutenstein-Penning de Vries, Christoph Hörmann, Christian Borger, Simon Warnach, and Thomas Wagner
Atmos. Meas. Tech., 14, 3989–4031, https://doi.org/10.5194/amt-14-3989-2021, https://doi.org/10.5194/amt-14-3989-2021, 2021
Short summary
Short summary
MICRU is an algorithm for the retrieval of effective cloud fractions (CFs) from satellite measurements. CFs describe the amount of clouds, which have a significant impact on the vertical sensitivity profile of trace gases like NO2 and HCHO. MICRU retrieves small CFs with an accuracy of 0.04 over the entire satellite swath. It features an empirical surface reflectivity model accounting for physical anisotropy (BRDF, sun glitter) and instrumental effects. MICRU is also applicable to imager data.
Hannes Konrad, Rémy Roca, Anja Niedorf, Stephan Finkensieper, Marc Schröder, Sophie Cloché, Giulia Panegrossi, Paolo Sanò, Christopher Kidd, Rômulo Augusto Jucá Oliveira, Karsten Fennig, Thomas Sikorski, Madeleine Lemoine, and Rainer Hollmann
Earth Syst. Sci. Data, 17, 4097–4124, https://doi.org/10.5194/essd-17-4097-2025, https://doi.org/10.5194/essd-17-4097-2025, 2025
Short summary
Short summary
GIRAFE v1 is a global satellite-based precipitation dataset covering 2002 to 2022. It combines high-accuracy microwave and high-resolution infrared observations for retrieving daily precipitation, a respective sampling uncertainty for a more robust analysis, and monthly means. It is intended and suitable for climate monitoring and research and allows studies on water management, agriculture, and disaster risk reduction. A continuous extension from 2023 onwards will be implemented in 2025.
Christopher Johannes Diekmann, Matthias Schneider, Peter Knippertz, Tim Trent, Hartmut Boesch, Amelie Ninja Roehling, John Worden, Benjamin Ertl, Farahnaz Khosrawi, and Frank Hase
Atmos. Chem. Phys., 25, 5409–5431, https://doi.org/10.5194/acp-25-5409-2025, https://doi.org/10.5194/acp-25-5409-2025, 2025
Short summary
Short summary
The West African Monsoon is the main source of rainfall over West Africa, and understanding the development of the monsoon remains challenging due to complex interactions of atmospheric processes. We make use of new satellite datasets of isotopes in tropospheric water vapour to characterize processes controlling the monsoon convection. We find that comparing different water vapour isotopes reveals effects of rain–vapour interactions and air mass transport.
Uwe Pfeifroth, Jaqueline Drücke, Steffen Kothe, Jörg Trentmann, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 16, 5243–5265, https://doi.org/10.5194/essd-16-5243-2024, https://doi.org/10.5194/essd-16-5243-2024, 2024
Short summary
Short summary
The energy reaching Earth's surface from the Sun is a quantity of great importance for the climate system and for many applications. SARAH-3 is a satellite-based climate data record of surface solar radiation parameters. It is generated and distributed by the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF). SARAH-3 covers more than 4 decades and provides a high spatial and temporal resolution, and its validation shows good accuracy and stability.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Nikos Benas, Irina Solodovnik, Martin Stengel, Imke Hüser, Karl-Göran Karlsson, Nina Håkansson, Erik Johansson, Salomon Eliasson, Marc Schröder, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 15, 5153–5170, https://doi.org/10.5194/essd-15-5153-2023, https://doi.org/10.5194/essd-15-5153-2023, 2023
Short summary
Short summary
This paper describes CLAAS-3, the third edition of the Cloud property dAtAset using SEVIRI, which was created based on observations from geostationary Meteosat satellites. CLAAS-3 cloud properties are evaluated using a variety of reference datasets, with very good overall results. The demonstrated quality of CLAAS-3 ensures its usefulness in a wide range of applications, including studies of local- to continental-scale cloud processes and evaluation of climate models.
Karl-Göran Karlsson, Martin Stengel, Jan Fokke Meirink, Aku Riihelä, Jörg Trentmann, Tom Akkermans, Diana Stein, Abhay Devasthale, Salomon Eliasson, Erik Johansson, Nina Håkansson, Irina Solodovnik, Nikos Benas, Nicolas Clerbaux, Nathalie Selbach, Marc Schröder, and Rainer Hollmann
Earth Syst. Sci. Data, 15, 4901–4926, https://doi.org/10.5194/essd-15-4901-2023, https://doi.org/10.5194/essd-15-4901-2023, 2023
Short summary
Short summary
This paper presents a global climate data record on cloud parameters, radiation at the surface and at the top of atmosphere, and surface albedo. The temporal coverage is 1979–2020 (42 years) and the data record is also continuously updated until present time. Thus, more than four decades of climate parameters are provided. Based on CLARA-A3, studies on distribution of clouds and radiation parameters can be made and, especially, investigations of climate trends and evaluation of climate models.
Tim Trent, Richard Siddans, Brian Kerridge, Marc Schröder, Noëlle A. Scott, and John Remedios
Atmos. Meas. Tech., 16, 1503–1526, https://doi.org/10.5194/amt-16-1503-2023, https://doi.org/10.5194/amt-16-1503-2023, 2023
Short summary
Short summary
Modern weather satellites provide essential information on our lower atmosphere's moisture content and temperature structure. This measurement record will span over 40 years, making it a valuable resource for climate studies. This study characterizes atmospheric temperature and humidity profiles from a European Space Agency climate project. Using weather balloon measurements, we demonstrated the performance of this dataset was within the tolerances required for future climate studies.
Xuanli Li, Jason B. Roberts, Jayanthi Srikishen, Jonathan L. Case, Walter A. Petersen, Gyuwon Lee, and Christopher R. Hain
Geosci. Model Dev., 15, 5287–5308, https://doi.org/10.5194/gmd-15-5287-2022, https://doi.org/10.5194/gmd-15-5287-2022, 2022
Short summary
Short summary
This research assimilated the Global Precipitation Measurement (GPM) satellite-retrieved ocean surface meteorology data into the Weather Research and Forecasting (WRF) model with the Gridpoint Statistical Interpolation (GSI) system. This was for two snowstorms during the International Collaborative Experiments for PyeongChang 2018 Olympic and Paralympic Winter Games' (ICE-POP 2018) field experiments. The results indicated a positive impact of the data for short-term forecasts for heavy snowfall.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Holger Sihler, Steffen Beirle, Steffen Dörner, Marloes Gutenstein-Penning de Vries, Christoph Hörmann, Christian Borger, Simon Warnach, and Thomas Wagner
Atmos. Meas. Tech., 14, 3989–4031, https://doi.org/10.5194/amt-14-3989-2021, https://doi.org/10.5194/amt-14-3989-2021, 2021
Short summary
Short summary
MICRU is an algorithm for the retrieval of effective cloud fractions (CFs) from satellite measurements. CFs describe the amount of clouds, which have a significant impact on the vertical sensitivity profile of trace gases like NO2 and HCHO. MICRU retrieves small CFs with an accuracy of 0.04 over the entire satellite swath. It features an empirical surface reflectivity model accounting for physical anisotropy (BRDF, sun glitter) and instrumental effects. MICRU is also applicable to imager data.
Cited articles
Adler, R. F., Gu, G., and Huffman, G. J.: Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP), J. Appl. Meteorol. Clim., 51, 84–99, https://doi.org/10.1175/JAMC-D-11-052.1, 2012. a, b
Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., Gan, T. Y., Pendergrass, A. G., Rosenfeld, D., Swann, A. L. S., Wilcox, L. J., and Zolina, O.: Advances in understanding large-scale responses of the water cycle to climate change, Ann. NY Acad. Sci., 1472, 49–75, https://doi.org/10.1111/nyas.14337, 2020. a, b, c, d, e, f, g, h, i, j
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 228–232, https://doi.org/10.1038/nature01092, 2002.
a, b
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010. a, b, c, d
Andersson, A., Klepp, C., Fennig, K., Bakan, S., Graßl, H., and Schulz, J.: Evaluation of HOAPS-3 Ocean Surface Freshwater Flux Components, J. Appl. Meteorol. Clim., 50, 379–398, https://doi.org/10.1175/2010JAMC2341.1, 2011. a, b
Andersson, A., Graw, K., Schröder, M., Fennig, K., Liman, J., Bakan, S., Hollmann, R., and Klepp, C.: Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS 4.0, Satellite Application Facility on Climate Monitoring, Data set, https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002, 2017. a, b
Bauer, P., Moreau, E., Chevallier, F., and O'keeffe, U.: Multiple-scattering microwave radiative transfer for data assimilation applications, Q. J. Roy. Meteorol. Soc., 132, 1259–1281, https://doi.org/10.1256/qj.05.153, 2006. a
Bentamy, A., Katsaros, K. B., Ez, A. M. M.-N., Drennan, W. M., Forde, E. B., and Roquet, H.: Satellite Estimates of Wind Speed and Latent Heat Flux over the Global Oceans, J. Climate, 16, 637–656, https://doi.org/10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2 2003. a, b
Bentamy, A., Grodsky, S. A., Katsaros, K., Mestas-Nuñez, A. M., Blanke, B., and Desbiolles, F.: Improvement in air–sea flux estimates derived from satellite observations, Int. J. Remote Sens., 34, 5243–5261, https://doi.org/10.1080/01431161.2013.787502, 2013. a, b, c, d
Bentamy, A., Grodsky, S. A., Elyouncha, A., Chapron, B., and Desbiolles, F.: Homogenization of scatterometer wind retrievals, Int. J. Climatol., 37, 870–889, https://doi.org/10.1002/joc.4746, 2017a. a
Berg, W., Kroodsma, R., Kummerow, C. D., and McKague, D. S.: Fundamental Climate Data Records of Microwave Brightness Temperatures, Remote Sens.-Basel, 10, 1306, https://doi.org/10.3390/rs10081306, 2018. a, b
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011. a, b, c, d
Berry, D. I. and Kent, E. C.: Air–Sea fluxes from ICOADS: the
construction of a new gridded dataset with uncertainty estimates, Int. J. Climatol., 31, 987–1001, https://doi.org/10.1002/joc.2059, 2011. a
Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama, M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds, circulation and climate sensitivity, Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015. a
Bradley, E. F., Fairall, C. W., Hare, J. E., and Grachev, A. A.: An old and improved bulk algorithm for air–sea fluxes: COARE 2.6A, in: Preprints, 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, Amer. Meteor. Soc., 294–296, available at: https://ams.confex.com/ams/AugAspen/techprogram/paper_14695.htm (last access: January 2021), 2000. a
Brown, P. J. and Kummerow, C. D.: An Assessment of Atmospheric Water Budget Components over Tropical Oceans, J. Climate, 27, 2054–2071, https://doi.org/10.1175/JCLI-D-13-00385.1, 2014. a, b
Burdanowitz, J.: Point-to-area validation of passive microwave satellite precipitation with shipboard disdrometers, PhD Thesis, Universität Hamburg, Hamburg, https://doi.org/10.17617/2.2385648, 2017. a
Chou, S.-H., Nelkin, E., Ardizzone, J., Atlas, R. M., and Shie, C.-L.:
Surface Turbulent Heat and Momentum Fluxes over Global Oceans Based on the
Goddard Satellite Retrievals, Version 2 (GSSTF2), J. Climate, 16, 3256–3273,
https://doi.org/10.1175/1520-0442(2003)016<3256:STHAMF>2.0.CO;2, 2003. a
Clark, E. A., Sheffield, J., van Vliet, M. T. H., Nijssen, B., and Lettenmaier, D. P.: Continental Runoff into the Oceans (1950–2008), J. Hydrometeorol., 16, 1502–1520, https://doi.org/10.1175/JHM-D-14-0183.1, 2015. a, b
Clayson, C. A. and Brown, J.: Ocean surface bundle Climate Algorithm Theoretical Basis Document, NOAA Climate Data Record Program [CDRP-ATBD-0578] Rev. 2, available at: https://www.ncdc.noaa.gov/cdr/ (last access: January 2021), 2016. a
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project, Q. J. Roy. Meteorol. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011. a
Dagan, G., Stier, P., and Watson-Parris, D.: Analysis of the Atmospheric Water Budget for Elucidating the Spatial Scale of Precipitation Changes Under Climate Change, Geophys. Res. Lett., 46, 10504–10511, https://doi.org/10.1029/2019GL084173, 2019. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hòlm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., Rosnay, P. de, Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the data assimilation
system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J.,
Barton, I. J., Ward, B., and Murray, M. J.: Toward Improved Validation of
Satellite Sea Surface Skin Temperature Measurements for Climate Research, J. Climate, 15, 353–369,
https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017, 2012. a, b
ECMWF: IFS Documentation CY41R2, ECMWF, available at:
https://www.ecmwf.int/en/elibrary/16648-part-iv-physical-processes (last access: January 2021), 2016. a
ECMWF: ERA5 monthly averaged data on single levels from 1979 to present, Data set, https://doi.org/10.24381/cds.f17050d7, 2019. a
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On the Exchange of Momentum over the Open Ocean, J. Phys. Oceanogr., 43, 1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013. a
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996. a
Fairall, C. W., Bradley, E. F.,
Hare, J. E., Grachev, A. A., and Edson, J. B.: Bulk Parameterization of
Air–Sea Fluxes: Updates and Verification for the COARE Algorithm, J. Climate, 16, 571–591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003. a, b
Fennig, K., Schröder, M., and Hollmann, R.: Fundamental Climate Data Record of Microwave Imager Radiances, Edition 3, Dataset, Satellite Application Facility on Climate Monitoring, Data set, https://doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V003, 2017. a, b
Fennig, K., Schröder, M., Andersson, A., and Hollmann, R.: A Fundamental Climate Data Record of SMMR, SSM/I, and SSMIS brightness temperatures, Earth Syst. Sci. Data, 12, 647–681, https://doi.org/10.5194/essd-12-647-2020, 2020. a, b
Gehne, M., Hamill, T. M., Kiladis, G. N., and Trenberth, K. E.: Comparison of Global Precipitation Estimates across a Range of Temporal and Spatial Scales, J. Climate, 29, 7773–7795, https://doi.org/10.1175/JCLI-D-15-0618.1, 2016. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019. a, b
GPCP – Mesoscale Atmospheric Processes Branch/Laboratory for
Atmospheres/Earth Sciences Division/Science and Exploration
Directorate/Goddard Space Flight Center/NASA, and Earth System Science
Interdisciplinary Center/University of Maryland: GPCP Version 1.3 One-Degree
Daily Precipitation Data Set, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory,
https://doi.org/10.5065/PV8B-HV76, 2018. a, b
Graw, K., Kinzel, J., Schröder, M., Fennig, K., and Andersson, A.: Algorithm Theoretical Baseline Document HOAPS version 4.0, EUMETSAT CM SAF, https://doi.org/10.5676/EUM_SAF_CM/HOAPS/V002, 2017 a
Hegerl, G. C., Black, E., Allan, R. P., Ingram, W. J., Polson, D., Trenberth, K. E., Chadwick, R. S., Arkin, P. A., Sarojini, B. B., Becker, A., Dai, A., Durack, P. J., Easterling, D., Fowler, H. J., Kendon, E. J., Huffman, G. J., Liu, C., Marsh, R., New, M., Osborn, T. J., Skliris, N., Stott, P. A., Vidale, P.-L., Wijffels, S. E., Wilcox, L. J., Willett, K. M., and Zhang, X.: Challenges in Quantifying Changes in the Global Water Cycle, B. Am. Meteorol. Soc., 96, 1097–1115, https://doi.org/10.1175/BAMS-D-13-00212.1, 2014. a
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to Global Warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006. a, b
Henderson-Sellers, B.: A new formula for latent heat of vaporization of water as a function of temperature, Q. J. Roy. Meteorol. Soc., 110, 1186–1190, https://doi.org/10.1002/qj.49711046626, 1984. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 2020, 1–51, 2020. a, b, c, d, e, f, g, h, i
Hollinger, J. P., Peirce, J. L., and Poe, G. A.: SSM/I Instrument Evaluation, IEEE T. Geosci. Remote, 28, 781–790, 1990. a
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., and Susskind, J.: Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations, J. Hydrometeorol., 2, 36–50, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2, 2001. a, b
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002. a
Kennedy, J., Reyner, N., Millington, S. C., and Saunby, M: The Met
Office Hadley Centre sea ice and sea-surface temperature data set, version 2,
part 2: seasurface temperature analysis, available at:
http://www.metoffice.gov.uk/hadobs/hadisst2/ (last access: January 2021), 2016. a
Kidd, C. and Huffman, G.: Global precipitation measurement, Meteorol. Appl., 18, 334–353, https://doi.org/10.1002/met.284, 2011. a, b, c
Kinzel, J., Fennig, K., Schröder, M., Andersson, A., Bumke, K., and Hollmann, R.: Decomposition of Random Errors Inherent to HOAPS-3.2 Near-Surface Humidity Estimates Using Multiple Triple Collocation Analysis, J. Atmos. Ocean. Tech., 33, 1455–1471, https://doi.org/10.1175/JTECH-D-15-0122.1, 2016. a, b, c
Knutti, R. and Sedláček, J.: Robustness and uncertainties in the new CMIP5 climate model projections, Nat. Clim. Change, 3, 369–373, https://doi.org/10.1038/nclimate1716, 2013. a
Kunkee, D. B., Poe, G. A., Swadley, S. D., Hong, Y., Wessel, J. E., and
Uliana, E. A.: Design and Evaluation of the First Special Sensor Microwave
Imager/Sounder, IEEE T. Geosci. Remote, 46, 863–883, 2008. a
Liepert, B. G. and Previdi, M.: Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models, Environ. Res. Lett., 7, 014006, https://doi.org/10.1088/1748-9326/7/1/014006, 2012. a, b, c, d
Liman, J., Schröder, M., Fennig, K., Andersson, A., and Hollmann, R.: Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters, Atmos. Meas. Tech., 11, 1793–1815, https://doi.org/10.5194/amt-11-1793-2018, 2018. a
Masunaga, H., Schröder, M., Furuzawa, F. A., Kummerow, C.,
Rustemeier, E., and Schneider, U.: Inter-product biases in global
precipitation extremes, Environ. Res. Lett., 14, 125016, https://doi.org/10.1088/1748-9326/ab5da9, 2019. a, b
Oki, T. and Kanae, S.: Global Hydrological Cycles and World Water Resources, Science, 313, 1068–1072, https://doi.org/10.1126/science.1128845, 2006. a, b, c, d
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S.,
and Schlax, M. G.: Daily High-Resolution-Blended Analyses for Sea Surface
Temperature, J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007. a, b, c
Roberts, J. B., Clayson, C. A., Robertson, F. R., and Jackson, D. L.:
Predicting near-surface atmospheric variables from Special Sensor
Microwave/Imager using neural networks with a first-guess approach, J. Geophys. Res.-Atmos., 115, D19113, https://doi.org/10.1029/2009JD013099, 2010. a
Roberts, J. B., Clayson, C. A., and Robertson, F. R.: Improving Near-Surface Retrievals of Surface Humidity Over the Global Open Oceans From Passive Microwave Observations, Earth Space Sci., 6, 1220–1233, https://doi.org/10.1029/2018EA000436, 2019. a, b, c
Roberts, J. B., Clayson, C. A., and Robertson, F. R.: SeaFlux v3: An updated climate data record of ocean turbulent fluxes, https://doi.org/10.5067/SEAFLUX/DATA101, 2020. a, b, c
Robertson, F. R., Bosilovich, M. G., Roberts, J. B., Reichle, R. H., Adler, R., Ricciardulli, L., Berg, W., and Huffman, G. J.: Consistency of Estimated Global Water Cycle Variations over the Satellite Era, J. Climate, 27, 6135–6154, https://doi.org/10.1175/JCLI-D-13-00384.1, 2014. a, b, c
Robertson, F. R., Roberts, J. B., Bosilovich, M. G., Bentamy, A., Schröder, M., Tomita, H., Clayson, C. A., Compo, G. P., Fennig, K., Gutenstein, M., Kobayashi, C., Sardeshmukh, P., and Slivinski, L. C.: Ocean Latent Heat Flux Uncertainties at Interannual to Inter-decadal Scales in Satellite Retrievals and Reduced Observation Reanalyses, J. Climate, 33, 8415–8437, https://doi.org/10.1175/JCLI-D-19-0954.1, 2020. a
Rodell, M., Beaudoing, H. K., L'Ecuyer, T. S., Olson, W. S., Famiglietti, J. S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J., Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A., Sheffield, J., and Wood, E. F.: The Observed State of the Water Cycle in the Early
Twenty-First Century, J. Climate, 28, 8289–8318,
https://doi.org/10.1175/JCLI-D-14-00555.1, 2015. a, b, c, d, e, f, g, h, i
Sapiano, M. R. P., Berg, W. K., McKague, D. S., and Kummerow, C. D.: Toward an Intercalibrated Fundamental Climate Data Record of the SSM/I Sensors, IEEE T. Geosci. Remote, 51, 1492–1503, https://doi.org/10.1109/TGRS.2012.2206601, 2013. a, b
Schlosser, C. A. and Houser, P. R.: Assessing a Satellite-Era Perspective of the Global Water Cycle, J. Climate, 20, 1316–1338, https://doi.org/10.1175/JCLI4057.1, 2007. a, b, c
Seager, R. and Henderson, N.: Diagnostic Computation of Moisture Budgets in the ERA-Interim Reanalysis with Reference to Analysis of CMIP-Archived Atmospheric Model Data, J. Climate, 26, 7876–7901, https://doi.org/10.1175/JCLI-D-13-00018.1, 2013. a
Shie, C.-L., Tao, W.-K., and Simpson, J.: A note on the relationship between temperature and water vapor over oceans, including sea surface temperature effects, Adv. Atmos. Sci., 23, 141–148, https://doi.org/10.1007/s00376-006-0014-5, 2006. a
Shie, C.-L., Chiu, L. S., Adler, R., Nelkin, E., Lin, I.-I., Xie, P., Wang, F.-C., Chokngamwong, R., Olson, W., and Chu, D. A.: A note on reviving the Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) dataset, Adv. Atmos. Sci., 26, 1071–1080, https://doi.org/10.1007/s00376-009-8138-z, 2009. a
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., L'Ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T.: An update on Earth's energy balance in light of the latest global observations, Nat. Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012. a
Tapiador, F. J., Navarro, A., Levizzani, V., García-Ortega, E., Huffman, G. J., Kidd, C., Kucera, P. A., Kummerow, C. D., Masunaga, H., Petersen, W. A., Roca, R., Sànchez, J.-L., Tao, W.-K., and Turk, F. J.: Global precipitation measurements for validating climate models, Atmos. Res., 197, 1–20, https://doi.org/10.1016/j.atmosres.2017.06.021, 2017. a, b, c
Tomita, H., Hihara, T., and Kubota, M.: Improved Satellite Estimation of Near-Surface Humidity Using Vertical Water Vapor Profile Information, Geophys. Res. Lett., 45, 899–906, https://doi.org/10.1002/2017GL076384, 2018. a, b
Trenberth, K. E. and Fasullo, J. T.: Regional Energy and Water Cycles: Transports from Ocean to Land, J. Climate, 26, 7837–7851, https://doi.org/10.1175/JCLI-D-13-00008.1, 2013.
a
Trenberth, K. E. and Stepaniak, D. P.: Indices of El Niño Evolution, J. Climate, 14, 1697–1701, https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2, 2001. a
Trenberth, K. E., Fasullo, J. T., and Kiehl, J.: Earth's Global Energy Budget, B. Am. Meteorol. Soc., 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1, 2009. a
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses, J. Climate, 24, 4907–4924, https://doi.org/10.1175/2011JCLI4171.1, 2011. a, b
Wentz, F. J., Ricciardulli, L., Hilburn, K., and Mears, C.: How Much More Rain Will Global Warming Bring?, Science, 317, 233–235, https://doi.org/10.1126/science.1140746, 2007. a, b, c
Wilkinson, K., von Zabern, M., and Scherzer, J.: Global Freshwater Fluxes into the World Oceans: Technical Report prepared for the GRDC, GRDC Report 44, UDATA Umweltschutz und Datenanalyse, Neustadt/Weinstraße, Germany, https://doi.org/10.5675/GRDC_Report_44, 2014. a
Yin, J. and Porporato, A.: Looking Up or Looking Down? Hydrologic and Atmospheric Perspectives on Precipitation and Evaporation Variability, Geophys. Res. Lett., 46, 11968–11971, https://doi.org/10.1029/2019GL085466, 2019. a
Yu, L., Jin, X., and Weller, R. A.: Multidecade Global Flux Datasets
from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and
sensible heat fluxes, ocean evaporation, and related surface meteorological
variables, OAFlux Project Technical Report OA-2008-01, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 64 pp., 2008. a, b, c, d
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
The net exchange of water between the surface and atmosphere is mainly determined by the...