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Abstract. The development of algorithms for the retrieval of
water cycle components from satellite data – such as total
column water vapor content (TCWV), precipitation (P ), la-
tent heat flux, and evaporation (E) – has seen much progress
in the past 3 decades. In the present study, we compare six re-
cent satellite-based retrieval algorithms and ERA5 (the Euro-
pean Centre for Medium-Range Weather Forecasts’ fifth re-
analysis) freshwater flux (E−P ) data regarding global and
regional, seasonal and interannual variation to assess the de-
gree of correspondence among them. The compared data sets
are recent, freely available, and documented climate data
records (CDRs), developed with a focus on stability and ho-
mogeneity of the time series, as opposed to instantaneous ac-
curacy.

One main finding of our study is the agreement of global
ocean means of all E−P data sets within the uncertainty
ranges of satellite-based data. Regionally, however, signifi-
cant differences are found among the satellite data and with
ERA5. Regression analyses of regional monthly means of E,
P , and E−P against the statistical median of the satellite
data ensemble (SEM) show that, despite substantial differ-
ences in global E patterns, deviations among E−P data are
dominated by differences in P throughout the globe. E−P
differences among data sets are spatially inhomogeneous.

We observe that for ERA5 long-term global E−P is very
close to 0 mmd−1 and that there is good agreement between
land and ocean mean E−P , vertically integrated moisture
flux divergence (VIMD), and global TCWV tendency. The
fact that E and P are balanced globally provides an opportu-

nity to investigate the consistency betweenE and P data sets.
Over ocean, P (nearly) balances with E if the net transport
of water vapor from ocean to land (approximated by over-
ocean VIMD, i.e., ∇ · (vq)ocean) is taken into account. On a
monthly timescale, linear regression of Eocean−∇ ·(vq)ocean
with Pocean yields R2

= 0.86 for ERA5, but smaller R2 val-
ues are found for satellite data sets.

Global yearly climatological totals of water cycle compo-
nents (E, P , E−P , and net transport from ocean to land and
vice versa) calculated from the data sets used in this study
are in agreement with previous studies, with ERA5 E and P
occupying the upper part of the range. Over ocean, both the
spread among satellite-based E and the difference between
two satellite-based P data sets are greater than E−P , and
these remain the largest sources of uncertainty within the ob-
served global water budget.

We conclude that, for a better understanding of the global
water budget, the quality of E and P data sets needs to be
improved, and the uncertainties more rigorously quantified.

1 Introduction

The water and energy cycles are key components of Earth’s
climate system. Energy exchange from water phase changes
plays a direct role in atmospheric heating; therefore, precip-
itation (P ) and evaporation (E) are two critical processes
connecting the land–ocean surface and overlying atmosphere
(Trenberth et al., 2009). The difference between E and P
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rates, E−P , is the freshwater flux from the surface to the at-
mosphere, which is positive whereE dominates and negative
where P dominates. Over the global oceans, total E−P is
positive, as a considerable amount of water evaporates from
the oceans and is transported to land by advection, mainly
in the form of water vapor, where it precipitates. Averaged
over a year, changes in atmospheric storage vanish, and net
negative E−P over land is balanced by continental runoff
of water into the ocean. Although numerous studies have ad-
dressed the question of how variations in the ocean state af-
fect the water cycle and freshwater fluxes with a particular
view on global warming (Wentz et al., 2007; Trenberth et al.,
2007; Schlosser and Houser, 2007; Robertson et al., 2014),
a clear and consistent picture has yet to emerge – one of the
significant challenges in climate science (Bony et al., 2015;
Hegerl et al., 2014; Allan et al., 2020).

At long temporal and/or large spatial scales, the increases
in E and P with rising global temperature are relatively
small (2–3 %K−1) and are constrained by the energy budget.
At smaller scales (less than approximately 4000 km and/or
10 years) these changes can be much larger (or smaller) due
to dynamical contributions (Dagan et al., 2019; Yin and Por-
porato, 2019; Allan et al., 2020). The nature and extent of
these changes, which affect the livelihoods of many millions
of people, are difficult to model due to various counteracting
influences such as forcing by clouds and aerosols, or land use
change (Allan et al., 2020). Close monitoring of E and P by
(satellite) observations thus yields an important contribution
to a better understanding of impacts of climate change at re-
gional and local scales.

The study of the global water cycle is not only compelling
from a scientific point of view: it also aids the evaluation
of climate models and reanalyses by verifying the degree
of consistency among the various components of the cycle.
Such an approach is adopted here for the evaluation of satel-
lite observations of E and P , which, particularly over ocean,
are difficult to validate otherwise. The fact that the global
water cycle is closed puts a strong constraint on global to-
tal E and P fluxes. This has been exploited in various stud-
ies in the past (Trenberth et al., 2007, 2011; Schlosser and
Houser, 2007; Berrisford et al., 2011; Trenberth and Asrar,
2014; Trenberth and Fasullo, 2013; Seager and Henderson,
2013; Robertson et al., 2014) from which the general con-
clusion emerged that, although much progress has been made
regarding E and P estimates, observations and models still
require substantial improvements in accuracy to achieve bud-
get closure.

Over the years, methods to determine E and P based
(mainly) on satellite data have been developed and repeat-
edly updated: HOAPS E and P (Andersson et al., 2017),
J-OFURO E (Tomita et al., 2019), IFREMER E (Bentamy
et al., 2013), SEAFLUX E (Roberts et al., 2020), OAFlux
E (Yu et al., 2008), and GPCP P (GPCP, 2018) are among
the most widely used data sets. Acronyms are explained in
Sect. 2 and listed in Table 1. We present an intercomparison

of these data sets, all freely available climate data records
(CDRs), characterized by the stability of input data and re-
trieval algorithms, emphasizing data homogeneity over local,
instantaneous accuracy. European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA5 reanalysis data (Hers-
bach et al., 2020) are included for comparison in the present
study. Our main focus lies with the assessment of correspon-
dence among E−P data sets on a global and regional scale
by the intercomparison of six data sets and putting the re-
sults into perspective regarding uncertainty estimates. More-
over, we investigate to what extent water budget closure is
achieved by satellite-based over-ocean estimates by compar-
ing with ERA5 data and previously published estimates of
water cycle components.

Here, we consider the atmospheric water vapor budget
with a focus on the oceans, where satellite observations of
E are available. The net change in atmospheric water vapor
content can be written as

δW

δt
= E−P −∇ · (vq), (1)

with W being the total column water vapor and ∇ · (vq) the
moisture flux divergence, i.e., the amount of moisture re-
moved by dynamical transport from the considered volume.
See Table 2 for all symbols and abbreviations. Compared to
water vapor, the contributions of liquid water and ice are very
small (e.g., Berrisford et al., 2011) and can be safely ignored
in the context of this study.

On a global scale ∇·(vq) vanishes (as the Earth is a closed
system), and Eq. (1) reduces to

1W = E−P, (2)

where, for brevity, we write the W tendency during large
(monthly) time steps as 1W .

Assuming that1W is small compared to E and P , Eq. (2)
dictates that global total E must equal global total P . Hence,
an observed imbalance in global totals of E and P indi-
cates either an inconsistency in E and P data sets or a
change in the global water cycle, for example an increase
in the amount of atmospheric water vapor (possibly caused
by global warming), invalidating the assumption that 1W is
negligible. Moreover, globally,E and P covary, meaning that
their interannual, seasonal, and even monthly variability are
correlated.

At regional scales and for monthly averages, 1W is small
compared to E−P and ∇ · (vq), so that Eq. (1) can be ap-
proximated by

E−P =∇ · (vq). (3)

This is particularly valid for the large ocean and land regions,
and, since globally ∇ · (vq)= 0, from Eq. (3) it follows that

(E−P)ocean =∇ · (vq)ocean =−∇ · (vq)land

=−(E−P)land, (4)
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Table 1. Compilation of the data sets used within this study. Most data sets contain more variables than those listed here.

Acronym Data set name Date range Resolution Variables Reference

ERA5 ECMWF Reanalysis 5 Jan 1979 to present 0.25◦× 0.25◦ E, P , TCWV, VIMD Hersbach et al. (2020)

GPCP-1DD V 1.3 Global Precipitation Climate Program Jan 1996–Dec 2017 1.0◦× 1.0◦ P Huffman et al. (2001)

HOAPS V4.0 Hamburg Ocean Atmosphere Parameters
and Fluxes from Satellite

Jul 1987–Dec 2014 0.5◦× 0.5◦ E, P , E−P Andersson et al. (2010)

J-OFURO V3 Japanese Ocean Flux Data Sets with Use of
Remote-Sensing Observations

Jan 1988–Dec 2013 0.25◦× 0.25◦ LHF, E−P Tomita et al. (2018)

OAFlux Objectively Analyzed Air-sea Fluxesa 1958–2019 (monthly) 1.0◦× 1.0◦ E Yu et al. (2008)

V3 1985–2017 (daily)

IFREMER V4.1 Institut Français de recherche pour
l’exploitation de la mer

Jan 1992–Dec 2018 0.25◦× 0.25◦ LHF, SST Bentamy et al. (2013)

SEAFLUX V3 Sea Flux Project Jan 1988–Dec 2018 0.25◦× 0.25◦ LHF, SST Roberts et al. (2020)

∗ ftp://ftp.whoi.edu/pub/science/oaflux/data_v3 (last access: January 2021).

Table 2. Abbreviations and symbols of variables used throughout
the paper.

Variable Abbreviation Symbol

Air density – ρ

Evaporation rate E E

Latent heat flux LHF Ql
Near-surface (10 m) humidity – qa
Near-surface (10 m) wind speed – u

Precipitation rate P P

Runoff R R

Sea surface humidity – qs
Sea surface temperature SST Ts
Latent heat of evaporation of water – LE
Total column water vapor TCWV W

TCWV tendency 1TCWV 1W

Turbulent exchange coefficient – CE
Vertically integrated moisture flux divergence VIMD ∇ · (vq)

with subscripts denoting summation over ocean or land. This
separation into land and ocean contributions allows us to as-
sess the consistency of differentE and P data sets, as satellite
E data are not available over land.

In addition to the spatiotemporal distributions of indi-
vidual budget terms, for example E−P , information on
the accuracy and precision of that value is of importance.
Uncertainty estimates indicate whether observed differences
– between data sets (e.g., observations and models), over
time (trends, variability), or in space – are statistically rel-
evant. Moreover, they play a major role in data assimilation.
Quantification of retrieval uncertainty, however, is a difficult
task, particularly for nonlinear retrieval algorithms such as
those used to retrieve E and P from satellite observations.
Of the E CDRs investigated here, HOAPS-4.0, OAFlux3,
and SEAFLUX3 provide monthly mean uncertainty ranges.
In HOAPS, random and systematic uncertainty components
are provided separately (Kinzel et al., 2016), allowing error
propagation along with the calculation of temporal and/or

spatial averages, as random errors (no covariance) disap-
pear for large numbers of data points, whereas systematic
errors (100 % covariance) do not. When there is a lack of in-
formation on error covariances, OAFlux3 and SEAFLUX3
monthly mean uncertainty estimates are similarly treated to
having 100% covariance. An estimate of uncertainty is pro-
vided with ERA5 data in the form of results from a 10-
member ensemble (Hersbach et al., 2020).

In the following section, we provide some background on
E and P retrievals and introduce the E, P , and other data
sets used for our study. Section 3 details the methods applied
to the various data sets to enable a fair comparison. Results of
our analyses are presented and discussed in Sects. 4–5, and
we close our study with a set of conclusions and recommen-
dations.

2 Data sets

In this intercomparison study, we assess the degree of
agreement between five satellite-based E retrievals, two
observation-based P retrievals, and a reanalysis data set. In
this section, the retrieval algorithms will be briefly intro-
duced: for more details, please refer to the literature listed
in Table 1.

The retrieval of E from satellite observations is challeng-
ing. It is determined from the bulk flux parameters near-
surface wind speed and humidity gradient near the surface.
Wind speed can be retrieved from satellite passive microwave
brightness temperature (BT) measurements, and BTs have
also some sensitivity to near-surface specific humidity. Spe-
cific humidity at the ocean surface is derived from sea sur-
face temperature (SST). All satellite-based E algorithms use
reanalysis data to some extent, and, vice versa, ERA5 also
assimilates satellite data. Hence, these products cannot be
considered completely independent, and the distinction be-
tween “satellite data” and “reanalysis” is somewhat artificial
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and not always appropriate. However, for historical reasons
– and for lack of a suitable alternative – we will retain these
terms throughout this paper.

The main characteristics of the evaporation retrieval from
passive microwave data are common to all satellite algo-
rithms, but there is quite some variation regarding the input
of Level 1 (calibrated observations) and Level 2 (retrieval re-
sults) data, as will be discussed below. First, we will give a
brief description of the retrieval basics, followed by details
of the various satellite algorithms.

2.1 Evaporation data records

The liquid-water-equivalent evaporation rate,E, is calculated
from the latent heat flux Ql as follows:

E =
Ql

LE
, (5)

where LE is latent heat of evaporation of water. The latent
heat flux, in turn, is parameterized according to the bulk flux
algorithm (based on the Monin–Obukhov similarity theory
representation of fluxes in terms of mean quantities):

Ql = ρLECEu(qs− qa), (6)

with being ρ the density of air; CE the coefficient of tur-
bulent exchange; u the wind speed at 10 m height relative
to the ocean surface current speed; and qs and qa the spe-
cific humidity at the sea surface and at 10 m height, respec-
tively. Whereas qa and u are derived from satellite obser-
vations of BT, ρ, qs, and LE are derived from their depen-
dences on SST and/or air temperature. The turbulent ex-
change coefficient CE is obtained from the Coupled Ocean-
Atmosphere Response Experiment (COARE) version 3.0 al-
gorithm (Fairall et al., 1996, 2003). The algorithm iteratively
estimates stability-dependent scaling parameters and wind
gustiness to account for sub-scale variability.

Most of the data sets used here do not explicitly containE;
therefore, we calculated those from monthly means ofQl and
SST using Eq. (5) and LE (in Jkg−1) given by (Henderson-
Sellers, 1984)

LE = 1.91846× 106
×

(
Ts

Ts− 33.91

)2

, (7)

where Ts is SST in kelvin. The slight difference with the def-
inition of LE used in the COARE-3.0 algorithm causes neg-
ligible differences of 0.03–0.04% for Ts between 278 and
298 K.

The BT observations common to satellite-based retrievals
of ocean turbulent fluxes come from the Special Microwave
Imager (SSM/I; Hollinger et al., 1990) and Special Mi-
crowave Imager/Sounder (SSMIS; Liman et al., 2008) in-
struments on the Defense Meteorological Satellite Program
(DMSP) platforms F08–F18. These data were corrected and
intercalibrated using various approaches to create FCDRs,

stable fundamental climate data records (see, e.g., Wentz
et al., 2013; Sapiano et al., 2013; Berg et al., 2018; Fennig
et al., 2020), which then serve as input to various satellite re-
trievals. Slight differences in calibration approaches lead to
differences in FCDRs that propagate into the retrieved data.
Issues with sensor stability, especially with SSM/I and SS-
MIS sensors, usually express themselves as slow drifts or
sudden jumps of the global mean.

2.1.1 HOAPS-4.0

HOAPS (Andersson et al., 2010) relies almost completely on
satellite data, as it only uses an ERA-Interim profile clima-
tology as a priori starting point for the 1D-Var retrieval of u
and the humidity profile (Graw et al., 2017). The only other
auxiliary data set is the daily Optimum Interpolated Sea Sur-
face Temperature (OISST; Reynolds et al., 2007), version 2,
derived from AVHRR satellite data. OISST provides SST at
a depth of 0.5 m which is transformed to a skin SST using the
approach by Donlon et al. (2002), which is then used for the
determination of qs. The parameterization described in Ben-
tamy et al. (2003) is used to determine qa. For calculation
of the flux parameters Ql and E, HOAPS-4.0 uses COARE
version 2.6a (Bradley et al., 2000), which is nearly identical
to COARE-3.0 (Fairall et al., 2003). HOAPS-4.0 is a CDR
derived from the CM SAF (Climate Monitoring Satellite Ap-
plication Facility) BT FCDR (Fennig et al., 2017, 2020)
and is available at 0.5◦ and 6-hourly (except E−P ) and
monthly resolution from July 1987 to December 2014 (An-
dersson et al., 2017). HOAPS data can be obtained from
https://wui.cmsaf.eu (last access: January 2021).

2.1.2 J-OFURO3

The latest update to J-OFURO involved improvements in the
methods of flux retrieval and expansion of the data set in
terms of time range and parameters (Tomita et al., 2019). The
algorithm is similar to that described above. In addition to
BT from SSM/I and SSMIS (from Remote Sensing Systems
(RSS), Wentz et al., 2013), J-OFURO3 uses BT data from
AMSR-E and AMSR2 (JAXA Version 3 and 2.1, respec-
tively), and TMI (1B11 Version 7 from NASA–GES DISC)
for the retrieval of flux parameters. To determine qa, a pa-
rameterization based on BTs, total column water vapor, and
water vapor scale height was developed using match-ups of
in situ buoy- and ship-based qa and DMSP-F13 BTs from
eight channels (Tomita et al., 2018). From the instantaneous
qa values, gridded daily averages are determined and inter-
calibrated to DMSP-F13 qa to remove systematic differences
caused by the use of different FCDRs. The Ts required for
the calculation of qs and other flux parameters is the me-
dian value of an ensemble of 12 in situ, satellite-based, and
reanalysis data sets. Other auxiliary data sets include water
vapor surface mixing ratios from ERA-Interim (Dee et al.,
2011), OSTIA sea ice concentration (Donlon et al., 2012),
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and air temperature from NCEP–DOE reanalysis (Kanamitsu
et al., 2002). Near-surface wind speed is determined as the
simple mean of values derived from microwave radiometers
and scatterometers (Tomita et al., 2019). J-OFURO3 is avail-
able at 0.25◦ and daily resolution from 1988 to 2013. It was
acquired from https://j-ofuro.scc.u-tokai.ac.jp/ (last access:
January 2021).

2.1.3 OAFlux3

Satellite data used for the production of OAFlux3 data
include wind speed from active (scatterometer) and pas-
sive (radiometer) microwave instruments, SST from OISST
(Reynolds et al., 2007), and qa from the Goddard Satellite-
Based Surface Turbulent Fluxes Dataset Version 2 and 2c
(GSSTF2.0; Chou et al., 2003; Shie et al., 2009). These are
merged with NCEP and ERA40 reanalysis data using weight-
ing factors that put more emphasis on satellite data (for u) or
on reanalyses (qa), or weights both equally (Ts) whenever
satellite data are available (Yu et al., 2008). OAFlux3 data
are available from 1958 to 2018 (monthly) or 1985 to 2017
(daily) at 1◦ resolution from ftp://ftp.whoi.edu/pub/science/
oaflux/data_v3 (last access: January 2021).

2.1.4 IFREMER4.1

Similar to J-OFURO and OAFlux, IFREMER’s ocean flux
retrieval algorithm is based on a synergy of remote sens-
ing and reanalysis data (Bentamy et al., 2013). The cur-
rent version 4.1 contains, among other things, latent heat
flux (LHF) and SST at daily and monthly, 0.25◦ resolution
from 1992 to 2018. The BTs used for retrievals are intercal-
ibrated by Colorado State University (CSU; Sapiano et al.,
2013), except for data beyond June 2017, where CSU data
end and a switch to BTs from RSS (Wentz et al., 2013)
is made. Intercalibrated scatterometer wind data (Bentamy
et al., 2017a) are supplemented by wind speeds determined
by RSS from the SSM/I, SSMIS, and WindSat instruments.
SST are from OISST (Reynolds et al., 2007). The model re-
lating BTs to qa using satellite–in situ data match-ups was
updated from Bentamy et al. (2003) and now includes two
additional terms: Ts and Ta− Ts (with Ta the air temper-
ature at 10 m height from interpolated ERA-Interim data;
Bentamy et al., 2013). IFREMER4.1 data were obtained via
https://wwz.ifremer.fr/oceanheatflux/Data (last access: Jan-
uary 2021).

2.1.5 SEAFLUX3

The SEAFLUX3 data set consists of the near-surface mete-
orology and surface turbulent fluxes of heat, moisture, and
momentum for the period 1988–2018 at an hourly, 25 km
resolution (Roberts et al., 2020). An extension of the Roberts
et al. (2010) neural network retrieval has been developed to
estimate near-surface wind speed, humidity, and air temper-
atures from the Global Precipitation Measurement (GPM)

mission Level 1C intercalibrated BTs (Berg et al., 2018). Fol-
lowing the results of Roberts et al. (2019), the retrieval al-
gorithms now include additional a priori information on the
vertical stratification of water vapor and lower-tropospheric
stability. A total of 14 passive microwave imagers – includ-
ing SSM/I, SSMIS, TMI, AMSR-E, AMSR-2, and GMI – are
used for satellite retrievals, and double differences are used
to intercalibrate all estimates to the GPM GMI radiometer.
The satellite retrievals are made in clear and cloudy scenes
but are screened for precipitating conditions. A Kalman
smoother is then applied to the retrieved estimates to blend
the MERRA-2 (Modern-Era Retrospective analysis for Re-
search and Applications, Version 2; Gelaro et al., 2017) back-
ground with satellite observations in an hourly gap-free anal-
ysis. A diurnally varying sea surface skin temperature from
the SEAFLUX CDR (Clayson and Brown, 2016) is used to-
gether with the near-surface meteorology to estimate fluxes
using the COARE 3.5 algorithm (Edson et al., 2013). Uncer-
tainties are estimated for the individual near-surface mete-
orology as a blending of the retrieval and background errors
through application of the Kalman smoother. Estimates of the
surface flux uncertainties are computed using standard prop-
agation of error techniques through the bulk flux algorithm.

2.1.6 ERA5

ERA5 is the current operational reanalysis running at
ECMWF, the European Centre for Medium-Range Weather
Forecasts. Compared to its predecessor, ERA-Interim, ERA5
includes improved model physics, improved data assimila-
tion techniques, and higher spatial (31 km) and temporal (1 h)
resolution. These lead to a gain in forecasting skill of up
to 1 d compared to ERA-Interim (Hersbach et al., 2020).
Among many other observations, ERA5 assimilates the CM
SAF BT FCDR (Fennig et al., 2017); conditions for SST
are prescribed using HadISST2.1 (Kennedy et al., 2016) and
OSTIA (Donlon et al., 2012) from September 2007 onwards
(Hersbach et al., 2020). ERA5 encompasses data from 10 re-
analysis runs at a reduced spatial resolution of 62 km, al-
lowing estimation of the uncertainty range from ensemble
statistics. The analysis presented here is performed with the
ECMWF ensemble mean, whereas uncertainty is determined
from the ensemble. Both data sets were interpolated to 1◦

resolution at ECMWF.
The monthly averaged data set, available from the Coper-

nicus Climate Data Store (https://cds.climate.copernicus.eu/,
last access: January 2021), contains, among many other
things, total column water vapor (TCWV), vertically inte-
grated moisture flux divergence (VIMD), total precipitation,
and evaporation rates (ECMWF, 2019). Monthly averages
are calculated from daily means starting at 00:00 UTC and
ending at 00:00 UTC the following day (ECMWF, 2020).
Evaporation rates are derived from the gradients of specific
humidity between the surface and the lowest model level
(10 m for ERA5) as described above (ECMWF, 2016). The
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main differences between the satellite-based retrievals de-
scribed here and ERA5 determination of E are the consis-
tency of atmospheric variables involved (u, qa, qs) and the
high temporal sampling rate: monthly means are determined
from (daily means of) hourly data from forecasts initial-
ized daily at 06:00 and 18:00 UTC. Moreover, satellite-based
data sets only provide fluxes over ocean, whereas ERA5
contains data over land and ocean. VIMD – i.e., the total
amount of water vapor removed from the atmospheric col-
umn by dynamical transport – is provided in ERA5 as a grid-
ded monthly mean field. We calculated the TCWV tendency
in month x from monthly mean ERA5 data by subtracting
TCWV of month x+ 1 from TCWV of month x− 1, then
dividing by 30 d per month to obtain the mean TCWV ten-
dency in km3 d−1. This was converted to units of mmd−1 by
multiplication with the Earth’s surface area for comparison
with freshwater fluxes.

2.2 Precipitation data records

Microwave-based retrievals of precipitation are based on
the interaction of liquid or solid hydrometeors with the up-
welling radiation field. In HOAPS-4.0, P is determined by
a neural network retrieval trained on profiles from an ERA-
Interim climatology (Andersson et al., 2010). The training
data set consists of 1 month (August 2004) of assimilated
SSM/I BTs and the corresponding ERA-Interim P (Bauer
et al., 2006).

There are a multitude of global precipitation products in
existence (see, e.g., Kidd and Huffman, 2011; Tapiador
et al., 2017), but for this study we selected GPCP as the P
data set with which to calculateE−P (except for the HOAPS
product, which makes use of its own P data) because it is
generally regarded as the data set that performs best glob-
ally. Moreover, J-OFURO also makes use of GPCP P to de-
termine E−P (Tomita et al., 2019).

The Global Precipitation Climatology Project–One-
Degree Daily data set (GPCP-1DD; denoted GPCP here-
after) contains P estimated from a combination of data from
ground-based rain gauges and satellites – the latter including
near-infrared, passive, and active microwave observations
(Huffman et al., 2001). Daily global precipitation rates are
provided by GPCP-1DD at 1◦ resolution for the time range
1996–2017. We calculate monthly mean P from version 1.3
GPCP-1DD (GPCP, 2018), because the spatial resolution of
the monthly product is not sufficient for our purposes. These
data were obtained from https://rda.ucar.edu/datasets/ds728.
5/ (last access: January 2021).

2.3 Errors, biases, and uncertainty

Four out of seven data sets analyzed here contain explicit in-
formation on uncertainty. HOAPS contains estimates of ran-
dom and systematic bias errors (Kinzel et al., 2016; Liepert
and Previdi, 2012). The errors inE were obtained by separat-

ing biases of HOAPS Level 2 E with respect to collocated in
situ ship-based data into equally populated E, u, Ts, and W
bins. The mean and standard deviation of the biases are as-
sumed to represent the systematic and random components
of the 2σ uncertainty range, respectively, which is probably
a conservative estimate. When the approach is taken of de-
termining uncertainty ranges as a function of turbulent flux
parameters, these can also be assigned to times and regions
not covered by the ship-based reference data set (Liepert and
Previdi, 2012). For the current study, we calculated the mean
uncertainty by averaging the systematic uncertainty compo-
nent. The random component is negligible when averaging
long time series. The HOAPS P data set does not contain
uncertainty information; instead, a constant relative 1σ un-
certainty range of 13% was assumed, based on a comparison
with ship-based in situ data (Burdanowitz, 2017). The total
E−P uncertainty was determined by error propagation.

Bias errors given in the OAFlux data set were computed
based on the uncertainty ranges of individual input data sets,
assuming no correlation between uncertainties from differ-
ent data sets (Yu et al., 2008). Like for HOAPS uncertainty
ranges, the OAFlux bias error was simply averaged for our
investigations.

Uncertainties in SEAFLUX arise both from comparisons
of the individual retrieval errors (e.g., wind speed, humidity,
air temperature) evaluated against quality-controlled buoy
archives and from errors arising as a result of gap-filling
through application of a Kalman smoother. Individual re-
trievals were generally found to be unbiased globally, but
some conditional biases likely remain. The total uncer-
tainty is a measure of the reduction in retrieval uncertainties
through combination of multiple sensors at each location and
time and increases in uncertainty related to sampling inho-
mogeneities. As the length of time grows between any given
time and the previous or next observation, the sampling un-
certainty increases. Thus the SEAFLUX uncertainties gener-
ally capture random retrieval uncertainties and sampling un-
certainty but do not contain conditional systematic errors as
developed for HOAPS. However, we note that the retrieval
error itself does likely contain some components of condi-
tional systematic biases even though the unconditional biases
remain small.

In contrast to the monthly GPCP product, GPCP-1DD
Version 1.3 does not provide explicit uncertainty estimates;
hence here we assume a constant relative 1σ uncertainty
range of 8%. This is the estimated bias error for GPCP data
over the tropical oceans (Adler et al., 2012), which is where
most of the P signal originates. Over the global oceans, the
bias error was estimated at 10%, but Adler et al. (2012) con-
sidered this an upper bound.

In contrast to uncertainty ranges estimated by comparing
with other (e.g., in situ) data sets, the uncertainty of ERA5
data is described by the standard deviation and the range
of the ensemble, consisting of 10 separate reanalysis runs
(Hersbach et al., 2020). We determined these statistics after
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averaging of the data: first, the mean (e.g., global monthly
mean) of each individual ensemble member was calculated,
and then standard deviation and range were determined. Note
that ERA5 ensemble statistics should be interpreted in a rela-
tive sense (i.e., ensemble spread is larger where uncertainty is
higher), as the numerical values are overconfident (ECMWF,
2020).

3 Methods

HOAPS is the only satellite data set containing E, P , and
E−P data from a single source (i.e., microwave BTs).
Within the HOAPS algorithm, E−P is obtained by subtract-
ing monthly mean P from E (Andersson et al., 2010). For
this study, the data were remapped from 0.5 to 1◦. For the
J-OFURO3 freshwater flux product, monthly mean GPCP-
1DD P is subtracted from the corresponding J-OFURO E

(Tomita et al., 2019). We determined E−P of the other
satellite-based data sets by subtracting monthly mean GPCP
P from the respective monthly mean E. These data sets will
be denoted as IFREMER-G, SEAFLUX-G, and OAFlux-
G to indicate that GPCP data were subtracted. J-OFURO,
IFREMER, and SEAFLUX do not provide E; therefore we
calculated those from their respective LHF and SST data us-
ing Eqs. (5) and (7). The calculation of E from Ql was per-
formed at 0.5◦ and monthly resolution. Applying the same
method of calculating E from HOAPS monthly mean LHF
and SST data causes negligible differences with monthly
mean E determined from instantaneous LHF and SST data
(root mean square differences of ≤ 0.01 mmd−1 for individ-
ual grid boxes during 1997–2013). All E data were conser-
vatively remapped to 1◦ to match GPCP resolution prior to
subtraction of P . Similarly, ERA5 E−P was determined by
subtracting monthly mean P from E at 1◦ resolution.

All comparisons presented here are performed with col-
located data; i.e., only grid boxes (at x, y, and t) present
in all data sets were used to create climatological or global
averages. A more accurate collocation procedure would be
performed at shorter, for example daily, timescale, because
differences in filtering of high-precipitation scenes (where E
retrieval is impaired) and selection of included satellite in-
struments lead to differences in sub-monthly sampling. This
was, however, not feasible in this study, as HOAPS and J-
OFURO E−P data are only provided at monthly resolution.

The satellite reference data set used in regional compar-
isons is determined by the statistical median of the satellite-
based data ensemble and therefore does not include ERA5.
The median is chosen over the mean to exclude outliers.
In the following, this reference data set is abbreviated SEM
(satellite ensemble median).

Global averages were determined by converting the area-
specific unit of mm d−1 (equivalent to kgm−2 d−1) to units
of km3 d−1; computing the global, ocean, or land mean;
and multiplying with the corresponding total surface area

(510×106, 350×106, or 160×106 km2, respectively). Sea-
sonally varying numbers of observations screened out due
to sea ice are neglected. Most comparisons in this study are
shown in area-specific units, but for the comparison of global
totals over land and ocean presented in Sect. 4.6, data were
converted to area-integrated units (km3 yr−1) so that the to-
tals balance.

Global total runoff from ERA5 and other data sets was
determined by calculating the area integral of all points.

4 Results

4.1 Freshwater flux climatology

Freshwater flux climatologies obtained from 17 years of data
(1997–2013) were determined from satellite ensemble me-
dian (SEM) and ERA5 data. They are shown in Fig. 1a and
b, to illustrate the overall spatial distribution of mean E−P .
The chosen time range is the largest common time range of
the data sets used in this study. Note that ERA5 data were
matched to satellite data coverage.

Regions where mean P > E are dominated by atmo-
spheric freshwater outflux (into the ocean), appear in blue in
Fig. 1a and b, and are concentrated at the Intertropical Con-
vergence Zone (ITCZ) and the Pacific warm pool. In the sub-
tropics, E generally outweighs P . At higher latitudes P and
E are approximately equal, but with a tendency toE−P < 0.
Comparison of panels c–f with a and b shows that the E−P
pattern is mainly determined by P in the tropical and high-
latitude regions but determined by E in the subtropical re-
gions. The agreement between SEM and ERA5 E−P cli-
matologies is good, yet some systematic differences can be
observed. Due to higher P in the ITCZ, ERA5 shows more
negative E−P there. Conversely, the overall higher E level
in ERA5 causes E−P values larger than those found for
SEM over most of the global oceans. Excessive E was also
found to produce high E−P in ERA-Interim (Brown and
Kummerow, 2014).

The deviations are more apparent when climatological dif-
ferences are analyzed. For this comparison we select ERA5
as a reference due to its spatiotemporal completeness and
because it is the only “other” data set (i.e., not satellite
data), keeping in mind that ERA5 data very likely also
have inaccuracies and/or biases. Figure 2 shows climato-
logical difference plots of HOAPS (upper panel), OAFlux-
G (middle panel), and SEAFLUX-G (lower panel) with
collocated ERA5 data. Although HOAPS differences with
ERA5 appear larger to the eye, root mean squared differ-
ences are 0.6 mmd−1 for each of the three comparisons:
0.60 mmd−1 for HOAPS, 0.58 mmd−1 for SEAFLUX-G,
and 0.57 mmd−1 for OAFlux-G. As already seen in Fig. 1,
differences are not homogeneously distributed over the
globe. The HOAPS difference plot is characterized by an al-
ternating pattern of positive and negative deviations. Stronger
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Figure 1. Satellite ensemble median (SEM) and ERA5 climatologies (1997–2013) of freshwater flux (a, b) and evaporation (c, d), and GPCP
and ERA5 precipitation (e, f). ERA5 data coverage was reduced to match satellite data, and data over land were discarded from panels (e)
and (f). See the text for details.

HOAPS E in the subtropical central north and eastern South
Pacific produces elevated E−P compared to ERA5. In con-
trast, elevated ERA5 E over the East China Sea combines
with smaller ERA5 P in the region, resulting in higher ERA5
E−P . The positive bands on either side of the Equator are
due to higher HOAPS E, whereas the negative E−P dif-
ferences at the Equator are due to smaller HOAPS P . The
negative deviations to the east and west of Australia are
also due to differences in P , whereas the deviations at lat-
itudes > 40◦ S are due in equal parts to E and P . The dif-
ferences between OAFlux-G and ERA5 are mainly due to
P , apart from the regions in the subtropical Pacific and At-
lantic Oceans, where OAFlux E is smaller than ERA5 E.
SEAFLUX-G shows slightly larger differences with ERA5.
In the band within 30◦ of the Equator, SEAFLUX yields
higherE than ERA5 (and OAFlux) in most of the Pacific and

Atlantic Ocean, except in the upwelling regions on the west
coasts of Africa and the Americas. The difference plots of
J-OFURO and IFREMER-G with ERA5 are not shown here
but are very similar to the lower left panel because the dif-
ferences in P between GPCP and ERA5 are larger than dif-
ferences in E in most regions. All plots, including difference
climatologies of E and P , can be found in the Appendix,
Fig. A1.

To investigate where the differences are significant, the
right column of Fig. 2 presents the 1σ uncertainty range
from HOAPS (upper panel), OAFlux-G (middle panel), and
SEAFLUX-G (lower panel). Moreover, regions where the
difference between satelliteE−P and ERA5E−P is greater
than the 2σ uncertainty range are enclosed by white con-
tour lines in the left panels. The ERA5 E−P uncertainty
shows a pattern similar to that of OAFlux-G but is a factor of
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Figure 2. Difference maps of HOAPS (a), OAFlux-G (b), and SEAFLUX-G (c) climatological mean E−P minus the corresponding
collocated ERA5 climatology (1997–2013). HOAPS (d), OAFlux-G (e), and SEAFLUX-G (f) climatological mean 1σ uncertainty. White
lines in the left panels enclose regions where the difference with ERA5 E−P exceeds the 2σ uncertainty range.

10 smaller than the uncertainties estimated for satellite data
and therefore adds a negligible component to the total uncer-
tainty estimate. The HOAPS uncertainty range is larger than
HOAPS-ERA5 E−P differences over most of the globe.
This is mainly due to P , for which we assumed 13% un-
certainty. The deviations > 1 mmd−1 in the oceans’ desert
regions (off the west coasts of Peru and southern Africa) and
in the higher latitudes are clearly outside the 2σ uncertainty
ranges. In contrast, OAFlux-G E−P deviations are larger
than the estimated 2σ uncertainties in the ITCZ, on the west
coasts of the Pacific and Atlantic Ocean, in the Arabian Sea,
and at southern high latitudes. Again, the uncertainty range
is mainly given by P , for which we assumed a relative un-
certainty of 8%. Due to the small uncertainty estimates in
SEAFLUX, all of the larger differences with ERA5 in the
Atlantic and Pacific Ocean are significant.

4.2 Intercomparison of freshwater flux over ocean:
global means

Monthly mean E, P , and E−P of six (or three) data
sets were collocated (see Sect. 3) and averaged over the
global oceans (80◦ S–80◦ N). Climatological seasonal cy-

cles were determined for the overlapping time range (1997–
2013) and are shown in Fig. 3a–c. HOAPS, ERA5, OAFlux,
SEAFLUX, and GPCP uncertainty ranges are presented in
the boxes attached to the right of panels a–c. Dots show the
climatological mean value, and error bars indicate the asso-
ciated 1σ uncertainty. Subtracting the seasonal cycle from
the respective monthly mean time series yields global ocean
anomalies of E−P , E, and P , which are presented as 3-
month running means in panels d–f. Seasonal and interan-
nual variability are on the same order of magnitude, which
can be seen by comparing the left panels with those on the
right (the y axis spans 1 mmd−1 in all panels).

There are substantial deviations between E, P , and E−P
data. Fig. 3a shows that a difference of about 0.2 mmd−1

is found between OAFlux and J-OFURO E. An additional
discrepancy of 0.2 mmd−1 exists between J-OFURO and
ERA5. E data from HOAPS, IFREMER, and OAFlux are
much closer to each other: satellite-based E all falls within
the OAFlux uncertainty range (red error bars), whereas the
ERA5 climatological mean E does not fall within the larger
HOAPS uncertainty range. The HOAPS uncertainty range is
much larger than the seasonal variation, which indicates that
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Figure 3. Climatological (1997–2013) seasonal cycle of global ocean mean evaporation rate (a), precipitation rate (b), and freshwater flux (c).
HOAPS, ERA5, OAFlux, SEAFLUX, and GPCP mean values and associated 1σ uncertainty ranges are shown in the boxes to the right of the
panels. Monthly mean anomaly (with respect to the climatological seasonal cycle depicted on the left) over the global oceans (80◦ S–80◦ N)
of evaporation rate (d), precipitation rate (e), and freshwater flux (f). The anomaly data are smoothed using a 3-month running mean. Panel
(e) additionally displays the Niño3.4 index shifted by +3 months (right y axis). The legend shows the correlation coefficient of the Niño3.4
index with P anomalies and the time lag of highest correlation (1t in months). Ticks on the time axis mark January of the indicated year.

it is likely overestimated, which may be due to the assump-
tion of 100% covariance for systematic uncertainty.

Fig. 3b shows that the seasonal cycle of global ocean
mean P is shallow, and the two satellite-based data sets agree
within the GPCP uncertainty for 10 months of the year. Like
for E, we find substantial differences among the three P
data sets: there is a deviation of about −0.1 mmd−1 between
HOAPS and GPCP, and ERA5 shows values that are about
0.25 mmd−1 higher than GPCP, which was also found by
Hersbach et al. (2020). These differences can, in part, be ex-
plained by differences in P frequency distributions and, in
particular, by the fraction of rain occurrences, which is much
lower in HOAPS than in GPCP or ERA5. This will be dis-
cussed in Sect. 5. Since in this paper the focus is on the inter-

comparison of E−P (not specific E or P algorithm issues),
we only describe the observed differences between P (and
E) data sets to obtain a better understanding of differences
between E−P data.

Apart from HOAPS E−P in March–April, all satellite
data sets agree on phase and amplitude of the E−P seasonal
cycle (Fig. 3c). ERA5 shows hardly any dependence on sea-
son, as the magnitude of the summer maximum is smaller in
ERA5 due to the relatively larger summer P maximum. The
monthly and interannual variability of ERA5 E−P is, like
the seasonal cycle, of smaller amplitude than that of satel-
lite data, which is caused by the high degree of coherence
between E and P , and will be discussed in more detail in
Sect. 4.5. Because, compared to satellite data, ERA5 E and
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P are biased high by about the same amount, E−P is close
to the satellite data. HOAPS yields the highest E−P due
to its low mean P . All E−P data are contained within the
HOAPS and OAFlux uncertainty ranges.

The E anomalies in Fig. 3d display a high degree of cor-
relation on a monthly timescale. On a multi-annual scale
all data sets show some degree of variability, which is
most likely linked to sensor and intercalibration issues (e.g.,
Robertson et al., 2020), and the variability is not consistent.
For example, the slow, decadal-scale oscillation observed in
HOAPS and IFREMER appears to be in anti-phase compared
to OAFlux. The three P data sets yield interannual variations
with amplitudes that are similar in amplitude to those found
for E and show a high degree of correspondence in their
monthly and interannual variability – apart from the stronger
dependence of HOAPS on ENSO (El Niño–Southern Oscil-
lation) phase. This is a known characteristic of HOAPS data
(see, e.g., Andersson et al., 2011; Masunaga et al., 2019) and
is most apparent in panel e, where the Niño 3.4 SST index
(Trenberth and Stepaniak, 2001) is plotted in gray bars along
with P anomalies: HOAPS P correlates with Niño 3.4 if a
lag of 3 months is taken into account (R2

= 0.73). Appar-
ent agreement is found among all E−P anomalies (panel
f) – again apart from the ENSO-related deviations found in
HOAPS P . The agreement among E−P anomalies is best
in the “quiet” ENSO years (2001–2005), but this is proba-
bly a coincidence as the spread in E−P in other years is
mainly due to differences in E and not in P . Note that dif-
ferences between J-OFURO-G, IFREMER-G, SEAFLUX-
G, and OAFlux-G are due to differences in E, as in all cases
GPCP P was used for the calculation of E−P .

4.3 Intercomparison of freshwater flux over ocean:
time series on regional scales

In this section, we investigate the temporal correlation of wa-
ter cycle components on regional scales. This approach will
help to elucidate differences between the various data sets by
uncovering in which regions the differences are particularly
large (or small). As a reference for the E and E−P compar-
isons, we use SEM, a data set determined by the statistical
median of all satellite data sets. Since we use only two satel-
lite P data sets, GPCP is selected as a reference for the P
comparison. We determine correlation coefficient, slope, and
intercept of the linear regression (y = ax+b) between 1◦×1◦

monthly means (not anomalies) of each data set, y, and the
reference, x, to examine where estimates are most consistent.

The results are shown for all six E data sets in Fig. 4,
where the left column displays the correlation coefficient. In
the top row, HOAPS yieldsR2 > 0.75 over most of the globe,
with some notable exceptions in the ITCZ and at the Peruvian
coast. The other satellite data yield higher correlation coeffi-
cients. The correlation pattern of ERA5 with SEM is similar
to that found for HOAPS, although the tropical areas with
R2 < 0.75 are not at the same locations. The highest overall

correlation with SEM is found for J-OFURO and SEAFLUX,
with R2 exceeding 0.75 essentially everywhere.

The middle panels of Fig. 4 display the slope of the lin-
ear regression. A slope greater (smaller) than 1 implies an
overestimation (underestimation), particularly of large val-
ues, compared to SEM. HOAPS overestimates E in the trop-
ics, except in an area in the eastern Pacific at 0–5◦ N, where
a < 1. J-OFURO, IFREMER, and OAFlux each yield slopes
< 1 within 30◦ of the Equator and slopes close to 1 every-
where else (apart from the band with a < 1 seen in IFRE-
MER at high southern latitudes). Of those three E data sets,
OAFlux displays the largest deviations from a = 1. In con-
trast, SEAFLUX yields slopes close to unity over the whole
globe. An inhomogeneous pattern is found for ERA5, but the
slope is generally close to 1. A small region in the tropical
Atlantic stands out due to its large slope, and since this is not
seen in any of the satellite data sets, it must be a feature in
ERA5 data.

The patterns in the middle panels are nearly all mirrored
in the right panels; i.e., wherever large values are overesti-
mated (a > 1), small values are underestimated (b < 0), and
vice versa. All data sets thus appear to agree on intermedi-
ate values. Overall, the correspondence between E data sets
is best in the subtropics, while the largest deviations appear
mainly in the tropics. This is due to the frequent occurrence
of weather conditions in which the moisture stratification de-
parts substantially from typical conditions to which the re-
trieval algorithms of near-surface moisture are tuned. Ac-
counting for this dependence on moisture stratification, as
in the SEAFLUX and J-OFURO algorithms, improves re-
trieval results appreciably compared to in situ measurements
(Roberts et al., 2019).

Figure 5 shows the same analysis for P from HOAPS (up-
per panels) and ERA5 (lower panels). The correlation coef-
ficient between HOAPS and GPCP P is > 0.75 in the ITCZ
and about 0.5 for most of the global oceans. In the oceans’
deserts R2 < 0.25 is found, which is mostly due to the small
dynamic range of mean P . Compared to GPCP, HOAPS un-
derestimates P in this region, as a < 1. At latitudes pole-
ward of 50◦ similarly small R2 values are found that are due
in part to the small dynamic range and in part to difficulties
pertaining to the detection of snow by passive microwave in-
struments (Tapiador et al., 2017; Kidd and Huffman, 2011).
HOAPS underestimates high P here and overestimates small
P (b > 0 mmd−1) compared to GPCP. Very similar patterns
are seen for ERA5, although in general the correlation co-
efficient is higher than for HOAPS. ERA5 is biased high
almost everywhere compared to GPCP. Both HOAPS and
ERA5 show a smaller range of P in the Southern Oceans,
as the slope is less than 0.5, but the large intercept indicates
an overestimation of small P compared to GPCP. The narrow
band of R2 < 0.75 and b > 1 mmd−1 at the Equator is also
found in both HOAPS and ERA5.

For E−P , the results of the regression analysis are shown
in Fig. 6. The highest correlation coefficients (and slopes and
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Figure 4. Correlation, slope, and intercept of the linear regression of monthly mean E from (top to bottom) HOAPS, J-OFURO, IFREMER,
OAFlux, SEAFLUX, and ERA5 with satellite ensemble median (SEM) monthly mean E (1997–2013).

intercepts closest to 1 and 0 mmd−1) are found among the
data sets calculated with GPCP P . This shows that most of
the variability in E−P is due to differences in P . Since
GPCP P is used in four out of five data sets included in
the SEM, those data sets show high correlations, whereas
HOAPS and ERA5 yield patterns very similar to those found
for the P comparison in Fig. 5. Nevertheless, both for ERA5
and HOAPS the correlation in most of the tropics is higher

forE−P than for P . In summary, the correlation patterns for
HOAPS and ERA5 indicate agreement on the seasonal cycle
in the tropics, a result found previously by Brown and Kum-
merow (2014), although we find that its amplitude is reduced
in the GPCP-based E−P data (Fig. 3). Less agreement is
found in the Southern Oceans, where GPCP-based E−P is
underestimated relative to SEM. At the midlatitudes, the re-
gression with SEM yields slopes near 1 and intercepts close
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Figure 5. Correlation, slope, and intercept of the linear regression of monthly mean P from HOAPS (a–c) and ERA5 (d–f) with GPCP
monthly mean P (1997–2013).

to 0 mmd−1 for ERA5 and HOAPS, but the correlation is
less than in the tropics, probably due to the smaller dynamic
range of E−P .

In the present study, we compare satellite-based E−P
with ERA5 E−P because we are also examining the sep-
arate contributions from E and P . It can, however, be argued
that VIMD from reanalysis is a more reliable quantity than
reanalysis E−P , since VIMD is calculated from the state
variables wind and water vapor, whereasE and P are derived
from model physics (e.g., Trenberth et al., 2011). We verified
that in ERA5 the agreement between E−P and ∇ · (vq) is
generally good, as shown in Appendix B. Hence, changes to
the plots in Fig. 6 are minor when ERA5 ∇ · (vq) is used to
calculate the regression with SEM E−P instead of ERA5
E−P , as shown in Fig. A2.

4.4 Examination of the water budget in ERA5

One way of investigating the consistency of different water
cycle components is determining if the global water budget
(Eq. 1) is closed. However, satellite E−P data sets are avail-
able over ocean only, so we revert to a comparison with gap-
free reanalysis data. There is no internal constraint for bud-
get closure in ERA reanalyses (Berrisford et al., 2011; Hers-
bach et al., 2020), and as the budget was not closed in ERA-
Interim, it is worthwhile to investigate ERA5’s behavior in
this regard. Monthly mean total ERA5 E−P over the globe,
the ocean, and land is shown in Fig. 7 in black, blue, and
green, respectively. The mean values over the globe and land
were scaled by their surface area relative to the ocean surface
area (i.e., they were multiplied by 510/350 and 160/350, re-
spectively) to obtain consistency with the over-ocean means
shown in Fig. 3. The error bars on ERA5 data depict the stan-
dard deviation of the 10-member ensemble. Nearly all of the
uncertainty in global mean E−P is due to the uncertainty

over ocean; the error bars on the over-land E−P are smaller
than the graph’s line width. This is due in equal parts to E
and P , which have similar ensemble standard deviations (not
shown). For the time range shown in Fig. 7 global E−P is
seen to oscillate around 0 mmd−1, meaning that the ERA5
water budget is closed on a yearly timescale (in agreement
with the findings by Hersbach et al., 2020). The seasonal cy-
cle is mainly driven by increased evapotranspiration of veg-
etation on land and peaks in northern hemispheric summer
due to the larger fraction of land in the Northern Hemisphere.
Precipitation shows a similar seasonal cycle over land but
does not completely cancel out inE−P due to a slight phase
shift with respect to the E seasonal cycle (not shown).

Figure 7 shows that monthly means of global E−P and
1W (light blue line) display a high degree of coherence, as
expected from Eq. (2). This is an indication that the (atmo-
spheric) water cycle is well represented in ERA5.

Globally, VIMD is zero, as no water vapor is transported
out of (or into) the Earth system. However, we find ERA5
global total VIMD to be−0.04 mmd−1: a small value within
the standard deviation of the ensemble of single grid boxes,
but significant and on the order of the amplitude of the
seasonal cycle of net E−P on a global scale. The de-
viation from zero is due to the fact that VIMD is calcu-
lated in grid point space (and not in the model’s spectral
space), where the mathematical constraint of net zero di-
vergence is not enforced (Paul Berrisford, personal com-
munication, October 2020). Interestingly, VIMD over land
(pink) agrees well with over-landE−P , whereas VIMD over
ocean (purple line) is smaller than over-ocean E−P also by
−0.04 mmd−1. Based on the results of the regression anal-
ysis shown in the upper panels of Fig. A2 we speculate that
discrepancies between E−P and ∇ · (vq) over the ocean’s

https://doi.org/10.5194/hess-25-121-2021 Hydrol. Earth Syst. Sci., 25, 121–146, 2021



134 M. Gutenstein et al.: Freshwater fluxes over ocean

Figure 6. Correlation, slope, and intercept of the linear regression of monthly mean E−P from (top to bottom) HOAPS, J-OFURO-G,
IFREMER-G, OAFlux-G, SEAFLUX-G, and ERA5 with satellite ensemble median (SEM) monthly mean E−P (1997–2013).

desert regions also play a role in causing∇·(vq) to be smaller
over ocean than over land.

4.5 Examination of the water budget in satellite data
sets

Globally, E−P is equal to 1W (Eq. 2 and Fig. 7), and be-
cause 1W is 2 orders of magnitude smaller than E and P ,
global mean E should necessarily be almost equal to global
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Figure 7. ERA5 monthly mean E−P over the whole globe (black), land only (green), and ocean (blue); global mean 1W (light blue), and
mean ∇ · (vq) over land (pink) and ocean (purple). The mean values over the globe and land were scaled by their surface area relative to the
ocean surface area (i.e., they were multiplied by 510/350 and 160/350, respectively) to obtain consistency with the over-ocean means shown
in Fig. 3. Error bars represent the standard deviation within the 10-member ensemble, which is smaller than the graph’s line width for E−P
over land, 1W , and ∇ · (vq).

mean P . This seemingly trivial finding provides us with a
tool for investigating the consistency of E and P data sets:
by determining how well they correlate. For ERA5, global
mean E and P yield correlation coefficients R2

= 0.82 and
R2
= 0.84 for monthly and yearly means, respectively. This

procedure cannot be applied to the satellite E−P data con-
sidered here, as they contain values over ocean only. Since
there is a substantial seasonality in water vapor transport
(Fig. 7), the correlation between ocean-only E and P is ex-
pected to be much lower. A regression of ERA5 Eocean and
Pocean monthly means (where the subscript ocean indicates av-
eraging over ocean only) indeed yields only R2

= 0.42, or
R2
= 0.57 for yearly means. To account for the net transport

of water from ocean to land, we include ∇ ·(vq)ocean into the
analysis and, applying Eq. (4), correlateEocean−∇·(vq)ocean
with Pocean. For ERA5, the resulting R2 are 0.86 for yearly
and monthly means: very similar to the coefficients found for
the correlation of global E with P .

We calculated correlation coefficients of the various E
and P data sets used in this study, combined with ERA5
∇ · (vq)ocean, and listed them in Table 3. The analyses were
performed separately on (i) monthly means, primarily indi-
cating agreement on the seasonal cycle; (ii) yearly means, a
measure of consistency of interannual variability, including
trends; and (iii) monthly anomalies, focused on short-term
variability.

The small correlation coefficients found for monthly mean
satellite data in part reflect the differences in the seasonal cy-
cles of E and P (see panels a and b of Fig. 3). But the results
from the analysis of monthly anomalies (where the mean sea-
sonal cycle was subtracted) are very similar to those found
for monthly means, indicating that, compared to monthly
and interannual variability, the seasonal cycle is of lesser
importance on a global scale. Including the contribution of

Table 3. Pearson’s correlation coefficient squared (R2) for monthly
(mean or anomaly) or yearly global ocean meanEocean−∇·(vq) vs.
Pocean, with ∇ ·(vq) data from ERA5. R2 was calculated from data
sets that were collocated prior to the calculation of global means.

Data set Monthly Yearly Monthly
mean mean anomaly

HOAPS-4.0 0.03 0.00∗ 0.06
J-OFURO3 – GPCP-1DD 0.16 0.31 0.22
IFREMER4.1 – GPCP-1DD 0.13 0.23 0.20
OAFlux3 – GPCP-1DD 0.14 0.01∗ 0.11
SEAFLUX3 – GPCP-1DD 0.17 0.02∗ 0.12
ERA5 0.86 0.86 0.83

∗ Non-significant correlation coefficients (p value> 0.05).

∇ · (vq)ocean improves the correlation appreciably for ERA5,
as mentioned above. For satellite data the correlation also im-
proves, particularly for yearly means and monthly anomalies
of IFREMER-G and J-OFURO-G (not shown). On a yearly
timescale, we do not expect a high degree of correlation, as
interannual variability is small and no clear trends are ob-
served in panels d and e of Fig. 3. For ERA5, R2

= 0.86,
but this is primarily caused by small E and P in 1997 and
1999, which is also the case for IFREMER. The correlation
found for J-OFURO, R2

= 0.31, is the highest found among
satellite data. The remaining satellite data sets are not sig-
nificantly correlated on a yearly timescale (p value> 0.05).
Clearly, time series longer than the 17 years investigated here
would benefit the analysis of yearly mean data.

Overall, this analysis shows that satellite-based estimates
of E are less consistent with satellite-based P data than
ERA5 E and P . To a certain degree, this is expected, as
the three variables used in the analysis come from differ-
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Table 4. Estimates of ocean total E and P , land and ocean total E−P , net transport of water vapor, and continental runoff given in
103 km3 yr−1. The upper three rows contain results from this study, and the lower five those from earlier investigations. ERA5 estimates are
calculated from ensemble mean data; the standard deviation (SD) is derived from ensemble statistics. The satellite-based data sets used in
our study were averaged to obtain the mean and SD of observed (Obs.) Eocean and Pocean, and the range is given in the third row. Net water
vapor flux divergence over land (∇ · (vq)land) and ocean (∇ · (vq)ocean) and continental runoff R are given in the last three columns. The
estimates from the study by Rodell et al. (2015) are separated into observations (obs.) and model-optimized observations (opt.); see the text
for details.

Eocean Pocean (E−P)ocean (E−P)land ∇ · (vq)land ∇ · (vq)ocean R

ERA5 467± 1 426± 2 43± 2 −44± 0.4 −43± 0.2 31± 0.2 42.1
Obs. mean ± SD 425± 20 360± 25 52± 13 – – – –
Obs. range 397–453 335–384 35–65 – – – –
Oki and Kanae (2006) 436.5 391 45.5 −45.5 −45.5 45.5 45.5
Trenberth and Asrar (2014) 413 373 40 −40 −40 40 40
Rodell et al. (2015) obs. 410± 36 385± 39 24± 53 −45± 10 −43± 8 47± 19 50± 7
Rodell et al. (2015) opt. 450± 22 403± 22 46± 31 −46± 7 −46± 4 46± 2 46± 4
Allan et al. (2020) 480± 48 434± 43 46± 65 −46± 14 −46± 5 46± 5 51± 3

ent sources (e.g., E from IFREMER, P from GPCP, and
∇·(vq)ocean from ERA5), each with its own sampling and un-
certainty characteristics. Nevertheless, from the global water
cycle perspective, some degree of correspondence between
Eocean and Pocean is expected.

4.6 Estimates of global total water cycle components

From the data shown in the previous sections we calculated
climatological (1997–2013) global ocean totalE and P , total
E−P (separated into land and ocean contributions), runoff,
and net transport. The latter is equal to the total over-ocean
(or over-land)∇·(vq). Our results are given in the three upper
rows of Table 4. For brevity, we again denote total E, P ,
and E−P over ocean as Eocean, Pocean, and (E−P)ocean,
respectively, and, similarly, over-land E−P as (E−P)land.
For better comparison with earlier estimates, values are given
in units of 103 km3 yr−1.

The rows labeled “obs.” display the mean, standard devia-
tion (SD), and range of Pocean (from GPCP and HOAPS) and
Eocean (from HOAPS, J-OFURO, IFREMER, SEAFLUX,
and OAFlux). Various estimates of global totals of water cy-
cle components can be found in the literature – for example
in Oki and Kanae (2006), Trenberth and Asrar (2014), Rodell
et al. (2015), and Allan et al. (2020) – and are shown in the
lower half of Table 4.

The largest spread among water cycle components is
found for E and P over ocean, both in an absolute and
a relative sense, each with a range spanning about 100×
103 km3 yr−1, or 20–25%. The relative spread in R is sim-
ilar but is a factor of 10 smaller in absolute values. In their
study, Rodell et al. (2015) estimated Eocean from observa-
tions at 410×103 km3 yr−1 (corresponding to 3.21 mmd−1),
in agreement with Trenberth and Asrar (2014), but found
a value of 450× 103 km3 yr−1 by applying an algorithm
that optimized all water cycle components to achieve wa-
ter and energy budget closure. The algorithm caused a con-

current increase in Pocean from the observed 385× 103 to
403×103 km3 yr−1. The global total fluxes estimated by Al-
lan et al. (2020) derive from Rodell et al. (2015), but fol-
lowing the recommendation by Stephens et al. (2012),Eocean
and Pocean were both increased by 30× 103 km3 yr−1 to im-
prove the agreement with energy constraints, yet keeping
land–ocean fluxes constant. These increases are larger than
the ±22× 103 km3 yr−1 uncertainty on Eocean and Pocean
estimated by Rodell et al. (2015) based on the optimized
method, and so a more modest increase of about 20×
103 km3 yr−1 may be more appropriate. This would pro-
duce fluxes of Eocean = 470× 103 km3 yr−1 and Pocean =

424×103 km3 yr−1, which are quite close to ERA5 estimates
(Richard Allan, personal communication, October 2020).

In our study, we find a large range of Eocean:
HOAPS yields 397±96×103 km3 yr−1, OAFlux 414±37×
103 km3 yr−1, IFREMER 418× 103 km3 yr−1, SEAFLUX
444± 5× 103 km3 yr−1, and J-OFURO 453× 103 km3 yr−1.
Note that HOAPS 1σ uncertainty is as large as the range
among satellite-based Eocean and more than 3 times the cor-
responding SD, again implying an overestimation of the
HOAPS uncertainty range (see Sect. 4.2). The OAFlux 1σ
uncertainty is of the same magnitude as the SD among
satellite-based Eocean, whereas the SEAFLUX uncertainty
estimate is small in comparison. The small Eocean found by
HOAPS is partly due to data coverage, as data are only avail-
able over the ice-free ocean within 80◦ of the Equator. A test
with ERA5 data showed that Eocean decreases by 5% when
the data are adapted to HOAPS coverage. Conversely assum-
ing a 5% increase for HOAPS yields 417× 103 km3 yr−1.
The same reasoning applies to the other satellite data sets
with similar effects on Eocean.

The spread in Pocean is of the same magnitude as that
found forEocean: HOAPS yields 335±44×103 km3 yr−1, and
GPCP 384±31×103 km3 yr−1, assuming uncertainty ranges
of 13 and 8% for HOAPS and GPCP, respectively. ERA5
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yields 426± 2× 103 km3 yr−1, which is significantly larger
than either HOAPS or GPCP. From the GPCP-1DD data
used in this study, we determine Pland = 116×103 km3 yr−1,
which is close to the estimates presented previously (which
range from 111× 103 km3 yr−1 (Oki and Kanae, 2006) to
117× 103 km3 yr−1 (Rodell et al., 2015)). This is due to
the fact that GPCP is used for all observation-based esti-
mates. ERA5 Pland is somewhat higher than the observations
(122× 103 km3 yr−1), but the difference is not significant.

From the estimates of Eocean and Pocean it follows that
for HOAPS (E−P)ocean = 65±106×103 km3 yr−1, and for
OAFlux (E−P)ocean = 35±48×103 km3 yr−1. IFREMER
yields (E−P)ocean = 38× 103 km3 yr−1, J-OFURO (E−

P)ocean = 59×103 km3 yr−1, and SEAFLUX (E−P)ocean =

61± 31× 103 km3 yr−1.
The spread in R (40–51×103 km3 yr−1) is quite large. The

total continental runoff from ERA5 is 41.2× 103 km3 yr−1,
which is slightly higher than the 39× 103 km3 yr−1 found in
ERA-Interim (Berrisford et al., 2011). Data from the Global
Runoff Data Centre (GRDC; Wilkinson et al., 2014) yield
an average of 41× 103 km3 yr−1 with a standard deviation
of 1.8× 103 km3 yr−1 for 1987–2010. They are at the lower
bound of the estimates by Clark et al. (2015), who find
44.2± 2.7× 103 km3 yr−1 for 1950–2008. The same study
cites estimates by various authors that range from 25 to
50×103 km3 yr−1, with those based on freshwater fluxes rep-
resenting the lower boundary (25–39× 103 km3 yr−1). The
long-term average runoff estimated from the GRUN (Global
RUNoff; Ghiggi et al., 2019) data set is 38× 103 km3 yr−1,
consistent with the abovementioned range, albeit somewhat
smaller than the best estimate by Clark et al. (2015). Note
that GRUN runoff estimates are not independent of reanal-
ysis data, as the machine-learning algorithm uses surface
temperature and P data from the 20th Century Reanalysis
(Compo et al., 2011; Ghiggi et al., 2019). Improvements in
the quality of E−P estimates will aid the quantification of
river runoff by providing an independent estimate of the total
freshwater flux.

Where runoff is the net transport of (liquid) water from
land to ocean, over-ocean VIMD (∇ · (vq)ocean) is, to a
good approximation, the net amount of water vapor advected
from ocean to land. Hence,R =∇·(vq)ocean =−∇·(vq)land.
Whereas ERA5 estimates of ∇ · (vq)land are at the high end
of the range of R mentioned above, at 31–33×103 km3 yr−1,
∇ · (vq)ocean is too small. As observed above, the fact that
ERA5 VIMD is calculated in grid point space causes global
total∇·(vq) to be about 10×103 km3 yr−1, not 0. In addition,
due to the tighter observational control over land, analysis in-
crements may be larger over ocean than over land and may
cause net ∇ · (vq) to be close to net E−P over land, but less
so over ocean (Paul Berrisford, personal communication, Oc-
tober 2020). There is another field in the ERA5 archive, the
vertical integral of divergence of moisture flux (VIWVD, pa-
rameter ID p84.162), which is very similar to VIMD but is
computed from hourly instantaneous reanalysis fields (and

contains no contributions from liquid or solid water – but
these can be neglected for our purposes). Globally VIWVD
adds up to 0.9× 103 km3 yr−1 (0.003 mmd−1), a factor of
10 smaller than total VIMD. In addition, the agreement be-
tween over-ocean VIWVD and (E−P)ocean is much better
than that found for VIMD and (E−P)ocean, and at 41.6×103

and−40.7×103 km3 yr−1, respectively, over-ocean VIWVD
and over-land VIWVD are also in agreement with other val-
ues in the five rightmost columns of Table 4. The estimates of
net transport by Oki and Kanae (2006), Trenberth and Asrar
(2014) and Rodell et al. (2015) are in agreement with ERA5
R and ∇ · (vq)land. The consistency between runoff and net
transport seen in the last four rows of Table 4 is mainly by
construction, as both are usually required (or defined) to be
equal.

The five rightmost columns of Table 4 should, theoreti-
cally, all contain identical values (except for the sign). In
practice, however, (E−P)land ranges from −46 to −40×
103 km3 yr−1, (E−P)ocean from 24 to 52× 103 km3 yr−1,
∇ · (vq) from 40 to 51× 103 km3 yr−1 (disregarding the er-
roneous ERA5 ∇ · (vq)ocean value), and R from 40–51×
103 km3 yr−1. Assuming the degree of consistency found
among these values represents the reliability of the estimate,
it is clear that E−P uncertainty is largest over ocean, and
from the first two columns of Table 4 it follows that E and P
contribute almost equally to that uncertainty.

5 Discussion

We present an intercomparison of five recent satellite-based
E−P data sets. All five E data sets are the latest official
versions of CDRs generated from (different) BT FCDRs and
are combined with GPCP (or HOAPS) P CDR to formE−P

data.
Although it is tempting to make a ranking from the results

of our intercomparison, there are good reasons to resist. First,
there are not enough truly independent data with which to
assess the quality of each data set. And second, each data
set has its particular strengths and weaknesses: for example,
HOAPS comes closer to water budget closure than OAFlux
or IFREMER (panel c of Fig. 3).

Of the E data sets used in this study, HOAPS depends on
the least amount of model data, using these on a climatolog-
ical (as opposed to collocated, instantaneous) basis. ERA5,
being a reanalysis, represents the other extreme, and the re-
maining retrieval algorithms are somewhere in between. All
algorithms, including ERA5 physics, rely on the same pa-
rameterization of bulk fluxes (Eq. 6) and on the COARE al-
gorithm for the determination of the turbulent exchange co-
efficient (see Sect. 2). The origin of E differences between
various data sets must therefore lie with the bulk flux param-
eters u, qa, and qs, and with differences in sampling charac-
teristics. A recent study by Roberts et al. (2019) showed that
HOAPS, SEAFLUX, and J-OFURO retrieve global mean qa
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that are systematically too small compared to in situ ship-
based NOCSv2 data (Berry and Kent, 2011); IFREMER
slightly overestimates qa. This difference could be largely
improved by applying a correction based on the subtraction
of a regime-dependent bias (in which regimes are defined
by their water vapor vertical stratification, cloud liquid wa-
ter content, and SST, and the bias determined with respect
to NOCSv2). The HOAPS algorithm determines Ql (and E)
systematic error estimates in a similar fashion: biases with re-
spect to ship-based data were binned byQl, u, Ts, andW , and
then collected into a four-dimensional look-up table (Kinzel
et al., 2016; Liepert and Previdi, 2012). Subtracting the sys-
tematic error from HOAPS Ql (or E) would raise the global
mean and improve the agreement with ship-borne data sets
such as NOCSv2. Initial tests show that this is, indeed, the
case for Ql, and it is the topic of a forthcoming study. We
stress, however, that reducing biases with respect to refer-
ence (e.g., in situ) data by improving the retrieval algorithm
through better understanding of physical processes should be
the preferred way forward.

Forcing improved agreement of satellite-based estimates
of E with respect to in situ data (and ERA5) via bias adjust-
ment has a downside: the bias removed from E reappears in
E−P , which is now in agreement with different estimates
of (E−P)land, of ∇ · (vq), and of continental runoff rates.
Satellite E−P is also in agreement with ERA5 E−P due
to the cancellation of differences, which was already noted in
Sect. 4, when discussing the large positive biases of ERA5 E
and P with respect to satellite observations (Fig. 3b and c). It
is interesting to note that satellite-based E is very likely bi-
ased high by the removal of scenes with strong precipitation
(where the retrieval of wind speed, LHF, and E is not pos-
sible). In this light, the difference in E between ERA5 and
the satellite-based retrievals should actually be larger than
observed in Fig. 3, as monthly mean E is determined from
all sky conditions in reanalysis. As OAFlux and SEAFLUX
blend satellite estimates with continuous background fields
(Sect. 3), these algorithms should be less impacted by such
sampling biases.

Andersson et al. (2011) found a high bias of HOAPS-
3.2 E−P for the time period 1992–2005, which was much
reduced (although still high compared to GRDC estimates
of runoff) in the successive version 3.3 (Liepert and Prev-
idi, 2012). In fact, the mean over-ocean HOAPS-3.3 E−P ,
determined between 70◦ S and 70◦ N during 1988–2012, is
0.45 mmd−1, similar to the value we compute for the same
time and latitude range using HOAPS-4.0, of 0.51 mmd−1.
For the time and spatial range in the current study, 1997–
2013 and within 80◦ of latitude, HOAPS-4.0 mean E−P =
0.49 mmd−1 (62× 103 km3 yr−1), about 50% larger than
the GRDC estimate of 41× 103 km3 yr−1. Nevertheless, the
over-ocean freshwater fluxes of all studied data sets agree
with each other and with runoff data within the HOAPS,
SEAFLUX, and OAFlux uncertainty ranges.

The differences in over-ocean mean P between ERA5,
GPCP, and HOAPS can be traced back to differences in their
probability density functions. HOAPS has a smaller prob-
ability of yielding intermediate rain rates, whereas GPCP
yields fewer occurrences of large rain rates (Masunaga et al.,
2019). In addition, HOAPS shows a much higher fraction of
monthly, 1◦× 1◦ non-raining grid boxes (3–4%) than either
GPCP (0.5–1%) or ERA5 (0.2%), which has a large impact
on the mean value of P . The intercomparison of global P
data sets is the topic of a range of papers, but since the valida-
tion of P is difficult due to its inherent variability and the lack
of sufficient in situ data – particularly over ocean – judging
which algorithm performs best under which circumstances is
a complicated task (Kidd and Huffman, 2011; Gehne et al.,
2016; Tapiador et al., 2017).

Since the studied data sets contain values over ocean only,
it is not possible to check if total E and P balance globally.
For this reason we include ERA5 reanalysis data into the
comparison. Model physics parameterizations and dynam-
ics presumably act to ensure that the large positive biases
found in both ERA5 E and P (compared to satellite data)
cancel out almost completely, and ERA5 E−P is in good
agreement with most satellite data at latitudes ≤ 45◦. We
show that ERA5’s water budget is closed for the studied time
range (1997–2013) and that the various components – E, P ,
and TCWV tendency – are consistent on a monthly, global
scale (Fig. 7). Global total VIMD, however, does not equal
0, which is due to the numerical method used to compute
VIMD. For studies of the global water cycle using ERA5
data, we recommend the use of VIWVD instead, as its global
total is closer to 0 and its totals over land and ocean are in bet-
ter agreement with each other and with results from this and
previous studies (Table 4). Cautiously interpreting this con-
sistency as an indication of good quality, we use ERA5 data
to devise methods to examine the consistency of ocean-only
satellite E and P data sets. The high correlation coefficient
found for the regression of ERA5 Eocean−∇ · (vq)ocean with
ERA5 Pocean implies a high degree of coherence, yet corre-
lations of satellite E data with GPCP or HOAPS P are small
(Table 3). This is certainly partly due to the number of differ-
ent sources of data, which for ERA5 is one but for J-OFURO,
for example, is three: J-OFURO E, ERA5 VIMD, and GPCP
P , each having its own sampling characteristics and uncer-
tainties. But the lack of correlation is probably also caused in
part by an actual lack of coherence between satellite E data
and GPCP (or HOAPS) P . This, in turn, implies that inaccu-
racies in satellite E and/or P data remain that may prevent
closure of the over-ocean part of the water cycle. The com-
parison of estimates of total Eocean and Pocean with estimates
of transport, continental runoff, and (E−P)land (Table 4)
paints a similar picture: over-ocean E and P show a large
spread in values, coupled with high uncertainties.
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6 Final comments

Our intercomparison of six CDRs shows agreement among
global means of E−P within HOAPS-4.0, OAFlux3, and
SEAFLUX3 uncertainty ranges. Despite considerable posi-
tive biases in ERA5 E and P , over-ocean ERA5 E−P is in
agreement with satellite data, showing some temporal coher-
ence in variations on monthly–decadal timescales, but with
notable departures depending on time and on the E data set
used. Within uncertainty, over-ocean total E−P from satel-
lites is in agreement with estimates of continental runoff and
net ocean-to-land transport. However, uncertainties of and
the spread among satellite data sets are both still very large
in comparison with the magnitude of over-ocean E−P . Im-
proving estimates of E and P , particularly over ocean, thus
remains an important task. Moreover, emphasis should be put
on the development of uncertainty ranges. We recommend
that to monitor the quality of results, in addition to perform-
ing independent validation studies, the whole global water
cycle and the constraints it imposes should be taken into con-
sideration.

The presented framework is based on covariation of water
cycle components and global water budget constraints. We
applied it to the intercomparison of satellite observations, but
it can also be used for climate model assessments such as
CMIP (see, e.g. Held and Soden, 2006; Kunkee et al., 2008;
Knutti and Sedláček, 2013; Allan et al., 2020).

There is a pressing need to understand the nature of
changes to the Earth’s water cycle induced by global warm-
ing. The consensus in the recent scientific literature is that
there will be a larger amount of water vapor in the at-
mosphere as the atmosphere warms and, consequently, its
water-holding capacity increases at a rate consistent with
the Clausius–Clapeyron relationship (e.g., Allen and Ingram,
2002; Held and Soden, 2006; Shie et al., 2006; Trenberth
et al., 2007; Allan et al., 2020). Model simulations agree on
E and P flux responses to SST change of about 2–3 %K−1

(Allan et al., 2020), but observational confirmation through
satellite estimates is only now emerging from the background
of noise from natural climate variability. We here show that
ERA5, a state-of-the-art reanalysis, underestimates seasonal
and interannual variability of E−P compared to satellite-
based observations, which is also the case for climate models
(Wentz et al., 2007). This could tentatively be interpreted as
indicating that the water cycle is more sensitive to short-term
changes in the state of the atmosphere and ocean than models
predict. However, the stability of observations is affected by
changes in satellite observing system. These changes, com-
bined with assumptions contained in algorithms for near-
surface humidity and wind speed (needed for bulk aero-
dynamic retrievals), complicate the detection and quantifi-
cation of long-term trends (Wentz et al., 2007; Trenberth
et al., 2007; Schlosser and Houser, 2007; Robertson et al.,
2014). Moreover, and despite the fact that the satellite record
of water cycle components now encompasses more than 3

decades’ worth of data, changes in E−P expected from
(anthropogenic) global warming within this time period are
weak compared to natural changes (Allen and Ingram, 2002;
Allan et al., 2020).

In general, the quality of observations of the water cycle
needs to improve before attempts at assessing effects of cli-
mate change from those data can be undertaken. The impor-
tance of accompanying high-quality uncertainty information
cannot be overstated.
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Appendix A: Difference climatologies

All difference maps of satellite-based E−P , E, and P cli-
matologies with collocated ERA5 data are shown in Fig. A1.
The maps in the left column are very similar (apart from
HOAPS) because the E−P deviations are dominated by P ,
and the same GPCP data were used to generate allE−P data
sets (except HOAPS).

Figure A1. Difference maps of satellite-based E−P (left), E (center), and P (right) climatologies and the respective ERA5 climatology
(1997–2013).
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Figure A2. Correlation, slope, and intercept of the linear regression of monthly mean ERA5 ∇ · (vq) with ERA5 E−P (a–c) and with the
satellite ensemble median (SEM) E−P (d–f).
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Appendix B: Regression of ERA5 E−P against ∇ · (vq)

Locally and over long timescales (e.g., 1 month) E−P and
VIMD are equal (Eq. 3), as the change in TCWV is negligible
on those scales. To see if this is the case for ERA5, the upper
panels of Fig. A2 show the correlation coefficient, slope, and
intercept of the linear regression of monthly meanE−P with
VIMD. A linear fit given by ∇ ·(vq)= a(E−P)+b yields a
slope a very near to 1.0 and an intercept b close to 0 mmd−1

everywhere, with a tendency to a > 1 over high-P regions
(e.g., the ITCZ) and a < 1 elsewhere, as shown in the middle
and right panels of Fig. A2. Due to errors introduced during
data processing (e.g., by moving between spectral and grid-
point space) a perfect match between the ERA5 variables is
not expected. But there are a few regions where the decreased
R2 can only be partly ascribed to averaging errors. These are
the oceans’ desert regions, for example at the Peruvian coast
and southern Africa’s west coast, where climatological mean
P is less than 1 mm d−1 and the dynamic range of E−P is
small (≤ 2 mmd−1). In the ocean deserts, the slope is < 1
and the intercept > 0 mmd−1 (e.g., 0.75 and 1.5 mmd−1 for
the tropical eastern Pacific region with smallR2). Since mean
P is near 0 mmd−1 in these regions,∇·(vq) is approximately
equal to E. Hence the deviations between E−P and ∇ ·(vq)
in these regions indicate an inconsistency between ERA5 E
and ∇·(vq). From the similarity of ERA5E−P and ∇·(vq)
it follows that the results of the regression analysis of ERA5
E−P with SEM E−P , presented in Sect. 4.3, are very sim-
ilar to those obtained for ERA5 ∇ · (vq) with SEM E−P ,
as shown in the lower panels of Fig. A2. The correlation co-
efficient is somewhat smaller than for ERA5 E−P , but the
patterns of all three statistical parameters are very similar to
those in the last row of Fig. 6.
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