Articles | Volume 24, issue 8
https://doi.org/10.5194/hess-24-4189-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4189-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data-driven estimates of evapotranspiration and its controls in the Congo Basin
Michael W. Burnett
CORRESPONDING AUTHOR
School of Earth, Energy & Environmental Sciences, Stanford University, Stanford, CA, USA
Gregory R. Quetin
Department of Earth System Science, Stanford University, Stanford, CA, USA
Alexandra G. Konings
Department of Earth System Science, Stanford University, Stanford, CA, USA
Related authors
No articles found.
Meng Zhao, Erica L. McCormick, Geruo A, Alexandra G. Konings, and Bailing Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1939, https://doi.org/10.5194/egusphere-2024-1939, 2024
Short summary
Short summary
Root-zone water storage capacity (Sr) influences ecosystem resilience to droughts and affects runoff and groundwater recharge but is hard to measure. Using GRACE satellite data, we estimate global Sr at 220 ± 40 mm, much higher than previous estimates. Our Sr estimate improves water storage and evapotranspiration simulations and correlates well with vegetation productivity data, highlighting the need for refined Sr estimates for better water resource management and ecosystem sustainability.
Yanlan Liu, Nataniel M. Holtzman, and Alexandra G. Konings
Hydrol. Earth Syst. Sci., 25, 2399–2417, https://doi.org/10.5194/hess-25-2399-2021, https://doi.org/10.5194/hess-25-2399-2021, 2021
Short summary
Short summary
The flow of water through plants varies with species-specific traits. To determine how they vary across the world, we mapped the traits that best allowed a model to match microwave satellite data. We also defined average values across a few clusters of trait behavior. These form a tractable solution for use in large-scale models. Transpiration estimates using these clusters were more accurate than if using plant functional types. We expect our maps to improve transpiration forecasts.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Nataniel M. Holtzman, Leander D. L. Anderegg, Simon Kraatz, Alex Mavrovic, Oliver Sonnentag, Christoforos Pappas, Michael H. Cosh, Alexandre Langlois, Tarendra Lakhankar, Derek Tesser, Nicholas Steiner, Andreas Colliander, Alexandre Roy, and Alexandra G. Konings
Biogeosciences, 18, 739–753, https://doi.org/10.5194/bg-18-739-2021, https://doi.org/10.5194/bg-18-739-2021, 2021
Short summary
Short summary
Microwave radiation coming from Earth's land surface is affected by both soil moisture and the water in plants that cover the soil. We measured such radiation with a sensor elevated above a forest canopy while repeatedly measuring the amount of water stored in trees at the same location. Changes in the microwave signal over time were closely related to tree water storage changes. Satellites with similar sensors could thus be used to monitor how trees in an entire region respond to drought.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Alexandra G. Konings, A. Anthony Bloom, Junjie Liu, Nicholas C. Parazoo, David S. Schimel, and Kevin W. Bowman
Biogeosciences, 16, 2269–2284, https://doi.org/10.5194/bg-16-2269-2019, https://doi.org/10.5194/bg-16-2269-2019, 2019
Short summary
Short summary
We estimate heterotrophic respiration (Rh) – the respiration from microbes in the soil – using satellite estimates of the net carbon flux and other quantities. Rh is an important carbon flux but is rarely studied by itself. Our method is the first to estimate how Rh varies in both space and time. The resulting new estimate of Rh is compared to the best currently available alternative, which is based on interpolating field measurements globally. The two estimates disagree and are both uncertain.
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Remote Sensing and GIS
Extent of gross underestimation of precipitation in India
A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin
Improved soil evaporation remote sensing retrieval algorithms and associated uncertainty analysis on the Tibetan Plateau
SMPD: a soil moisture-based precipitation downscaling method for high-resolution daily satellite precipitation estimation
Evaluating the accuracy of gridded water resources reanalysis and evapotranspiration products for assessing water security in poorly gauged basins
Attribution of global evapotranspiration trends based on the Budyko framework
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon
Extrapolating continuous vegetation water content to understand sub-daily backscatter variations
Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China
Variations in surface roughness of heterogeneous surfaces in the Nagqu area of the Tibetan Plateau
Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models
The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis
Evaluation of the dual-polarization weather radar quantitative precipitation estimation using long-term datasets
Validation of SMAP L2 passive-only soil moisture products using upscaled in situ measurements collected in Twente, the Netherlands
Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa
Ability of an Australian reanalysis dataset to characterise sub-daily precipitation
A daily 25 km short-latency rainfall product for data-scarce regions based on the integration of the Global Precipitation Measurement mission rainfall and multiple-satellite soil moisture products
Evaluation of soil moisture from CCAM-CABLE simulation, satellite-based models estimates and satellite observations: a case study of Skukuza and Malopeni flux towers
Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation
An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia
Performance of bias-correction schemes for CMORPH rainfall estimates in the Zambezi River basin
The El Niño event of 2015–2016: climate anomalies and their impact on groundwater resources in East and Southern Africa
Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow- hydrological modelling in the Lake Titicaca region
Using phase lags to evaluate model biases in simulating the diurnal cycle of evapotranspiration: a case study in Luxembourg
Integrating multiple satellite observations into a coherent dataset to monitor the full water cycle – application to the Mediterranean region
An improved perspective in the spatial representation of soil moisture: potential added value of SMOS disaggregated 1 km resolution “all weather” product
Temporal- and spatial-scale and positional effects on rain erosivity derived from point-scale and contiguous rain data
The PERSIANN family of global satellite precipitation data: a review and evaluation of products
Exploring seasonal and regional relationships between the Evaporative Stress Index and surface weather and soil moisture anomalies across the United States
Development of soil moisture profiles through coupled microwave–thermal infrared observations in the southeastern United States
Evaluation of multiple climate data sources for managing environmental resources in East Africa
Precipitation downscaling using a probability-matching approach and geostationary infrared data: an evaluation over six climate regions
Regional co-variability of spatial and temporal soil moisture–precipitation coupling in North Africa: an observational perspective
Regional evapotranspiration from an image-based implementation of the Surface Temperature Initiated Closure (STIC1.2) model and its validation across an aridity gradient in the conterminous US
Regional frequency analysis of extreme rainfall in Belgium based on radar estimates
An assessment of the performance of global rainfall estimates without ground-based observations
Water–food–energy nexus with changing agricultural scenarios in India during recent decades
Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean
The effect of satellite-derived surface soil moisture and leaf area index land data assimilation on streamflow simulations over France
Reservoir storage and hydrologic responses to droughts in the Paraná River basin, south-eastern Brazil
Remote sensing algorithm for surface evapotranspiration considering landscape and statistical effects on mixed pixels
Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau
Evaluation of soil moisture downscaling using a simple thermal-based proxy – the REMEDHUS network (Spain) example
The SPARSE model for the prediction of water stress and evapotranspiration components from thermal infra-red data and its evaluation over irrigated and rainfed wheat
Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012)
Scoping a field experiment: error diagnostics of TRMM precipitation radar estimates in complex terrain as a basis for IPHEx2014
Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia
Downscaling of seasonal soil moisture forecasts using satellite data
Long term soil moisture mapping over the Tibetan plateau using Special Sensor Microwave/Imager
Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate
Gopi Goteti and James Famiglietti
Hydrol. Earth Syst. Sci., 28, 3435–3455, https://doi.org/10.5194/hess-28-3435-2024, https://doi.org/10.5194/hess-28-3435-2024, 2024
Short summary
Short summary
Underestimation of precipitation (UoP) in India is a substantial issue not just within gauge-based precipitation datasets but also within state-of-the-art satellite and reanalysis-based datasets. UoP is prevalent across most river basins of India, including those that have experienced catastrophic flooding in the recent past. This paper highlights not only a major limitation of existing precipitation products for India but also other data-related obstacles faced by the research community.
Mohammed Abdallah, Ke Zhang, Lijun Chao, Abubaker Omer, Khalid Hassaballah, Kidane Welde Reda, Linxin Liu, Tolossa Lemma Tola, and Omar M. Nour
Hydrol. Earth Syst. Sci., 28, 1147–1172, https://doi.org/10.5194/hess-28-1147-2024, https://doi.org/10.5194/hess-28-1147-2024, 2024
Short summary
Short summary
A D-vine copula-based quantile regression (DVQR) model is used to merge satellite precipitation products. The performance of the DVQR model is compared with the simple model average and one-outlier-removed average methods. The nonlinear DVQR model outperforms the quantile-regression-based multivariate linear and Bayesian model averaging methods.
Jin Feng, Ke Zhang, Huijie Zhan, and Lijun Chao
Hydrol. Earth Syst. Sci., 27, 363–383, https://doi.org/10.5194/hess-27-363-2023, https://doi.org/10.5194/hess-27-363-2023, 2023
Short summary
Short summary
Here we improved a satellite-driven evaporation algorithm by introducing the modified versions of the two constraint schemes. The two moisture constraint schemes largely improved the evaporation estimation on two barren-dominated basins of the Tibetan Plateau. Investigation of moisture constraint uncertainty showed that high-quality soil moisture can optimally represent moisture, and more accessible precipitation data generally help improve the estimation of barren evaporation.
Kunlong He, Wei Zhao, Luca Brocca, and Pere Quintana-Seguí
Hydrol. Earth Syst. Sci., 27, 169–190, https://doi.org/10.5194/hess-27-169-2023, https://doi.org/10.5194/hess-27-169-2023, 2023
Short summary
Short summary
In this study, we developed a soil moisture-based precipitation downscaling (SMPD) method for spatially downscaling the GPM daily precipitation product by exploiting the connection between surface soil moisture and precipitation according to the soil water balance equation. Based on this physical method, the spatial resolution of the daily precipitation product was downscaled to 1 km and the SMPD method shows good potential for the development of the high-resolution precipitation product.
Elias Nkiaka, Robert G. Bryant, Joshua Ntajal, and Eliézer I. Biao
Hydrol. Earth Syst. Sci., 26, 5899–5916, https://doi.org/10.5194/hess-26-5899-2022, https://doi.org/10.5194/hess-26-5899-2022, 2022
Short summary
Short summary
Achieving water security in poorly gauged regions is hindered by a lack of in situ hydrometeorological data. In this study, we validated nine existing gridded water resource reanalyses and eight evapotranspiration products in eight representative gauged basins in Central–West Africa. Our results show the strengths and and weaknesses of the existing products and that these products can be used to assess water security in ungauged basins. However, it is imperative to validate these products.
Shijie Li, Guojie Wang, Chenxia Zhu, Jiao Lu, Waheed Ullah, Daniel Fiifi Tawia Hagan, Giri Kattel, and Jian Peng
Hydrol. Earth Syst. Sci., 26, 3691–3707, https://doi.org/10.5194/hess-26-3691-2022, https://doi.org/10.5194/hess-26-3691-2022, 2022
Short summary
Short summary
We found that the precipitation variability dominantly controls global evapotranspiration (ET) in dry climates, while the net radiation has substantial control over ET in the tropical regions, and vapor pressure deficit (VPD) impacts ET trends in boreal mid-latitude climate. The critical role of VPD in controlling ET trends is particularly emphasized due to its influence in controlling the carbon–water–energy cycle.
Ashwini Petchiappan, Susan C. Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, Wolfgang Wagner, and Rafael Oliveira
Hydrol. Earth Syst. Sci., 26, 2997–3019, https://doi.org/10.5194/hess-26-2997-2022, https://doi.org/10.5194/hess-26-2997-2022, 2022
Short summary
Short summary
This study investigates spatial and temporal patterns in the incidence angle dependence of backscatter from the ASCAT C-band scatterometer and relates those to precipitation, humidity, and radiation data and GRACE equivalent water thickness in ecoregions in the Amazon. The results show that the ASCAT data record offers a unique perspective on vegetation water dynamics exhibiting sensitivity to moisture availability and demand and phenological change at interannual, seasonal, and diurnal scales.
Paul C. Vermunt, Susan C. Steele-Dunne, Saeed Khabbazan, Jasmeet Judge, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 26, 1223–1241, https://doi.org/10.5194/hess-26-1223-2022, https://doi.org/10.5194/hess-26-1223-2022, 2022
Short summary
Short summary
This study investigates the use of hydrometeorological sensors to reconstruct variations in internal vegetation water content of corn and relates these variations to the sub-daily behaviour of polarimetric L-band backscatter. The results show significant sensitivity of backscatter to the daily cycles of vegetation water content and dew, particularly on dry days and for vertical and cross-polarizations, which demonstrates the potential for using radar for studies on vegetation water dynamics.
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021, https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Short summary
Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system, for which a long-term SM product with high quality is urgently needed. In situ observations are generally treated as the true value to systematically evaluate five SM products, including one remote sensing product and four reanalysis data sets during 1981–2013. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021, https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Jessica C. A. Baker, Luis Garcia-Carreras, Manuel Gloor, John H. Marsham, Wolfgang Buermann, Humberto R. da Rocha, Antonio D. Nobre, Alessandro Carioca de Araujo, and Dominick V. Spracklen
Hydrol. Earth Syst. Sci., 25, 2279–2300, https://doi.org/10.5194/hess-25-2279-2021, https://doi.org/10.5194/hess-25-2279-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a vital part of the Amazon water cycle, but it is difficult to measure over large areas. In this study, we compare spatial patterns, seasonality, and recent trends in Amazon ET from a water-budget analysis with estimates from satellites, reanalysis, and global climate models. We find large differences between products, showing that many widely used datasets and climate models may not provide a reliable representation of this crucial variable over the Amazon.
Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 1569–1586, https://doi.org/10.5194/hess-25-1569-2021, https://doi.org/10.5194/hess-25-1569-2021, 2021
Short summary
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Tanel Voormansik, Roberto Cremonini, Piia Post, and Dmitri Moisseev
Hydrol. Earth Syst. Sci., 25, 1245–1258, https://doi.org/10.5194/hess-25-1245-2021, https://doi.org/10.5194/hess-25-1245-2021, 2021
Short summary
Short summary
A long set of operational polarimetric weather radar rainfall accumulations from Estonia and Italy are generated and investigated. Results show that the combined product of specific differential phase and horizontal reflectivity yields the best results when compared to rain gauge measurements. The specific differential-phase-based product overestimates weak precipitation, and the horizontal-reflectivity-based product underestimates heavy rainfall in all analysed accumulation periods.
Rogier van der Velde, Andreas Colliander, Michiel Pezij, Harm-Jan F. Benninga, Rajat Bindlish, Steven K. Chan, Thomas J. Jackson, Dimmie M. D. Hendriks, Denie C. M. Augustijn, and Zhongbo Su
Hydrol. Earth Syst. Sci., 25, 473–495, https://doi.org/10.5194/hess-25-473-2021, https://doi.org/10.5194/hess-25-473-2021, 2021
Short summary
Short summary
NASA’s SMAP satellite provides estimates of the amount of water in the soil. With measurements from a network of 20 monitoring stations, the accuracy of these estimates has been studied for a 4-year period. We found an agreement between satellite and in situ estimates in line with the mission requirements once the large mismatches associated with rapidly changing water contents, e.g. soil freezing and rainfall, are excluded.
Moctar Dembélé, Bettina Schaefli, Nick van de Giesen, and Grégoire Mariéthoz
Hydrol. Earth Syst. Sci., 24, 5379–5406, https://doi.org/10.5194/hess-24-5379-2020, https://doi.org/10.5194/hess-24-5379-2020, 2020
Short summary
Short summary
This study evaluates 102 combinations of rainfall and temperature datasets from satellite and reanalysis sources as input to a fully distributed hydrological model. The model is recalibrated for each input dataset, and the outputs are evaluated with streamflow, evaporation, soil moisture and terrestrial water storage data. Results show that no single rainfall or temperature dataset consistently ranks first in reproducing the spatio-temporal variability of all hydrological processes.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, https://doi.org/10.5194/hess-24-2951-2020, 2020
Short summary
Short summary
BARRA is a high-resolution reanalysis dataset over the Oceania region. This study evaluates the performance of sub-daily BARRA precipitation at point and spatial scales over Australia. We find that the dataset reproduces some of the sub-daily characteristics of precipitation well, although it exhibits some spatial displacement errors, and it performs better in temperate than in tropical regions. The product is well suited to complement other estimates derived from remote sensing and rain gauges.
Christian Massari, Luca Brocca, Thierry Pellarin, Gab Abramowitz, Paolo Filippucci, Luca Ciabatta, Viviana Maggioni, Yann Kerr, and Diego Fernandez Prieto
Hydrol. Earth Syst. Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020, https://doi.org/10.5194/hess-24-2687-2020, 2020
Short summary
Short summary
Rain gauges are unevenly spaced around the world with extremely low gauge density over places like Africa and South America. Here, water-related problems like floods, drought and famine are particularly severe and able to cause fatalities, migration and diseases. We have developed a rainfall dataset that exploits the synergies between rainfall and soil moisture to provide accurate rainfall observations which can be used to face these problems.
Floyd Vukosi Khosa, Mohau Jacob Mateyisi, Martina Reynita van der Merwe, Gregor Timothy Feig, Francois Alwyn Engelbrecht, and Michael John Savage
Hydrol. Earth Syst. Sci., 24, 1587–1609, https://doi.org/10.5194/hess-24-1587-2020, https://doi.org/10.5194/hess-24-1587-2020, 2020
Short summary
Short summary
The paper evaluates soil moisture outputs from three structurally distinct models against in situ data. Our goal is to find how representative the model outputs are for site and region. This is a question of interest as some of the models have a specific regional focus on their inceptions. Much focus is placed on how the models capture the soil moisture signal. We find that there is agreement on seasonal patterns between the models and observations with a tolerable level of model uncertainty.
Yu Ma, Guangheng Ni, Chandrasekar V. Chandra, Fuqiang Tian, and Haonan Chen
Hydrol. Earth Syst. Sci., 23, 4153–4170, https://doi.org/10.5194/hess-23-4153-2019, https://doi.org/10.5194/hess-23-4153-2019, 2019
Short summary
Short summary
Raindrop size distribution (DSD) information is fundamental in understanding the precipitation microphysics and quantitative precipitation estimation. This study extensively investigates the DSD characteristics during rainy seasons in the Beijing urban area using 5-year DSD observations from a Parsivel2 disdrometer. The statistical distributions of DSD parameters are examined and the polarimetric radar rainfall algorithms are derived to support the ongoing development of an X-band radar network.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, https://doi.org/10.5194/hess-23-3387-2019, 2019
Short summary
Short summary
BARRA is a novel regional reanalysis for Australia. Our research demonstrates that it is able to characterize a rich spatial variation in daily precipitation behaviour. In addition, its ability to represent large rainfalls is valuable for the analysis of extremes. It is a useful complement to existing precipitation datasets for Australia, especially in sparsely gauged regions.
Webster Gumindoga, Tom H. M. Rientjes, Alemseged Tamiru Haile, Hodson Makurira, and Paolo Reggiani
Hydrol. Earth Syst. Sci., 23, 2915–2938, https://doi.org/10.5194/hess-23-2915-2019, https://doi.org/10.5194/hess-23-2915-2019, 2019
Short summary
Short summary
We evaluate the influence of elevation and distance from large-scale open water bodies on bias for CMORPH satellite rainfall in the Zambezi basin. Effects of distance > 10 km from water bodies are minimal, whereas the effects at shorter distances are indicated but are not conclusive for lack of rain gauges. Taylor diagrams show station elevation influencing CMORPH performance. The
spatio-temporaland newly developed
elevation zonebias schemes proved more effective in removing CMORPH bias.
Seshagiri Rao Kolusu, Mohammad Shamsudduha, Martin C. Todd, Richard G. Taylor, David Seddon, Japhet J. Kashaigili, Girma Y. Ebrahim, Mark O. Cuthbert, James P. R. Sorensen, Karen G. Villholth, Alan M. MacDonald, and Dave A. MacLeod
Hydrol. Earth Syst. Sci., 23, 1751–1762, https://doi.org/10.5194/hess-23-1751-2019, https://doi.org/10.5194/hess-23-1751-2019, 2019
Frédéric Satgé, Denis Ruelland, Marie-Paule Bonnet, Jorge Molina, and Ramiro Pillco
Hydrol. Earth Syst. Sci., 23, 595–619, https://doi.org/10.5194/hess-23-595-2019, https://doi.org/10.5194/hess-23-595-2019, 2019
Short summary
Short summary
This paper assesses the potential of satellite precipitation estimates (SPEs) for precipitation measurement and hydrological and snow modelling. A total of 12 SPEs is considered to provide a global overview of available SPE accuracy for users interested in such datasets. Results show that, over poorly monitored regions, SPEs represent a very efficient alternative to traditional precipitation gauges to follow precipitation in time and space and for hydrological and snow modelling.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Samiro Khodayar, Amparo Coll, and Ernesto Lopez-Baeza
Hydrol. Earth Syst. Sci., 23, 255–275, https://doi.org/10.5194/hess-23-255-2019, https://doi.org/10.5194/hess-23-255-2019, 2019
Franziska K. Fischer, Tanja Winterrath, and Karl Auerswald
Hydrol. Earth Syst. Sci., 22, 6505–6518, https://doi.org/10.5194/hess-22-6505-2018, https://doi.org/10.5194/hess-22-6505-2018, 2018
Short summary
Short summary
The potential of rain to cause soil erosion by runoff is called rain erosivity. Rain erosivity is highly variable in space and time even over distances of less than 1 km. Contiguously measured radar rain data depict for the first time this spatio-temporal variation, but scaling factors are required to account for differences in spatial and temporal resolution compared to rain gauge data. These scaling factors were obtained from more than 2 million erosive events.
Phu Nguyen, Mohammed Ombadi, Soroosh Sorooshian, Kuolin Hsu, Amir AghaKouchak, Dan Braithwaite, Hamed Ashouri, and Andrea Rose Thorstensen
Hydrol. Earth Syst. Sci., 22, 5801–5816, https://doi.org/10.5194/hess-22-5801-2018, https://doi.org/10.5194/hess-22-5801-2018, 2018
Short summary
Short summary
The goal of this article is to first provide an overview of the available PERSIANN precipitation retrieval algorithms and their differences. We evaluate the products over CONUS at different spatial and temporal scales using CPC data. Daily scale is the finest temporal scale used for the evaluation over CONUS. We provide a comparison of the available products at a quasi-global scale. We highlight the strengths and limitations of the PERSIANN products.
Jason A. Otkin, Yafang Zhong, David Lorenz, Martha C. Anderson, and Christopher Hain
Hydrol. Earth Syst. Sci., 22, 5373–5386, https://doi.org/10.5194/hess-22-5373-2018, https://doi.org/10.5194/hess-22-5373-2018, 2018
Short summary
Short summary
Correlation analyses were used to explore relationships between the Evaporative Stress Index (ESI) – which depicts anomalies in evapotranspiration (ET) – and various land and atmospheric variables that impact ET. The results revealed that the ESI is more strongly correlated to anomalies in soil moisture and near-surface vapor pressure deficit than to precipitation and temperature anomalies. Large regional and seasonal dependencies in the strengths of the correlations were also observed.
Vikalp Mishra, James F. Cruise, Christopher R. Hain, John R. Mecikalski, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 22, 4935–4957, https://doi.org/10.5194/hess-22-4935-2018, https://doi.org/10.5194/hess-22-4935-2018, 2018
Short summary
Short summary
Multiple satellite observations can be used for surface and subsurface soil moisture estimations. In this study, satellite observations along with a mathematical model were used to distribute and develop multiyear soil moisture profiles over the southeastern US. Such remotely sensed profiles become particularly useful at large spatiotemporal scales, can be a significant tool in data-scarce regions of the world, can complement various land and crop models, and can act as drought indicators etc.
Solomon Hailu Gebrechorkos, Stephan Hülsmann, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 22, 4547–4564, https://doi.org/10.5194/hess-22-4547-2018, https://doi.org/10.5194/hess-22-4547-2018, 2018
Short summary
Short summary
In Africa field-based meteorological data are scarce; therefore global data sources based on remote sensing and climate models are often used as alternatives. To assess their suitability for a large and topographically complex area in East Africa, we evaluated multiple climate data products with available ground station data at multiple timescales over 21 regions. The comprehensive evaluation resulted in identification of preferential data sources to be used for climate and hydrological studies.
Ruifang Guo, Yuanbo Liu, Han Zhou, and Yaqiao Zhu
Hydrol. Earth Syst. Sci., 22, 3685–3699, https://doi.org/10.5194/hess-22-3685-2018, https://doi.org/10.5194/hess-22-3685-2018, 2018
Short summary
Short summary
Existing satellite products are often insufficient for use in small-scale (< 10 km) hydrological and meteorological studies. We propose a new approach based on the cumulative distribution of frequency to downscale satellite precipitation products with geostationary (GEO) data. This paper uses CMORPH and FY2-E GEO data to examine the approach in six different climate regions. The downscaled precipitation performed better for convective systems.
Irina Y. Petrova, Chiel C. van Heerwaarden, Cathy Hohenegger, and Françoise Guichard
Hydrol. Earth Syst. Sci., 22, 3275–3294, https://doi.org/10.5194/hess-22-3275-2018, https://doi.org/10.5194/hess-22-3275-2018, 2018
Short summary
Short summary
In North Africa rain storms can be as vital as they are devastating. The present study uses multi-year satellite data to better understand how and where soil moisture conditions affect development of rainfall in the area. Our results reveal two major regions in the southwest and southeast, where drier soils show higher potential to cause rainfall development. This knowledge is essential for the hydrological sector, and can be further used by models to improve prediction of rainfall and droughts.
Nishan Bhattarai, Kaniska Mallick, Nathaniel A. Brunsell, Ge Sun, and Meha Jain
Hydrol. Earth Syst. Sci., 22, 2311–2341, https://doi.org/10.5194/hess-22-2311-2018, https://doi.org/10.5194/hess-22-2311-2018, 2018
Short summary
Short summary
We report the first ever regional-scale implementation of the Surface Temperature Initiated Closure (STIC1.2) model for mapping evapotranspiration (ET) using MODIS land surface and gridded climate datasets to overcome the existing uncertainties in aerodynamic temperature and conductance estimation in global ET models. Validation and intercomparison with SEBS and MOD16 products across an aridity gradient in the US manifested better ET mapping potential of STIC1.2 in different climates and biomes.
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017, https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Short summary
Knowing the characteristics of extreme precipitation is useful for flood management applications like sewer system design. The potential of a 12-year high-quality weather radar precipitation dataset is investigated by comparison with rain gauges. Despite known limitations, a good agreement is found between the radar and the rain gauges. Using the radar data allow us to reduce the uncertainty of the extreme value analysis, especially for short duration extremes related to thunderstorms.
Christian Massari, Wade Crow, and Luca Brocca
Hydrol. Earth Syst. Sci., 21, 4347–4361, https://doi.org/10.5194/hess-21-4347-2017, https://doi.org/10.5194/hess-21-4347-2017, 2017
Short summary
Short summary
The paper explores a method for the assessment of the performance of global rainfall estimates without relying on ground-based observations. Thanks to this method, different global correlation maps are obtained (for the first time without relying on a benchmark dataset) for some of the most used globally available rainfall products. This is central for hydroclimatic studies within data-scarce regions, where ground observations are scarce to evaluate the relative quality of a rainfall product
Beas Barik, Subimal Ghosh, A. Saheer Sahana, Amey Pathak, and Muddu Sekhar
Hydrol. Earth Syst. Sci., 21, 3041–3060, https://doi.org/10.5194/hess-21-3041-2017, https://doi.org/10.5194/hess-21-3041-2017, 2017
Short summary
Short summary
The article summarises changing patterns of the water-food-energy nexus in India during recent decades. The work first analyses satellite data of water storage with a validation using the observed well data. Northern India shows a declining trend of water storage and western-central India shows an increasing trend of the same. Major droughts result in a drop in water storage which is not recovered due to uncontrolled ground water irrigation for agricultural activities even in good monsoon years.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
David Fairbairn, Alina Lavinia Barbu, Adrien Napoly, Clément Albergel, Jean-François Mahfouf, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 2015–2033, https://doi.org/10.5194/hess-21-2015-2017, https://doi.org/10.5194/hess-21-2015-2017, 2017
Short summary
Short summary
This study assesses the impact on river discharge simulations over France of assimilating ASCAT-derived surface soil moisture (SSM) and leaf area index (LAI) observations into the ISBA land surface model. Wintertime LAI has a notable impact on river discharge. SSM assimilation degrades river discharge simulations. This is caused by limitations in the simplified versions of the Kalman filter and ISBA model used in this study. Implementing an observation operator for ASCAT is needed.
Davi de C. D. Melo, Bridget R. Scanlon, Zizhan Zhang, Edson Wendland, and Lei Yin
Hydrol. Earth Syst. Sci., 20, 4673–4688, https://doi.org/10.5194/hess-20-4673-2016, https://doi.org/10.5194/hess-20-4673-2016, 2016
Short summary
Short summary
Drought propagation from rainfall deficits to reservoir depletion was studied based on remote sensing, monitoring and modelling data. Regional droughts were shown by widespread depletion in total water storage that reduced soil moisture storage and runoff, greatly reducing reservoir storage. The multidisciplinary approach to drought assessment shows the linkages between meteorological and hydrological droughts that are essential for managing water resources subjected to climate extremes.
Zhi Qing Peng, Xiaozhou Xin, Jin Jun Jiao, Ti Zhou, and Qinhuo Liu
Hydrol. Earth Syst. Sci., 20, 4409–4438, https://doi.org/10.5194/hess-20-4409-2016, https://doi.org/10.5194/hess-20-4409-2016, 2016
Short summary
Short summary
A remote sensing algorithm named temperature sharpening and flux aggregation (TSFA) was applied to HJ-1B satellite data to estimate evapotranspiration over heterogeneous surface considering landscape and statistical effects on mixed pixels. Footprint validation results showed TSFA was more accurate and less uncertain than other two upscaling methods. Additional analysis and comparison showed TSFA can capture land surface heterogeneities and integrate the effect of landscapes within mixed pixels.
Jian Peng, Alexander Loew, Xuelong Chen, Yaoming Ma, and Zhongbo Su
Hydrol. Earth Syst. Sci., 20, 3167–3182, https://doi.org/10.5194/hess-20-3167-2016, https://doi.org/10.5194/hess-20-3167-2016, 2016
Short summary
Short summary
The Tibetan Plateau plays a major role in regional and global climate. The knowledge of latent heat flux can help to better describe the complex interactions between land and atmosphere. The purpose of this paper is to provide a detailed cross-comparison of existing latent heat flux products over the TP. The results highlight the recently developed latent heat product – High Resolution Land Surface Parameters from Space (HOLAPS).
J. Peng, J. Niesel, and A. Loew
Hydrol. Earth Syst. Sci., 19, 4765–4782, https://doi.org/10.5194/hess-19-4765-2015, https://doi.org/10.5194/hess-19-4765-2015, 2015
Short summary
Short summary
This paper gives a comprehensive evaluation of a simple newly developed downscaling scheme using in situ measurements from REMEDHUS network, a first cross-comparison of the performance of the downscaled soil moisture from MODIS and MSG SEVIRI, an evaluation of the performance of the downscaled soil moisture at different spatial resolutions, and an exploration of the influence of LST, vegetation index, terrain, clouds, and land cover heterogeneity on the performance of VTCI.
G. Boulet, B. Mougenot, J.-P. Lhomme, P. Fanise, Z. Lili-Chabaane, A. Olioso, M. Bahir, V. Rivalland, L. Jarlan, O. Merlin, B. Coudert, S. Er-Raki, and J.-P. Lagouarde
Hydrol. Earth Syst. Sci., 19, 4653–4672, https://doi.org/10.5194/hess-19-4653-2015, https://doi.org/10.5194/hess-19-4653-2015, 2015
Short summary
Short summary
The paper presents a new model (SPARSE) to estimate total evapotranspiration as well as its components (evaporation and transpiration) from remote-sensing data in the thermal infra-red domain. The limits of computing two unknowns (evaporation and transpiration) out of one piece of information (one surface temperature) are assessed theoretically. The model performance in retrieving the components as well as the water stress is assessed for two wheat crops (one irrigated and one rainfed).
O. P. Prat and B. R. Nelson
Hydrol. Earth Syst. Sci., 19, 2037–2056, https://doi.org/10.5194/hess-19-2037-2015, https://doi.org/10.5194/hess-19-2037-2015, 2015
Y. Duan, A. M. Wilson, and A. P. Barros
Hydrol. Earth Syst. Sci., 19, 1501–1520, https://doi.org/10.5194/hess-19-1501-2015, https://doi.org/10.5194/hess-19-1501-2015, 2015
Short summary
Short summary
A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar on the Tropical Rainfall Measurement Mission satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. A high-density raingauge network over the southern Appalachians allows for direct comparison between ground-based measurements and satellite-based QPE (PR 2A25 Version 7 with 5 years of data 2008-2013).
A. W. Worqlul, B. Maathuis, A. A. Adem, S. S. Demissie, S. Langan, and T. S. Steenhuis
Hydrol. Earth Syst. Sci., 18, 4871–4881, https://doi.org/10.5194/hess-18-4871-2014, https://doi.org/10.5194/hess-18-4871-2014, 2014
S. Schneider, A. Jann, and T. Schellander-Gorgas
Hydrol. Earth Syst. Sci., 18, 2899–2905, https://doi.org/10.5194/hess-18-2899-2014, https://doi.org/10.5194/hess-18-2899-2014, 2014
R. van der Velde, M. S. Salama, T. Pellarin, M. Ofwono, Y. Ma, and Z. Su
Hydrol. Earth Syst. Sci., 18, 1323–1337, https://doi.org/10.5194/hess-18-1323-2014, https://doi.org/10.5194/hess-18-1323-2014, 2014
J. Chirouze, G. Boulet, L. Jarlan, R. Fieuzal, J. C. Rodriguez, J. Ezzahar, S. Er-Raki, G. Bigeard, O. Merlin, J. Garatuza-Payan, C. Watts, and G. Chehbouni
Hydrol. Earth Syst. Sci., 18, 1165–1188, https://doi.org/10.5194/hess-18-1165-2014, https://doi.org/10.5194/hess-18-1165-2014, 2014
Cited articles
Acker, J. G. and Leptoukh, G.: GIOVANNI, NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC), available at: https://giovanni.gsfc.nasa.gov/giovanni/ (last access: 21 August 2019), 2007.
Alemohammad, S. H., McColl, K. A., Konings, A. G., Entekhabi, D., and
Stoffelen, A.: Characterization of precipitation product errors across the
United States using multiplicative triple collocation, Hydrol. Earth Syst.
Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, 2015.
Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and
Carbon with Artificial Neural Networks (WECANN): a statistically based
estimate of global surface turbulent fluxes and gross primary productivity
using solar-induced fluorescence, Biogeosciences, 14, 4101–4124,
https://doi.org/10.5194/bg-14-4101-2017, 2017.
Alsdorf, D., Beighley, E., Laraque, A., Lee, H., Tshimanga, R., O'Loughlin,
F., Mahé, G., Dinga, B., Moukandi, G., and Spencer, R. G. M.: Opportunities for hydrologic research in the Congo Basin, Rev. Geophys., 54,
378–409, https://doi.org/10.1002/2016RG000517, 2016.
Alton, P. B., North, P. R., and Los, S. O.: The impact of diffuse sunlight on
canopy light-use efficiency, gross photosynthetic product and net ecosystem
exchange in three forest biomes, Global Change Biol., 13, 776–787,
https://doi.org/10.1111/j.1365-2486.2007.01316.x, 2007.
Andam-Akorful, S. A., Ferreira, V. G., Awange, J. L., Forootan, E., and He, X. F.: Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa, Int. J. Climatol., 35, 3132–3145,
https://doi.org/10.1002/joc.4198, 2015.
Arritt, R. and Herzmann, D.: Iowa Environmental Mesonet – Automated Surface Observing System (ASOS) Network, Iowa State University, available at: https://mesonet.agron.iastate.edu/ASOS/ (last access: 19 March 2019), 2001.
Asefi-Najafabady, S. and Saatchi, S.: Response of African humid tropical
forests to recent rainfall anomalies., Philos. T. Roy. Soc. B, 368, 20120306, https://doi.org/10.1098/rstb.2012.0306, 2013.
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1, 2015.
Awange, J. L., Ferreira, V. G., Forootan, E., Khandu, Andam-Akorful, S. A., Agutu, N. O., and He, X. F.: Uncertainties in remotely sensed precipitation data over Africa, Int. J. Climatol., 36, 303–323, https://doi.org/10.1002/joc.4346, 2016.
Baldocchi, D., Wilson, K., Valentini, R., Law, B., Munger, W., Davis, K.,
Wofsy, S., Pilegaard, K., Goldstein, A., Falge, E., Vesala, T., Hollinger, D., Running, S., Fuentes, J., Katul, G., Gu, L., Verma, S., Paw, K. T., Malhi, Y., Anthoni, P., Oechel, W., Schmid, H. P., Bernhofer, C., Meyers, T., Evans, R., Olson, R., and Lee, X.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Balek, J. (Ed.): Hydrology and Water Resources in Tropical Africa, in: Dev. Water Res., 8, Elsevier, New York, 1977.
Balek, J. (Ed.): Hydrology and Water Resources in Tropical Regions, in: Dev.
Water Res., 18, Elsevier, New York, 1983.
Batra, N., Yang, Y.-C. E., Choi, H. I., Kumar, P., Cai, X., and De Fraiture, C.: Understanding Hydrological Cycle Dynamics Due to Changing Land Use and
Land Cover: Congo Basin Case Study, in: IEEE International Geoscience and
Remote Sensing Symposium 2008 (IGARSS 2008), 7–11 July 2008, Boston, 491–494, https://doi.org/10.1109/IGARSS.2008.4780136, 2008.
Bauters, M., Meeus, S., Barthel, M., Stoffelen, P., De Deurwaerder, H. P. T., Meunier, F., Drake, T. W., Ponette, Q., Ebuy, J., Vermeir, P., Beeckman, H., Wyffels, F., Bodé, S., Verbeeck, H., Vandelook, F., and Boeckx, P.: Century-long apparent decrease in intrinsic water-use efficiency with no
evidence of progressive nutrient limitation in African tropical forests, Global Change Biol., 26, 4449–4461, https://doi.org/10.1111/gcb.15145, 2020.
Beighley, R. E., Ray, R. L., He, Y., Lee, H., Schaller, L., Andreadis, K. M., Durand, M., Alsdorf, D. E., and Shum, C. K.: Comparing satellite derived
precipitation datasets using the Hillslope River Routing (HRR) model in the
Congo River Basin, Hydrol. Process., 25, 3216–3229, https://doi.org/10.1002/hyp.8045, 2011.
Bell, J. P., Tompkins, A. M., Bouka-Biona, C., and Sanda, I. S.: A process-based investigation into the impact of the Congo basin deforestation
on surface climate, J. Geophys. Res.-Atmos., 120, 5721–5739,
https://doi.org/10.1002/2014JD022586, 2015.
Betbeder, J., Gond, V., Frappart, F., Baghdadi, N. N., Briant, G., and Bartholome, E.: Mapping of Central Africa Forested Wetlands Using Remote
Sensing, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 7, 531–542,
https://doi.org/10.1109/JSTARS.2013.2269733, 2014.
Bi, J., Myneni, R., Lyapustin, A., Wang, Y., Park, T., Chi, C., Yan, K., and
Knyazikhin, Y.: Amazon forests' response to droughts: A perspective from the
MAIAC product, Remote Sens., 8, 356, https://doi.org/10.3390/rs8040356, 2016.
Brands, S., Herrera, S., Fernández, J., and Gutiérrez, J. M.: How
well do CMIP5 Earth System Models simulate present climate conditions in Europe and Africa?, Clim. Dynam., 41, 803–817, https://doi.org/10.1007/s00382-013-1742-8, 2013.
Bricquet, J.-P.: Transports en solution et en suspension par le bassin du
fleuve Congo, in: Quatriemes Journees Hydrologiques de l'ORSTOM a Montpellier, ORSTOM, Montpellier, 131–161, 1988.
Bultot, F.: Atlas Climatique du Bassin Congolais, Deuxieme Partie: Les
Composantes du Bilan d'Eau, I.N.E.A.C. – L'Institut National pour L'Etude Agronomique du Congo, Brussels, 1971.
Burnett, M. W., Quetin, G. R., and Konings, A. G.: Congo Basin Evapotranspiration (ET), Open Science Framework (OSF), https://doi.org/10.17605/OSF.IO/JPVMB, 2020.
Bush, E. R.: Tropical phenology in a time of change, PhD thesis, Faculty of
Natural Sciences, University of Stirling, Stirling, UK, 286 pp., 2018.
Bush, E. R., Jeffery, K., Bunnefeld, N., Tutin, C., Musgrave, R., Moussavou,
G., Mihindou, V., Malhi, Y., Lehmann, D., Ndong, J. E., Makaga, L., and
Abernethy, K.: Rare ground data confirm significant warming and drying in
western equatorial Africa, Peer J., 8, e8732, https://doi.org/10.7717/peerj.8732, 2020.
Camberlin, P., Barraud, G., Bigot, S., Dewitte, O., Makanzu Imwangana, F.,
Maki Mateso, J. C., Martiny, N., Monsieurs, E., Moron, V., Pellarin, T.,
Philippon, N., Sahani, M., and Samba, G.: Evaluation of remotely sensed rainfall products over Central Africa, Q. J. Roy. Meteorol. Soc., 145,
2115–2138, https://doi.org/10.1002/qj.3547, 2019.
Chishugi, J. B. and Alemaw, B. F.: The Hydrology of the Congo River Basin: A
GIS-based Hydrological Water Balance Model, in: Proceedings of the 2009 World Environmental and Water Resources Congress: Great Rivers, 17–21 May 2009, Kansas City, MO, 5864–5879, 2009.
Collins, J. M.: Temperature variability over Africa, J. Climate, 24, 3649–3666, https://doi.org/10.1175/2011JCLI3753.1, 2011.
Couralet, C., Van Den Bulcke, J., Ngoma, L. M., Van Acker, J., and Beeckman,
H.: Phenology in functional groups of Central African rainforest trees, J. Trop. Forest Sci., 25, 361–374, 2013.
Crowhurst, D. M., Dadson, S. J., and Washington, R.: Evaluation of Evaporation Climatology for the Congo Basin Wet Seasons in Eleven Global
Climate Models, J. Geophys. Res.-Atmos., 125, e2019JD030619,
https://doi.org/10.1029/2019jd030619, 2020.
Crowley, J. W., Mitrovica, J. X., Bailey, R. C., Tamisiea, M. E., and Davis,
J. L.: Land water storage within the Congo Basin inferred from GRACE satellite gravity data, Geophys. Res. Lett., 33, L19402,
https://doi.org/10.1029/2006GL027070, 2006.
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A.,
Hartmann, J., and Lehner, B.: Global patterns and dynamics of climate–groundwater interactions, Nat. Clim. Change, 9, 137–141,
https://doi.org/10.1038/s41558-018-0386-4, 2019.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011a.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: ERA-Interim Daily Reanalysis Data, European Centre for Medium-Range Weather Forecasts (ECMWF), available at: https://www.ecmwf.int/en/forecasts/datasets (last access: 19 March 2019), 2011b.
De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C.,
Hickler, T., Jain, A. K., Luo, Y., Parton, W. J., Prentice, I. C., Smith, B., Thornton, P. E., Wang, S., Wang, Y. P., Wårlind, D., Weng, E., Crous, K. Y., Ellsworth, D. S., Hanson, P. J., Seok Kim, H., Warren, J. M., Oren, R., and Norby, R. J.: Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate
forest FACE sites, Global Change Biol., 19, 1759–1779, https://doi.org/10.1111/gcb.12164, 2013.
Dembélé, M. and Zwart, S. J.: Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa, Int. J.
Remote Sens., 37, 3995–4014, https://doi.org/10.1080/01431161.2016.1207258, 2016.
Dezfuli, A.: Climate of Western and Central Equatorial Africa, in: Oxford
Research Encyclopedia of Climate Science, Oxford University Press, Oxford,
https://doi.org/10.1093/acrefore/9780190228620.013.511, 2017.
Diem, J. E., Ryan, S. J., Hartter, J., and Palace, M. W.: Satellite-based
rainfall data reveal a recent drying trend in central equatorial Africa,
Climatic Change, 126, 263–272, https://doi.org/10.1007/s10584-014-1217-x, 2014.
Doelling, D.: CERES SYN1DEG-MONTH HDF4 file – Edition 4A, NASA Langley
Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEGMONTH_L3.004A, 2017.
Dong, J., Lei, F., and Wei, L.: Triple collocation based multi-source
precipitation merging, Front. Water, 2, 1, https://doi.org/10.3389/frwa.2020.00001, 2020.
Dyer, E. L. E., Jones, D. B. A., Nusbaumer, J., Li, H., Collins, O., Vettoretti, G., and Noone, D.: Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture, J. Geophys. Res.-Atmos., 122, 6882–6898, https://doi.org/10.1002/2016JD026240, 2017.
Fisher, R. A., Williams, M., Do Vale, R. L., Da Costa, A. L., and Meir, P.:
Evidence from Amazonian forests is consistent with isohydric control of leaf
water potential, Plant Cell Environ., 29, 151–165, https://doi.org/10.1111/j.1365-3040.2005.01407.x, 2006.
Friedl, M. and Sulla-Menashe, D.: MCD12C1 MODIS/Terra + Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, NASA Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12C1.006, 2015.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – a new environmental
record for monitoring extremes, Sci. Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015a.
Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., and Verdin, A. P.: Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS) Version 2, University of California, Santa Barbara Climate Hazards Center, available at: https://www.chc.ucsb.edu/data/ (last access: 25 July 2018), 2015b.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017a.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: MERRA Version 2, NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC), available at: https://disc.gsfc.nasa.gov/ (last access: 9 May 2018), 2017b.
Guan, K., Wolf, A., Medvigy, D., Caylor, K. K., Pan, M., and Wood, E. F.:
Seasonal coupling of canopy structure and function in African tropical forests and its environmental controls, Ecosphere, 4, 35, https://doi.org/10.1890/ES12-00232.1, 2013.
Guan, K., Wood, E. F., Medvigy, D., Kimball, J., Pan, M., Caylor, K. K.,
Sheffield, J., Xu, X., and Jones, M. O.: Terrestrial hydrological controls on
land surface phenology of African savannas and woodlands, J. Geophys. Res.-Biogeo., 119, 1652–1669, https://doi.org/10.1002/2013JG002572, 2014.
Guan, K., Pan, M., Li, H., Wolf, A., Wu, J., Medvigy, D., Caylor, K. K.,
Sheffield, J., Wood, E. F., Malhi, Y., Liang, M., Kimball, J. S., Saleska,
S. R., Berry, J., Joiner, J., and Lyapustin, A. I.: Photosynthetic seasonality of global tropical forests constrained by hydroclimate, Nat.
Geosci., 8, 284–289, https://doi.org/10.1038/ngeo2382, 2015.
Guerrieri, R., Belmecheri, S., Ollinger, S. V., Asbjornsen, H., Jennings, K., Xiao, J., Stocker, B. D., Martin, M., Hollinger, D. Y., Bracho-Garrillo, R., Clark, K., Dore, S., Kolb, T., William Munger, J., Novick, K., and Richardson, A. D.: Disentangling the role of photosynthesis and stomatal
conductance on rising forest water-use efficiency, P. Natl. Acad. Sci. USA, 116, 16909–16914, https://doi.org/10.1073/pnas.1905912116, 2019.
Hassan, A. and Jin, S.: Water storage changes and balances in Africa observed by GRACE and hydrologic models, Geod. Geodyn., 7, 39–49,
https://doi.org/10.1016/j.geog.2016.03.002, 2016.
Hilker, T., Lyapustin, A. I., Tucker, C. J., Sellers, P. J., Hall, F. G., and
Wang, Y.: Remote sensing of tropical ecosystems: Atmospheric correction and
cloud masking matter, Remote Sens. Environ., 127, 370–384,
https://doi.org/10.1016/j.rse.2012.08.035, 2012.
Hua, W., Zhou, L., Chen, H., Nicholson, S. E., Raghavendra, A., and Jiang, Y.: Possible causes of the Central Equatorial African long-term drought,
Environ. Res. Lett., 11, 124002, https://doi.org/10.1088/1748-9326/11/12/124002, 2016.
Hua, W., Zhou, L., Nicholson, S. E., Chen, H., and Qin, M.: Assessing reanalysis data for understanding rainfall climatology and variability over
Central Equatorial Africa, Clim. Dynam., 53, 651–669, https://doi.org/10.1007/s00382-018-04604-0, 2019.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/JHM560.1, 2007a.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: TRMM 3B43 Version 7 Monthly Precipitation Rates, NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC), available at: https://disc.gsfc.nasa.gov/ (last access: 4 February 2018), 2007b.
James, R. and Washington, R.: Changes in African temperature and precipitation associated with degrees of global warming, Climatic Change, 117, 859–872, https://doi.org/10.1007/s10584-012-0581-7, 2013.
Jiang, Y., Zhou, L., Tucker, C. J., Raghavendra, A., Hua, W., Liu, Y. Y., and
Joiner, J.: Widespread increase of boreal summer dry season length over the
Congo rainforest, Nat. Clim. Change, 9, 617–622, https://doi.org/10.1038/s41558-019-0512-y, 2019.
Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., Huemmrich, K. F., Yoshida, Y., and Frankenberg, C.: Global
monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6,
2803–2823, https://doi.org/10.5194/amt-6-2803-2013, 2013.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations, J. Geophys. Res., 116, G00J07,
https://doi.org/10.1029/2010JG001566, 2011.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C. R., Tramontana, G., and Reichstein, M.: FLUXCOM, Max Planck Institute for Biogeochemistry, available at: https://fluxcom.org (last access: 5 March 2019), 2018.
Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and Reichstein, M.: The FLUXCOM
ensemble of global land-atmosphere energy fluxes, Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8, 2019.
Kahn, B. H., Irion, F. W., Dang, V. T., Manning, E. M., Nasiri, S. L., Naud,
C. M., Blaisdell, J. M., Schreier, M. M., Yue, Q., Bowman, K. W., Fetzer, E.
J., Hulley, G. C., Liou, K. N., Lubin, D., Ou, S. C., Susskind, J., Takano,
Y., Tian, B., and Worden, J. R.: The atmospheric infrared sounder version 6
cloud products, Atmos. Chem. Phys., 14, 399–426,
https://doi.org/10.5194/acp-14-399-2014, 2014.
Kanniah, K. D., Beringer, J., and Hutley, L.: Exploring the link between clouds, radiation, and canopy productivity of tropical savannas, Agr. Forest
Meteorol., 182–183, 304–313, https://doi.org/10.1016/j.agrformet.2013.06.010, 2013.
Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W.,
Schmid, H. P., and Richardson, A. D.: Increase in forest water-use efficiency
as atmospheric carbon dioxide concentrations rise, Nature, 499, 324–327,
https://doi.org/10.1038/nature12291, 2013.
Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale
isohydricity, Global Change Biol., 23, 891–905, https://doi.org/10.1111/gcb.13389, 2017.
Konings, A. G., Yu, Y., Xu, L., Yang, Y., Schimel, D. S., and Saatchi, S. S.:
Active microwave observations of diurnal and seasonal variations of canopy
water content across the humid African tropical forests, Geophys. Res. Lett., 44, 2290–2299, https://doi.org/10.1002/2016GL072388, 2017.
Landerer, F. W. and Swenson, S. C.: Accuracy of scaled GRACE terrestrial water storage estimates, Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453, 2012.
Landerer, F. W., Dickey, J. O., and Güntner, A.: Terrestrial water budget
of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009, J. Geophys. Res., 115, D23115, https://doi.org/10.1029/2010JD014584, 2010.
Laporte, N. T., Stabach, J. A., Grosch, R., Lin, T. S., and Goetz, S. J.:
Expansion of industrial logging in Central Africa, Science, 316, 1451,
https://doi.org/10.1126/science.1141057, 2007.
Lauer, W.: Climate and Weather, in: Tropical Rain Forest Ecosystems:
Biogeographical and Ecological Studies, edited by: Lieth, H. and Werger, M. J. A., Elsevier, New York, 7–53, 1989.
Lee, H., Beighley, R. E., Alsdorf, D., Jung, H. C., Shum, C. K., Duan, J.,
Guo, J., Yamazaki, D., and Andreadis, K.: Characterization of terrestrial
water dynamics in the Congo Basin using GRACE and satellite radar altimetry,
Remote Sens. Environ., 115, 3530–3538, https://doi.org/10.1016/j.rse.2011.08.015, 2011.
Lehner, B. and Grill, G.: HydroBASINS Version 1.0, World Wildlife Foundation, available at: https://hydrosheds.org/page/hydrobasins (last access: 15 January 2018), 2013.
Lehner, B., Verdin, K., and Jarvis, A.: New global hydrography derived from
spaceborne elevation data, Eos Trans. Am Gesphys. Union, 89, 93–95, https://doi.org/10.1029/2008EO100001, 2008.
Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X., Ciais, P.,
McVicar, T. R., Peng, S., Ottlé, C., Yang, H., Yang, Y., Zhang, Y., and
Wang, T.: Partitioning global land evapotranspiration using CMIP5 models
constrained by observations, Nat. Clim. Change, 8, 640–646,
https://doi.org/10.1038/s41558-018-0207-9, 2018.
Liu, W., Wang, L., Zhou, J., Li, Y., Sun, F., Fu, G., Li, X., and Sang, Y. F.: A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method, J. Hydrol., 538, 82–95,
https://doi.org/10.1016/j.jhydrol.2016.04.006, 2016.
Loeb, N.: CERES Level 3B EBAF-Surface Terra + Aqua netCDF file – Edition 4.0, NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/EBAF-SURFACE_L3B004.0, 2017.
Lorenz, C. and Kunstmann, H.: The hydrological cycle in three state-of-the-art reanalyses: intercomparison and performance analysis, J.
Hydrometeorol., 13, 1397–1420, https://doi.org/10.1175/JHM-D-11-088.1, 2012.
Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., and Korkin, S.: Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative
transfer basis and look-up tables, J. Geophys. Res., 116, D03210,
https://doi.org/10.1029/2010JD014985, 2011a.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J. S.: Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys. Res., 116, D03211,
https://doi.org/10.1029/2010JD014986, 2011b.
Lyapustin, A., Wang, Y., Korkin, S., and Huang, D.: MODIS Collection 6 MAIAC
algorithm, Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, 2018.
Lyapustin, A. I., Wang, Y., Laszlo, I., Hilker, T., Hall, F. G., Sellers, P.
J., Tucker, C. J., and Korkin, S. V.: Multi-angle implementation of
atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction, Remote
Sens. Environ., 127, 385–393, https://doi.org/10.1016/j.rse.2012.09.002, 2012.
Madani, N., Kimball, J. S., Jones, L. A., Parazoo, N. C., and Guan, K.:
Global analysis of bioclimatic controls on ecosystem productivity using
satellite observations of solar-induced chlorophyll fluorescence, Remote Sens., 9, 530, https://doi.org/10.3390/rs9060530, 2017.
Madani, N., Kimball, J. S., Parazoo, N. C., Ballantyne, A. P., Tagesson, T.,
Jones, L. A., Reichle, R. H., Palmer, P. I., Velicogna, I., Bloom, A. A.,
Saatchi, S., Liu, Z., and Geruo, A.: Below-surface water mediates the response of African forests to reduced rainfall, Environ. Res. Lett., 15,
034063, https://doi.org/10.1088/1748-9326/ab724a, 2020.
Maeda, E. E., Moura, Y. M., Wagner, F., Hilker, T., Lyapustin, A. I., Wang,
Y., Chave, J., Mõttus, M., Aragão, L. E. O. C., and Shimabukuro, Y.:
Consistency of vegetation index seasonality across the Amazon rainforest,
Int. J. Appl. Earth Obs. Geoinf., 52, 42–53, https://doi.org/10.1016/j.jag.2016.05.005, 2016.
Maeda, E. E., Ma, X., Wagner, F. H., Kim, H., Oki, T., Eamus, D., and Huete,
A.: Evapotranspiration seasonality across the Amazon Basin, Earth Syst. Dynam., 8, 439–454, https://doi.org/10.5194/esd-8-439-2017, 2017.
Marshall, M., Funk, C., and Michaelsen, J.: Examining evapotranspiration
trends in Africa, Clim. Dynam., 38, 1849–1865, https://doi.org/10.1007/s00382-012-1299-y, 2012.
Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3.3a, Global Land Evaporation Amsterdam Model, available at: https://gleam.eu (last access: 2 July 2020), 2019.
Matsuyama, H., Oki, T., Shinoda, M., and Masuda, K.: The seasonal change of
the water budget in the Congo River Basin, J. Meteorol. Soc. Jpn., 72, 281–299, 1994.
McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles, M., and
Stoffelen, A.: Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target, Geophys. Res. Lett., 41, 6229–6236, https://doi.org/10.1002/2014GL061322, 2014.
McCollum, J. R., Gruber, A., and Ba, M. B.: Discrepancy between gauges and
satellite estimates of rainfall in equatorial Africa, J. Appl. Meteorol., 39, 666–679, https://doi.org/10.1175/1520-0450-39.5.666, 2000.
Mercado, L. M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild,
M., and Cox, P. M.: Impact of changes in diffuse radiation on the global land
carbon sink, Nature, 458, 1014–1017, https://doi.org/10.1038/nature07949, 2009.
Met Office: Met Office Integrated Data Archive System (MIDAS) Land and
Marine Surface Station Data (1853–current), NCAS British Atmospheric Data
Centre, available at: http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0 (last access: 19 March 2019), 2012.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated
from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469,
https://doi.org/10.5194/hess-15-453-2011, 2011.
Mu, Q., Zhao, M., and Running, S. W.: MODIS Global Terrestrial
Evapotranspiration (ET) Product (MOD16A2/A3): Algorithm Theoretical Basis
Document, University of Montana, Missoula, MT, 55 pp., 2013.
Müller, R., Pfeifroth, U., Träger-Chatterjee, C., Trentmann, J., and
Cremer, R.: Digging the METEOSAT treasure – 3 decades of solar surface
radiation, Remote Sens., 7, 8067–8101, https://doi.org/10.3390/rs70608067, 2015.
Munzimi, Y. A., Hansen, M. C., Adusei, B., and Senay, G. B.: Characterizing
Congo basin rainfall and climate using Tropical Rainfall Measuring Mission (TRMM) satellite data and limited rain gauge ground observations, J. Appl. Meteorol. Clim., 54, 541–555, https://doi.org/10.1175/JAMC-D-14-0052.1, 2015.
Ndehedehe, C. E., Okwuashi, O., Ferreira, V. G., and Agutu, N. O.: Exploring
evapotranspiration dynamics over Sub-Sahara Africa (2000–2014), Environ.
Monit. Assess., 190, 400, https://doi.org/10.1007/s10661-018-6780-6, 2018.
Nguyen, P., Ombadi, M., Sorooshian, S., Hsu, K., AghaKouchak, A., Braithwaite, D., Ashouri, H., and Thorstensen, A. R.: The PERSIANN family of global satellite precipitation data: a review and evaluation of products, Hydrol. Earth Syst. Sci., 22, 5801–5816, https://doi.org/10.5194/hess-22-5801-2018, 2018.
Nicholson, S. E., Kim, J., Ba, M. B., and Lare, A. R.: The mean surface water
balance over Africa and its interannual variability, J. Climate, 10,
2981–3002, https://doi.org/10.1175/1520-0442(1997)010<2981:TMSWBO>2.0.CO;2, 1997.
Nicholson, S. E., Klotter, D., Dezfuli, A. K., and Zhou, L.: New Rainfall
Datasets for the Congo Basin and Surrounding Regions, J. Hydrometeorol., 19,
1379–1396, https://doi.org/10.1175/JHM-D-18-0015.1, 2018.
Nicholson, S. E., Klotter, D., Zhou, L., and Hua, W.: Validation of Satellite
Precipitation Estimates over the Congo Basin, J. Hydrometeorol., 20, 631–656, https://doi.org/10.1175/JHM-D-18-0118.1, 2019.
Nizinski, J. J., Galat, G., and Galat-Luong, A.: Water balance and sustainability of eucalyptus plantations in the Kouilou basin
(Congo-Brazzaville), Russ. J. Ecol., 42, 305–314, https://doi.org/10.1134/S1067413611040126, 2011.
Nizinski, J. J., Galat, G., and Galat-Luong, A.: Actual evapotranspiration
and canopy resistance measurement of the savannah in the Kouilou basin
(Congo-Brazzaville), Russ. J. Ecol., 45, 359–366,
https://doi.org/10.1134/S1067413614050191, 2014.
Oki, T., Musiake, K., Masuda, K., and Matsuyama, H.: Global runoff estimation
by atmospheric water balance using ECMWF data set, in: Proceedings of the
IAHS Yokohama Symposium: Hydrology of Warm Humid Regions, 13–15 July 1993, Yokohama, Japan, 163–171, 1993.
Olivry, J. C., Bricquet, J. P., and Mahé, G.: Vers un appauvrissement
durable des ressources en eau de l'Afrique humide?, in: Proceedings of the
IAHS Yokohama Symposium: Hydrology of Warm Humid Regions, 13–15 July 1993, Yokohama, Japan, 67–78, 1993.
Opoku-Duah, S., Donoghue, D. N. M., and Burt, T. P.: Intercomparison of
evapotranspiration over the Savannah Volta Basin in West Africa using remote
sensing data, Sensors, 8, 2736–2761, https://doi.org/10.3390/s8042736, 2008.
Pagán, B. R., Maes, W. H., Gentine, P., Martens, B., and Miralles, D. G.: Exploring the potential of satellite solar-induced fluorescence to constrain global transpiration estimates, Remote Sens., 11, 413, https://doi.org/10.3390/rs11040413, 2019.
Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and
Wood, A. E. F.: Multisource estimation of long-term terrestrial water budget
for major global river basins, J. Climate, 25, 3191–3206,
https://doi.org/10.1175/JCLI-D-11-00300.1, 2012.
Peñuelas, J., Canadell, J. G., and Ogaya, R.: Increased water-use efficiency during the 20th century did not translate into enhanced tree growth, Global Ecol. Biogeogr., 20, 597–608, https://doi.org/10.1111/j.1466-8238.2010.00608.x, 2011.
Philippon, N., de Lapparent, B., Gond, V., Sèze, G., Martiny, N., Camberlin, P., Cornu, G., Morel, B., Moron, V., Bigot, S., Brou, T., and
Dubreuil, V.: Analysis of the diurnal cycles for a better understanding of
the mean annual cycle of forests greenness in Central Africa, Agr. Forest
Meteorol., 223, 81–94, https://doi.org/10.1016/j.agrformet.2016.04.005, 2016.
Philippon, N., Cornu, G., Monteil, L., Gond, V., Moron, V., Pergaud, J.,
Sèze, G., Bigot, S., Camberlin, P., Doumenge, C., Fayolle, A., and Ngomanda, A.: The light-deficient climates of western Central African evergreen forests, Environ. Res. Lett., 14, 034007, https://doi.org/10.1088/1748-9326/aaf5d8, 2019.
Pinet, P. and Souriau, M.: Continental erosion and large-scale relief,
Tectonics, 7, 563–582, https://doi.org/10.1029/TC007i003p00563, 1988.
Pokam, W. M., Djiotang, L. A. T., and Mkankam, F. K.: Atmospheric water vapor
transport and recycling in Equatorial Central Africa through NCEP/NCAR
reanalysis data, Clim. Dynam., 38, 1715–1729, https://doi.org/10.1007/s00382-011-1242-7, 2012.
Rocha, A. V., Su, H. B., Vogel, C. S., Schmid, H. P., and Curtis, P. S.:
Photosynthetic and water use efficiency responses to diffuse radiation by an
aspen-dominated northern hardwood forest, Forest Sci., 50, 793–801, 2004.
Rodell, M., Famiglietti, J. S., Chen, J., Seneviratne, S. I., Viterbo, P.,
Holl, S., and Wilson, C. R.: Basin scale estimates of evapotranspiration
using GRACE and other observations, Geophys. Res. Lett., 31, 10–13,
https://doi.org/10.1029/2004GL020873, 2004a.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.
K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data Assimilation System, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004b.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., and Toll, D.: GLDAS Noah Land Surface Model L4 monthly 1.0×1.0 degree V2.1 (GLDAS_NOAH10_M), NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC), available at: https://disc.gsfc.nasa.gov/ (last access: 5 March 2019), 2004c.
Rodell, M., McWilliams, E. B., Famiglietti, J. S., Beaudoing, H. K., and
Nigro, J.: Estimating evapotranspiration using an observation based terrestrial water budget, Hydrol. Process., 25, 4082–4092,
https://doi.org/10.1002/hyp.8369, 2011.
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H.
K., Landerer, F. W., and Lo, M. H.: Emerging trends in global freshwater
availability, Nature, 557, 651–659, https://doi.org/10.1038/s41586-018-0123-1, 2018.
Running, S., Mu, Q., and Zhao, M.: MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006, NASA Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD16A2.006, 2017.
Russell, G. L. and Miller, J. R.: Global River Runoff Calculated from a Global Atmospheric General Circulation Model, J. Hydrol., 117, 241–254, 1990.
Ryu, Y., Jiang, C., Kobayashi, H., and Detto, M.: MODIS-derived global land
products of shortwave radiation and diffuse and total photosynthetically
active radiation at 5 km resolution from 2000, Remote Sens. Environ., 204,
812–825, https://doi.org/10.1016/j.rse.2017.09.021, 2018.
Saeed, F., Haensler, A., Weber, T., Hagemann, S., and Jacob, D.: Representation of extreme precipitation events leading to opposite climate
change signals over the Congo basin, Atmosphere-Basel, 4, 254–271,
https://doi.org/10.3390/atmos4030254, 2013.
Sakumura, C., Bettadpur, S., and Bruinsma, S.: Ensemble prediction and
intercomparison analysis of GRACE time-variable gravity field models, Geophys. Res. Lett., 41, 1389–1397, https://doi.org/10.1002/2013GL058632, 2014.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and
Ziese, M.: GPCC Full Data Monthly Product Version 7.0 at 2.5∘: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and
Historic Data, Global Precipitation Climatology Centre (GPCC), https://doi.org/10.5676/DWD_GPCC/FD_M_V7_250, 2015.
Schüttemeyer, D., Schillings, C., Moene, A. F., and de Bruin, H. A. R.:
Satellite-based actual evapotranspiration over drying semiarid terrain in West Africa, J. Appl. Meteorol. Clim., 46, 97–111, https://doi.org/10.1175/JAM2444.1, 2007.
Senay, G. B., Bohms, S., Singh, R. K., Gowda, P. H., Velpuri, N. M., Alemu,
H., and Verdin, J. P.: Operational evapotranspiration mapping using remote
sensing and weather datasets: a new paramaterization for the SSEB approach,
J. Am. Water Resour. Asoc., 49, 577–591, https://doi.org/10.1111/jawr.12057, 2013.
Senay, G. B., Bohms, S., Singh, R., Gowda, P. A., Velpuri, N. M., Alemu, H., and Verdin, J. P.: SSEBop Version 4.0 Monthly ETa, USGS Famine Early Warning Systems Network, available at: https://earlywarning.usgs.gov/fews/product/460 (last access: 2 July 2020), 2017.
Shahin, M.: Evapotranspiration, in: Hydrology and Water Resources of Africa,
Springer Netherlands, Dordrecht, 157–212, 1994.
Shem, W. O.: Biosphere-atmosphere interaction over the Congo Basin and its
influence on the regional hydrological cycle, PhD thesis, School of Earth
and Atmospheric Sciences, Georgia Institute of Technology, USA, 141 pp., 2006.
Shirke, P. A.: Leaf photosynthesis, dark respiration, and fluorescence as
influenced by leaf age in an evergreen tree, Prosopis juliflora, Photosynthetica, 39, 305–311, https://doi.org/10.1023/A:1013761410734, 2001.
Sobrado, M. A.: Leaf age effects on photosynthetic rate, transpiration rate
and nitrogen content in a tropical dry forest, Physiol. Plant., 90, 210–215, https://doi.org/10.1111/j.1399-3054.1994.tb02213.x, 1994.
SO-HYBAM: Congo River Discharge Data, Hydrological and Biogeochemical Control of Erosion/Alteration and Material Transport in the Amazon, Orinoco and Congo Basins (HYBAM), available at: https://www.ore-hybam.org (last access: 15 January 2018), 2015.
Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A., and Gimeno, L.: A Lagrangian perspective of the hydrological cycle in the Congo River basin, Earth Syst. Dynam., 8, 653–675, https://doi.org/10.5194/esd-8-653-2017, 2017.
Sorooshian, S., Hsu, K., Braithwaite, D., Ashouri, H., and NOAA CDR Program: NOAA Climate Data Record (CDR) of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR), Version 1 Revision 1, NOAA National Centers for Environmental Information, https://doi.org/10.7289/V51V5BWQ, 2014.
Stoffelen, A.: Toward the true near-surface wind speed: Error modeling and
calibration using triple collocation, J. Geophys. Res.-Oceans, 103, 7755–7766, https://doi.org/10.1029/97JC03180, 1998.
Swann, A. L. S. and Koven, C. D.: A Direct Estimate of the Seasonal Cycle of
Evapotranspiration over the Amazon Basin, J. Hydrometeorol., 18, 2173–2185,
https://doi.org/10.1175/JHM-D-17-0004.1, 2017.
Swenson, S. and Wahr, J.: Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285, 2006.
Swenson, S. C.: Grace Monthly Land Water Mass Grids NETCDF Release Ver. 5.0,
NASA Physical Oceanography DAAC, https://doi.org/10.5067/TELND-NC005, 2012.
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M.
M.: GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503–505, https://doi.org/10.1126/science.1099192, 2004.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192, 2001.
Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., Levizzani, V., and De Roo, A.: Validation of satellite-based precipitation products over sparsely gauged African river basins, J. Hydrometeorol., 13, 1760–1783,
https://doi.org/10.1175/JHM-D-12-032.1, 2012.
Turubanova, S., Potapov, P. V., Tyukavina, A., and Hansen, M. C.: Ongoing
primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia, Environ. Res. Lett., 13, 074028, https://doi.org/10.1088/1748-9326/aacd1c, 2018.
Ukkola, A. M. and Prentice, I. C.: A worldwide analysis of trends in water-balance evapotranspiration, Hydrol. Earth Syst. Sci., 17, 4177–4187,
https://doi.org/10.5194/hess-17-4177-2013, 2013.
Urban, J., Ingwers, M. W., McGuire, M. A., and Teskey, R. O.: Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra, J. Exp. Bot., 68, 1757–1767, https://doi.org/10.1093/jxb/erx052, 2017.
Van Der Ent, R. J. and Savenije, H. H. G.: Length and time scales of atmospheric moisture recycling, Atmos. Chem. Phys., 11, 1853–1863,
https://doi.org/10.5194/acp-11-1853-2011, 2011.
Van Der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F., Pons, T. L., Terburg, G., and Zuidema, P. A.: No growth stimulation of tropical trees by 150 years of CO2 fertilization but
water-use efficiency increased, Nat. Geosci., 8, 24–28, https://doi.org/10.1038/ngeo2313, 2015.
Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor, D.: Detecting trend
and seasonal changes in satellite image time series, Remote Sens. Environ.,
114, 106–115, https://doi.org/10.1016/j.rse.2009.08.014, 2010a.
Verbesselt, J., Hyndman, R., Zeileis, A., and Culvenor, D.: Phenological
change detection while accounting for abrupt and gradual trends in satellite
image time series, Remote Sens. Environ., 114, 2970–2980,
https://doi.org/10.1016/j.rse.2010.08.003, 2010b.
Verbesselt, J., Zeileis, A., and Hyndman, R.: Breaks for Additive Season and
Trend (BFAST), available at: http://bfast.r-forge.r-project.org (last access: 27 May 2019), 2015.
Vinya, R., Malhi, Y., Brown, N. D., Fisher, J. B., Brodribb, T., and Aragão, L. E. O. C.: Seasonal changes in plant–water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies, Tree Physiol., 39, 104–112, https://doi.org/10.1093/treephys/tpy062, 2019.
Wahr, J., Swenson, S., and Velicogna, I.: Accuracy of GRACE mass estimates,
Geophys. Res. Lett., 33, L06401, https://doi.org/10.1029/2005GL025305, 2006.
Wan, Z., Zhang, K., Xue, X., Hong, Z., Hong, Y., and Gourley, J. J.: Water
balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States, Water Resour. Res., 51, 6485–6499, https://doi.org/10.1002/2015WR017311, 2015.
Washington, R., James, R., Pearce, H., Pokam, W. M., and Moufouma-Okia, W.:
Congo Basin rainfall climatology: can we believe the climate models?, Philos. T. Roy. Soc. B, 368, 20120296, https://doi.org/10.1098/rstb.2012.0296, 2013.
Weerasinghe, I., Bastiaanssen, W., Mul, M., Jia, L., and van Griensven, A.:
Can we trust remote sensing evapotranspiration products over Africa?, Hydrol. Earth Syst. Sci., 24, 1565–1586, https://doi.org/10.5194/hess-24-1565-2020, 2020.
Wu, J., Albert, L. P., Lopes, A. P., Restrepo-Coupe, N., Hayek, M., Wiedemann, K. T., Guan, K., Stark, S. C., Christoffersen, B., Prohaska, N.,
Tavares, J. V., Marostica, S., Kobayashi, H., Ferreira, M. L., Campos, K.
S., da Silva, R., Brando, P. M., Dye, D. G., Huxman, T. E., Huete, A. R.,
Nelson, B. W., and Saleska, S. R.: Leaf development and demography explain
photosynthetic seasonality in Amazon evergreen forests, Science, 351,
972–976, https://doi.org/10.1126/science.aad5068, 2016.
Yin, X. and Gruber, A.: Validation of the abrupt change in GPCP precipitation in the Congo River Basin, Int. J. Climatol., 30, 110–119, https://doi.org/10.1002/joc.1875, 2010.
Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A. K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J. E. M. S., Qin, Z., Quine, T., Sitch, S., Smith, W. K., Wang, F., Wu, C., Xiao, Z., and Yang, S.: Increased atmospheric
vapor pressure deficit reduces global vegetation growth, Sci. Adv., 5, eaax1396, https://doi.org/10.1126/sciadv.aax1396, 2019.
Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing
based actual evapotranspiration estimation, Wiley Interdiscip. Rev. Water, 3, 834–853, https://doi.org/10.1002/wat2.1168, 2016.
Zhang, Y., Joiner, J., Gentine, P., and Zhou, S.: Reduced solar-induced
chlorophyll fluorescence from GOME-2 during Amazon drought caused by dataset
artifacts, Global Change Biol., 24, 2229–2230, https://doi.org/10.1111/gcb.14134, 2018.
Zhou, L., Tian, Y., Myneni, R. B., Ciais, P., Saatchi, S., Liu, Y. Y., Piao,
S., Chen, H., Vermote, E. F., Song, C., and Hwang, T.: Widespread decline of
Congo rainforest greenness in the past decade, Nature, 508, 86–90,
https://doi.org/10.1038/nature13265, 2014.
Zou, L., Wang, L., Li, J., Lu, Y., Gong, W., and Niu, Y.: Global surface solar radiation and photovoltaic power from Coupled Model Intercomparison
Project Phase 5 climate models, J. Clean. Prod., 224, 304–324,
https://doi.org/10.1016/j.jclepro.2019.03.268, 2019.
Short summary
Water that evaporates from Africa's tropical forests provides rainfall throughout the continent. However, there are few sources of meteorological data in central Africa, so we use observations from satellites to estimate evaporation from the Congo Basin at different times of the year. We find that existing evaporation estimates in tropical Africa do not accurately capture seasonal variations in evaporation and that fluctuations in soil moisture and solar radiation drive evaporation rates.
Water that evaporates from Africa's tropical forests provides rainfall throughout the continent....