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Abstract. Evapotranspiration (ET) from tropical forests
serves as a critical moisture source for regional and global
climate cycles. However, the magnitude, seasonality, and
interannual variability of ET in the Congo Basin remain
poorly constrained due to a scarcity of direct observations,
despite the Congo being the second-largest river basin in
the world and containing a vast region of tropical forest.
In this study, we applied a water balance model to an array
of remotely sensed and in situ datasets to produce monthly,
basin-wide ET estimates spanning April 2002 to Novem-
ber 2016. Data sources include water storage changes es-
timated from the Gravity Recovery and Climate Experi-
ment (GRACE) satellites, in situ measurements of river dis-
charge, and precipitation from several remotely sensed and
gauge-based sources. An optimal precipitation dataset was
determined as a weighted average of interpolated data by
Nicholson et al. (2018), Climate Hazards InfraRed Precipi-
tation with Station data version 2 (CHIRPS2) , and the Pre-
cipitation Estimation from Remotely Sensed Information us-
ing Artificial Neural Networks–Climate Data Record prod-
uct (PERSIANN-CDR), with the relative weights based on
the error magnitudes of each dataset as determined by triple
collocation. The resulting water-balance-derived ET (ETwb)
features a long-term average that is consistent with previous
studies (117.2± 3.5 cm yr−1) but displays greater seasonal
and interannual variability than seven global ET products.
The seasonal cycle of ETwb generally tracks that of precipi-
tation over the basin, with the exception that ETwb is greater
in March–April–May (MAM) than in the relatively wetter
September–October–November (SON) periods. This pattern
appears to be driven by seasonal variations in the diffuse
photosynthetically active radiation (PAR) fraction, net radi-

ation (Rn), and soil water availability. From 2002 to 2016,
Rn, PAR, and vapor-pressure deficit (VPD) all increased sig-
nificantly within the Congo Basin; however, no correspond-
ing trend occurred in ETwb. We hypothesize that the stability
of ETwb over the study period despite sunnier and less hu-
mid conditions may be due to increasing atmospheric CO2
concentrations that offset the impacts of rising VPD and ir-
radiance on stomatal water use efficiency (WUE).

1 Introduction

The Congo Basin in central Africa is the second-largest river
basin in the world and supports one of Earth’s three major
humid tropical forest regions (Alsdorf et al., 2016). Approx-
imately 24 % to 39 % of evapotranspiration (ET) from the
Congo Basin is recycled as local rainfall (Dyer et al., 2017),
and model simulations indicate changes in ET within the
basin affect moisture cycling across the African continent
(Van Der Ent and Savenije, 2011; Bell et al., 2015; Sorí et al.,
2017). Understanding the magnitude, variability, and drivers
of ET in the Congo Basin is therefore crucial for studying the
climate systems of central Africa and the global tropics, espe-
cially because significant environmental shifts have already
been reported within the basin. For instance, deforestation is
an ongoing problem in Congolese forests with potential im-
pacts on climate (Laporte et al., 2007; Batra et al., 2008; Bell
et al., 2015; Turubanova et al., 2018); temperatures are rising
due to anthropogenic climate change (Collins, 2011; James
and Washington, 2013); and many have reported a long-term
decline in precipitation over the basin (Asefi-Najafabady and
Saatchi, 2013; Diem et al., 2014; Zhou et al., 2014; Hua et al.,
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2016; Dezfuli, 2017). Such shifts are particularly concerning
because Africa’s tropical rainforests are already significantly
drier than other humid tropical forests and exist at the cli-
matic threshold of conversion from evergreen to deciduous
trees (Guan et al., 2015; Philippon et al., 2019; Bush et al.,
2020).

However, the hydrology of the Congo Basin is vastly un-
derstudied relative to the region’s size and influence (Alsdorf
et al., 2016). In particular, no long-term observational stud-
ies of ET in the basin exist. There are also no eddy covari-
ance towers operating within the Congo Basin. Prior studies
provide only limited information and either analyze short-
term ET observations at the individual site scale (Nizinski
et al., 2011, 2014) or rely on combining site scale meteoro-
logical measurements with localized models (Bultot, 1971;
Lauer, 1989; Shahin, 1994). Some studies have also used
process-based models to evaluate regional ET (Matsuyama
et al., 1994; Shem, 2006; Batra et al., 2008; Chishugi and
Alemaw, 2009; Marshall et al., 2012; Ndehedehe et al., 2018;
Crowhurst et al., 2020). However, the large size and hetero-
geneity of the Congo Basin render point-based approaches
inadequate for basin scale analysis of hydrological cycling,
and regional scale models suffer from being poorly con-
strained because of the widespread lack of in situ observa-
tions throughout the basin (e.g., little understanding of lo-
cal variability in rooting depth, vegetation responses to water
and light availability, and canopy interception). As a result,
even basic seasonality patterns across the Congo Basin re-
main unclear. For example, Konings et al. (2017) showed that
canopy water content increases during the dry season, which
could be due to either dry-season leaf-out or a change in plant
water uptake during the dry season that would increase ET.
The latter could not be ruled out in Konings et al. (2017) due
to the lack of direct ET estimates in the region.

Remote sensing offers a partial solution to this scarcity of
ET observations. Remote-sensing-based estimates of ET are
generally indirect, relying on physical models to link tem-
perature, meteorological inputs, and/or other observables to
the rate of ET (Zhang et al., 2016). However, these modeling
approaches are poorly constrained in the Congo Basin and
may be highly erroneous there. Alternatively, basin scale ET
can be estimated indirectly by inverting the water balance.
This approach requires only three geophysical input vari-
ables: precipitation, river discharge, and the change in ter-
restrial water storage. Precipitation and total water storage
change can both be estimated using remote sensing, with the
latter determined by gravity measurements from the Grav-
ity Recovery and Climate Experiment (GRACE) (Tapley et
al., 2004; Swenson, 2012). Recent examples of this method’s
application include the Amazon Basin (Maeda et al., 2017;
Swann and Koven, 2017) and the coterminous United States
(Wan et al., 2015), as well as global examinations of basin
scale ET (Liu et al., 2016).

While some previous studies have applied a similar tech-
nique to the Congo Basin as part of larger-scale experiments,

these studies assumed terrestrial water storage was constant
over their study periods (Marshall et al., 2012; Ukkola and
Prentice, 2013; Weerasinghe et al., 2020) – a plausible as-
sumption for long-term ET estimates but one that could
mask a large degree of ET variability on annual and shorter
timescales. Indeed, remotely sensed evidence suggests wa-
ter storage anomalies within the basin do change signifi-
cantly on monthly and interannual timescales (Crowley et al.,
2006; Rodell et al., 2018), even if long-term trends are typ-
ically small relative to the magnitude of ET fluxes (Weeras-
inghe et al., 2020). Thus in order to explore seasonal cy-
cles and variations in basin-wide ET, terrestrial water storage
must be constrained in inverted-water-balance models. In this
paper, we applied the water balance method to the Congo
Basin to produce the first data-driven estimates of monthly
basin-averaged ET for the period from April 2002 to Novem-
ber 2016. To determine the most accurate precipitation time
series to use in this computation, precipitation data from mul-
tiple remote-sensing-based approaches were combined based
on uncertainty estimates from triple collocation. We further
used the resulting ET time series to explore the climatic and
ecological drivers of ET seasonality and trends by comparing
it against a variety of vegetation indices and meteorological
drivers.

2 Methods

Based on mass balance, any precipitation that falls on a basin
and is not removed from the basin through river discharge or
ET must increase the amount of water stored in the basin in
the form of groundwater, soil moisture, or open water bodies.
The equation for this mass balance can be rearranged to solve
for ET as follows:

ETwb = P −Q−
dS
dt
, (1)

where ETwb is monthly basin-wide evapotranspiration, P is
the monthly basin-wide precipitation, Q is total monthly
runoff from the Congo River, S is the water storage anomaly
within the basin expressed as an equivalent water height
(Rodell et al., 2004a, 2011), and t is time. We calculate ETwb
using P from a combination of remotely sensed and gauge-
based precipitation products, as further discussed in Sect. 2.1
and 2.2. Q was obtained from a stream gauge at the outlet of
the Congo River at Kinshasa–Brazzaville. Lastly, dS/dt was
derived from the monthly change in terrestrial water storage
throughout the basin, as estimated by gravitational anomaly
data from GRACE (Tapley et al., 2004; Swenson, 2012).

2.1 Water balance data sources

The area and extent of the Congo Basin were determined us-
ing the 15 arcsec HydroSHEDS (Hydrological data and maps
based on SHuttle Elevation Derivatives at multiple Scales)
Level 5 Basin Boundaries product (Lehner et al., 2008).
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The HydroSHEDS boundary produces a total basin area of
3 705 220 km2 – in good agreement with a recent indepen-
dent estimate of 3 687 000 km2 (Alsdorf et al., 2016). The
HydroSHEDS product was used to trim all remotely sensed
raster data to the Congo Basin’s boundaries at 0.01◦ spatial
resolution (all datasets with coarser spatial resolutions men-
tioned hereafter were first resampled to 0.01◦ grids with no
interpolation before determining their basin-wide values).

Basin-wide runoff (Q) for the Congo Basin was estimated
using monthly discharge data collected from the Congo
River at Kinshasa–Brazzaville. The long-running gauging
station is operated by the Observation Service for Geo-
dynamical, Hydrological and Biogeochemical Control of
Erosion/Alteration and Material Transport in the Amazon,
Orinoco and Congo Basins (SO-HYBAM) and captures the
drainage of over 98 % of the Congo Basin’s area (Alsdorf et
al., 2016). Because no uncertainty estimate is available for
the streamflow gauge, we assumed an uncertainty range of
±20 %.

Changes in terrestrial water storage (dS/dt) were calcu-
lated using S data from NASA’s Gravity Recovery and Cli-
mate Experiment (GRACE) satellites (Swenson and Wahr,
2006; Landerer and Swenson, 2012; Swenson, 2012). In or-
der to estimate monthly S, three independent GRACE so-
lutions in 1◦ grids from the GeoForschungsZentrum Pots-
dam (GFZ), Jet Propulsion Laboratory (JPL), and Center for
Space Research at the University of Texas at Austin (CSR)
were retrieved. A scale factor grid was also applied to the
GRACE data to account for attenuation of small-scale sur-
face mass variations (Landerer and Swenson, 2012). The
arithmetic mean of the three S solutions was used in the pri-
mary dS/dt calculation in order to reduce noise (Wahr et al.,
2006; Sakumura et al., 2014), though all three independent
S solutions were also used to calculate unique dS/dt values
in order to estimate uncertainty in the GRACE products (Lee
et al., 2011). The S data were converted to dS/dt values us-
ing a centered-difference approach at a monthly timescale:

dS
dt n
= (Sn+1− Sn−1) , (2)

where the S terms are expressed in centimeters of equivalent
water height averaged over the entire Congo Basin for the
months before and after month n (Landerer et al., 2010). The
uncertainty of dS/dt is calculated as half of the difference
between the highest and lowest dS/dt values from the three
GRACE S solutions in any given month (Lee et al., 2011).

Beginning in early 2011, the GRACE mission began
an active-battery-management strategy that resulted in data
gaps every several months. In order to reconstruct dS/dt
data from 2011 to 2016, we use the average seasonal
cycle and correct for variability based on the deviations
of adjacent months from their long-term averages. First,
the mean monthly cycle of S was calculated from data-
complete months from 2002 to 2016. For every missing
month from 2011 to 2016, the average S from the 2 other

months in the same season of the same year (DJF, MAM,
JJA, and SON, with seasons given by the first initial of their
months) was compared to the corresponding value from the
multi-year S means. The resulting ratio was then multiplied
by the multi-year S mean of the missing month to create
the reconstructed S value. Because the sum of multi-year
mean S values from October and November is nearly equal
to zero and consequently produces unrealistically scaled val-
ues for September, missing September values were instead
interpolated using August and October of the same year. Re-
peating the same procedure for months that are available in
the GRACE dataset (i.e., calculating what the reconstructed
value would be if it were not available, and comparing it to
the observations) shows that this seasonal-scaling interpola-
tion reproduces true S fairly accurately: from 2002 to 2016,
each of the 12 months was reconstructed with a mean R2 of
0.75 and a mean root-mean-square error (RMSE) of 2.80 cm
(relative to average seasonal S variations of ∼ 10 cm). Ap-
plying this procedure to the mean S data from the three
monthly GRACE solutions produced the complete dS/dt
time series that determined the study period for our water
balance model (April 2002–November 2016).

Due to the uncertainty of precipitation (P ) estimates in
the Congo (Washington et al., 2013), P was estimated us-
ing an array of five datasets with different methodologies.
These five datasets were chosen because recent validation
efforts have shown them to be the most accurate for the
Congo Basin (Nicholson et al., 2018, 2019). They include
gridded precipitation data from the Global Precipitation Cli-
matology Centre (GPCC) Version 7.0, which uses interpo-
lation with a worldwide network of rain gauges to produce
monthly precipitation grids (Schneider et al., 2015). GPCC-
compiled gauges within the Congo are extremely sparse
after 2000 (Nicholson et al., 2019), and the GPCC Ver-
sion 7.0 product only lasts through 2013. The Tropical Rain-
fall Measuring Mission (TRMM) 3B43 Version 7 product
(also known as TRMM Multi-satellite Precipitation Analy-
sis or TMPA), which consists of monthly-mean precipitation
rate grids, is generated using microwave and infrared sensors
on TRMM and other satellites as well as gauge data from the
GPCC (Huffman et al., 2007a). The Precipitation Estimation
from Remotely Sensed Information using Artificial Neural
Networks–Climate Data Record (PERSIANN-CDR) product
uses satellite infrared data and a neural network approach,
calibrated with precipitation forecasts, microwave data, and
GPCC gauge data to produce grids of precipitation estimates
at the daily timescale (Ashouri et al., 2015). While PER-
SIANN is also available without the GPCC gauge correc-
tions that make PERSIANN-CDR so similar to GPCC v7 and
TRMM 3B43 over the Congo Basin (Nguyen et al., 2018), it
was not used here because it severely overestimates P across
Africa (Beighley et al., 2011; Thiemig et al., 2012). Several
recent studies have found that TRMM Version 7 3B43 and
PERSIANN-CDR both perform reasonably well over central
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Africa (Munzimi et al., 2015; Awange et al., 2016; Camber-
lin et al., 2019).

Notably, the above three products all depend on GPCC
rain gauges to some degree. As a result, all three datasets fea-
ture similar rainfall trends and model performance over the
Congo Basin during the 2002–2016 period studied here and
cannot be considered truly independent P datasets (Nichol-
son et al., 2019). To that end, the Climate Hazards InfraRed
Precipitation with Station data version 2.0 (CHIRPS2) prod-
uct, which uses two thermal infrared datasets and interpo-
lated gauge data, was also included as a more independent
dataset (Funk et al., 2015a). The CHIRPS2 product was re-
cently found to be among the most accurate rainfall datasets
on monthly timescales within the Congo Basin (Camberlin
et al., 2019).While CHIRPS2 does incorporate some gauge
data that overlap with the GPCC product, it is not scaled
to fit GPCC data to the same extent as TRMM 3B43 or
PERSIANN-CDR are over central Africa (Nicholson et al.,
2019) – in fact, the near-total lack of rain gauges within the
basin in both CHIRPS2 and GPCC leads to a low correla-
tion between the two datasets within the study area (Funk
et al., 2015a), indicating the P datasets maintain a high de-
gree of independence. Finally, a recent gauge-based dataset
developed for the Congo Basin, NIC131-gridded, served as
another independent precipitation data source with coverage
through 2014 (Nicholson et al., 2018). The monthly 2.5◦

NIC131-gridded product was created by applying a spatial
reconstruction technique based on principal component anal-
ysis to a gauge network that, due to the severe decline of
GPCC coverage during the 1990s, is largely independent of
the GPCC’s gauges in Africa (Nicholson et al., 2019).

2.2 Comparing and merging precipitation estimates

Because the above five datasets each individually remain
highly uncertain and because no accurate independent basin-
wide validation is possible, triple collocation (TC) was used
to estimate the error statistics of the different datasets and
ultimately combine them by weighting them according to
their relative errors. TC is a method for characterizing sys-
tematic and random errors in geophysical measurements us-
ing three independent, collocated time series, even if these
datasets are individually noisy (Stoffelen, 1998; McColl et
al., 2014). It is particularly valuable in gauge-sparse regions
like the Congo Basin because it does not rely on indepen-
dent error-free validation data. TC-based error calculations
have previously been used in a wide variety of geophysical
settings – among others, TC was recently used to determine
the relative weightings of different hydrologic flux estimates
in a neural-network-based data combination effort in a man-
ner conceptually analogous to its use here (Alemohammad et
al., 2017), and other work has confirmed the ability of TC to
merge P datasets into a single more accurate dataset (Dong et
al., 2020). Rather than the linear model used in most TC ap-
plications, we used a multiplicative model that is more appro-

priate for quantifying errors in precipitation estimates (Ale-
mohammad et al., 2015). In the multiplicative-error model,
true precipitation rate T is assumed to be related to the esti-
mated precipitation of product i, Pi , as follows:

Pi = aiT
βi eεi , (3)

in which ai is the multiplicative error, βi is the deformation
error, and εi is the random residual error (which is assumed
to have a mean of zero).

Assuming the three collocated precipitation estimates’
residual errors are uncorrelated with each other and are un-
correlated with the true precipitation values, the RMSEs of
all three input P datasets may be calculated with Eqs. (4)–
(6):

σ 2
p1
= C11−

C12C13

C23
(4)

σ 2
p2
= C22−

C12C23

C13
(5)

σ 2
p3
= C33−

C13C23

C12
, (6)

where Ci,j is the (i, j )th element of the sample covariance
matrix between the three log-transformed datasets and σpi is
the RMSE of the log-transformed Pi time series. σpi can be
converted to the actual RMSE of Pi by multiplying by the
mean value of Pi (Alemohammad et al., 2015).

The errors of the five P datasets were evaluated by ap-
plying TC to triplets of products deemed relatively inde-
pendent. That is, TC was repeated three times using differ-
ent triplets: TRMM–NIC131–CHIRPS2, GPCC–NIC131–
CHIRPS2, and PERSIANN–NIC131–CHIRPS2. The three
RMSEs calculated for NIC131-gridded and CHIRPS2 were
then averaged and compared to the RMSEs calculated for
TRMM, GPCC, and PERSIANN-CDR. In order to combine
the most accurate P time series (and their estimated errors)
into a single unified P estimate, weighting factors were as-
signed to each time series in a manner inversely proportional
to the product RMSE. That is, each weighting factor wi was
assigned as in Eq. (7):

wi =
RMSE−1

i

3∑
1

RMSE−1
i

. (7)

The best-estimate rate of precipitation for each month was
then calculated as a weighted average across the three in-
dependent precipitation products using wi . The resulting
dataset’s RMSE was also used to propagate precipitation un-
certainty into the uncertainty of ETwb using a root-mean-
square sum of the weighted errors. While longer time series
are generally preferred for TC in order to reduce sampling
error, data prior to 2002 were discarded in the TC analysis
because the greater number of rain gauges likely leads to dif-
ferent error statistics than in this period (Nicholson et al.,
2018).
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2.3 Comparison to global ET products

Many hydrological studies of the Congo Basin rely on global
ET products to constrain their models (e.g., Hassan and Jin,
2016; Ndehedehe et al., 2018). We analyzed seven widely
used global ET data products and evaluated their perfor-
mance relative to ETwb. MOD16A2 Version 6 is a global
ET data product based on the Penman–Monteith equation,
meteorological reanalysis, and remotely sensed land sur-
face data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite mission (Mu et al., 2013).
The Operational Simplified Surface Energy Balance (SSE-
Bop) Version 4 model uses remotely sensed thermal data
from MODIS and global weather datasets to produce grid-
ded ET estimates at a very high (1 km) spatial resolution
(Senay et al., 2013). The Global Land Evaporation Ams-
terdam Model Version 3.3a (GLEAM v3.3a) product esti-
mates Priestley–Taylor potential ET (PET) from reanalysis
radiation and temperature data and then reduces PET to ac-
tual ET using remotely sensed soil moisture and vegetation
optical-depth measurements (Miralles et al., 2011; Martens
et al., 2017). Modern-Era Retrospective Analysis for Re-
search and Applications, Version 2 (MERRA2) is a reanal-
ysis product that integrates a wide variety of observation
types from satellites and in situ sources to produce terres-
trial ET estimates using a water balance approach (Gelaro
et al., 2017a). The Global Land Data Assimilation System
Version 2.1 Noah (GLDAS-Noah) product is a land surface
simulation forced by a combination of model and observation
datasets that provides monthly-mean ET estimates (Rodell et
al., 2004b).

Lastly, two global ET products based on upscaling tower
data from the global FLUXNET eddy covariance network
(Baldocchi et al., 2001) were included: the Model Tree En-
semble (FLUXNET-MTE) product uses a tree-based ma-
chine learning approach to upscale carbon, water, and en-
ergy flux observations using external global data sources, re-
sulting in a monthly 0.5◦ global dataset (Jung et al., 2011).
The more recent FLUXCOM product uses machine learn-
ing algorithms and additional time-varying meteorological
inputs to achieve greater accuracy in upscaling eddy co-
variance tower data (Jung et al., 2019). This study uses
FLUXCOM’s daily RS+METEO (remote sensing and me-
teorological data) version because of its lower ET uncer-
tainty in Africa (Jung et al., 2019). However, it should be
noted that FLUXNET-MTE and FLUXCOM, like the phys-
ical modeling approaches above, have primarily been vali-
dated against observational data in the mid-latitudes. There
are no FLUXNET towers located within the Congo Basin
that could have been used for training these and other mod-
els.

The accuracies of these seven products were evaluated by
comparing them to the monthly ETwb values: RMSEs, Pear-
son correlation coefficients, and Taylor skill scores were cal-
culated for each dataset versus ETwb. Only the years 2003–

2011 are common to all seven ET datasets and the GRACE
S data, so all statistics were calculated over this period. Pear-
son correlation coefficients help determine the ability of each
ET model to predict ETwb, while Taylor skill scores allow for
a comparison of the variability present in each model by ac-
counting for their standard deviations (Taylor, 2001). The av-
erage seasonal cycles and interannual variations of the prod-
ucts are also compared to better understand similarities and
differences between the products.

2.4 Meteorological and vegetation data

To examine potential drivers of ET’s seasonality, interannual
variability, and long-term trends in the Congo Basin, ETwb is
compared to a host of meteorological and vegetation data in-
cluding photosynthetically active radiation (PAR), net radia-
tion (Rn), vapor-pressure deficit (VPD), air and skin temper-
atures (Ta and Ts), solar-induced fluorescence (SIF), and the
enhanced vegetation index (EVI). We used all-sky monthly-
mean PAR and Rn data from the Clouds and the Earth’s
Radiant Energy System (CERES) project’s 1◦ gridded prod-
ucts. PAR data were derived from the synoptic-surface-flux
model (SYN1deg) (Doelling, 2017), which divides surface
PAR fluxes into direct (PARdir) and diffuse (PARdiff) com-
ponents, while Rn data were derived from the Energy Bal-
anced and Filled (EBAF) climate data record (Loeb, 2017).
The global ECMWF Reanalysis (ERA-Interim) model (Dee
et al., 2011a) provided surface air temperature and relative
humidity data in 6 h increments, which were used to calcu-
late monthly VPD means of the entire basin using linear in-
terpolation. Although reanalysis models over central Africa
remain uncertain and poorly constrained (Lorenz and Kun-
stmann, 2012; Brands et al., 2013), these VPD values were
tested against hourly VPD data from Automated Surface Ob-
serving Systems (ASOS) and Met Office Integrated Data
Archive System (MIDAS) weather reports from the Congo
Basin (Met Office, 2012) and were found to capture monthly
cycles of VPD with acceptable accuracy (Fig. S1 in the Sup-
plement).

Monthly-mean Ta and Ts from the Congo Basin were
sourced from the ascending (daytime) retrievals of the At-
mospheric Infrared Sounder (AIRS) Level 3 monthly prod-
uct (Kahn et al., 2014). The 740 nm SIF data from the
Global Ozone Monitoring Experiment 2 (GOME-2) plat-
form were retrieved from the GOME2_Fluorescence Ver-
sion 26 Level 3 dataset (Joiner et al., 2013). The GOME-
2 SIF dataset is known to have suffered from a signifi-
cant sensor decay problem resulting in a spurious world-
wide downward trend (Zhang et al., 2018), so the SIF data
were not used in any long-term trend analyses. SIF was nor-
malized by monthly CERES total PAR data (SIF/PAR) in
order to isolate the effects of phenological, physiological,
and hydrological variability on plant productivity indepen-
dent of radiative controls (Madani et al., 2017; Pagán et
al., 2019). MODIS Collection 6 EVI data processed with
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the Multi-Angle Implementation of Atmospheric Correc-
tion (MAIAC) algorithm were converted to monthly means
from 8 d composite rasters (Lyapustin et al., 2018). The MA-
IAC algorithm, which eliminates errors from aerosols and
sun-sensor geometry issues in MODIS data, has previously
proven beneficial for examining vegetation greenness in trop-
ical forests (Lyapustin et al., 2011a, b, 2012; Hilker et al.,
2012; Bi et al., 2016). Lastly, annual land cover data from
the MODIS-based MCD12C1 Version 6 dataset were re-
trieved for 2002–2016 and modally averaged to produce a
single land cover classification of the Congo Basin (Friedl
and Sulla-Menashe, 2015). Pixels were aggregated into dom-
inantly deciduous or evergreen vegetation types according to
the International Geosphere-Biosphere Programme’s (IGBP)
17-class land cover scheme, with savannas and grasslands
considered deciduous and permanent wetlands considered
evergreen. Other vegetation types that are more difficult to
generalize (e.g., croplands, mixed forests, and shrublands)
were spatially limited enough to be ignored once the land
cover data were majority-resampled to match the 1◦ pixel
size of our study’s coarsest datasets (Fig. S2).

2.5 Removing seasonal cycles and long-term trends

In order to track interannual correlations between ETwb, me-
teorological variables, and vegetation indices, the Breaks for
Additive Season and Trend (BFAST) R package (Verbesselt
et al., 2015) was used to search for abrupt changes in the
trends of our time series, identify linear long-term trends, and
remove average seasonal cycles from the data (Verbesselt et
al., 2010a, b).

3 Results

3.1 Triple collocation of precipitation datasets

The results of the TC analysis are provided in Table 1.
NIC131-gridded exhibited the lowest RMSE in all three
triplets, from 0.60 to 0.72 cm per month (mean of 0.65 cm
per month) depending on the triplet. The TC results in-
dicate that NIC131-gridded, a Congo-specific gauge-based
dataset designed using meteorological stations absent from
the GPCC network and a principal-component-based statis-
tical approach, is the best currently available P dataset for the
Congo Basin after 2002 (Nicholson et al., 2018). The results
in Table 1 agree well with those of Nicholson et al. (2019),
which found CHIRPS2 and PERSIANN-CDR to be more
accurate than TRMM and GPCC in the Congo Basin af-
ter 1998. Prior work has also demonstrated that CHIRPS2 is
among the best P products available for central Africa and
outperforms TRMM and PERSIANN-CDR on a monthly
basis (Dembélé and Zwart, 2016; Camberlin et al., 2019;
Nicholson et al., 2019), consistent with the results in Table 1.
Given the decreasing availability of Congolese rain gauge
data in the GPCC database and the difficulty of measuring P

with satellite remote sensing in central Africa (McCollum et
al., 2000; Yin and Gruber, 2010; Awange et al., 2016; Nichol-
son et al., 2018), it is not surprising that the GPCC-based
products generally displayed higher errors.

TRMM, GPCC, and PERSIANN-CDR – which all in-
tegrate GPCC rain gauges in some capacity – are highly
correlated and therefore feature similar RMSEs between
1.60 cm per month (PERSIANN-CDR) and 1.67 cm per
month (TRMM). Therefore, our subsequent analyses dis-
card GPCC and TRMM and use only PERSIANN-CDR,
the most accurate of the three GPCC gauge-related datasets.
As discussed in Sect. 2.2, PERSIANN-CDR was imple-
mented in a weighted average in combination with NIC131-
gridded and CHRIPS2 to create a unified P time series,
PTC. The NIC131-gridded dataset only lasts through 2014,
so from 2015 to 2016 only CHIRPS2 and PERSIANN-CDR
were used in PTC. The uncertainty in PTC was estimated to
be 0.30 cm per month from 2002 to 2014 and 0.59 cm per
month from 2015 to 2016 (after NIC131-gridded data cover-
age ends) – both lower than the RMSEs of any of the indi-
vidual P products tested.

3.2 Water balance ET estimates

In Fig. 1, clear seasonal cycles as well as interannual vari-
ations are visible in all four of the hydrologic fluxes from
Eq. (1): the rainy MAM and SON seasons show local peaks
in ETwb as well as dS/dt , which is generally a negative flux
(representing water leaving the land surface system) for most
of the rest of the year. Q has the least temporal variabil-
ity of the fluxes and is the smallest in magnitude, although
it exhibits increased runoff 1–2 months after the primary
SON rainy season. Mean annual ETwb is 117.2±3.5 cm yr−1

(calculated from 2003 to 2015, the data-complete years of
the study period). Mean annual PTC from 2003 to 2015 is
150.4± 2.6 cm yr−1, and mean annual Q is 33.7 cm yr−1.
dS/dt , which fluctuates between positive and negative val-
ues, ranges from −3.2 to 3.7 cm per month on average.

Plotting monthly means of the water balance fluxes pro-
vides further clarity regarding their seasonal cycles (Fig. 2).
The basin-wide seasonal flux cycles are dominated by con-
tributions from the region south of the Equator, which com-
prises the majority of the Congo Basin (Fig. S2). October and
November are the rainiest months, followed by March and
April, while June and July are the driest months of the year.
Positive dS/dt rates indicate S regenerates mostly during the
very wet October and November months and less so during
December, the secondary rainy season in March and April,
and in September with the onset of the primary rainy sea-
son. S loses water fastest during May and June, reaching its
minimum during June, when ETwb exceeds PTC on average
(Matsuyama et al., 1994). Interestingly, while ETwb tracks
the seasonality of PTC to an extent, it peaks in March during
the secondary rainy season rather than during the primary,
wetter, SON wet season. The possible causes of this differ-
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Table 1. Root-mean-square errors (RMSEs) for the five P datasets (in three triplets) evaluated in this study, as well as the weighting factors
used to unify the three most accurate datasets. All values are presented in centimeters per month.

Dataset RMSE RMSE RMSE Mean Weighting
triplet 1 triplet 2 triplet 3 RMSE factor

TRMM 3B43 1.67 – – 1.67 –
GPCC Version 7 – 1.66 – 1.66 –
PERSIANN-CDR – – 1.60 1.60 0.19
NIC131-gridded 0.65 0.72 0.60 0.65 0.47
CHIRPS2 0.93 0.88 0.96 0.93 0.33

Figure 1. Time series of the four water balance components from 2002 to 2016. Data are monthly, basin-wide averages in centimeter water
height equivalents. Black lines represent mean values; ribbons represent uncertainty ranges.

Figure 2. Mean monthly cycle of the four water balance compo-
nents from 2002 to 2016. Dark lines represent mean values; ribbons
represent uncertainties.

ence between precipitation and ET seasonality are analyzed
further in Sect. 4.2.

Table 2 summarizes 14 mean annual ET estimates from
the Congo Basin found in the literature. The studies pro-
duce a mean ET of 116.8 cm yr−1 with a standard deviation
of 6.6 cm yr−1 and a median ET of 118.6 cm yr−1, although
different study periods and a variety of methods were used
to estimate actual ET. All but one historical ET estimate fall
within 10 % of mean annual ETwb, showing good agreement

between the present study’s ET estimates and prior literature
on the subject.

3.3 Comparing the ETwb seasonal cycle to global
ET models

The seasonal cycle of ETwb is compared to those of seven
global ET products in Fig. 3. All seven products generally
follow the seasonal shape of ETwb; however, none capture
the full amplitude of ET fluctuations across seasons. Peak
basin-wide ET during March is underestimated in all models
to some degree, and all seven overestimate the basin’s low
JJA ET while also failing to capture the fast recovery of ETwb
from August to September. The period from November to
January displays the most consistent departure of global
ET products from ETwb, with all seven products overesti-
mating ET during these 3 months. Most models do correctly
find ET to peak during the MAM rainy season (Matsuyama et
al., 1994; Pan et al., 2012; Crowhurst et al., 2020), yet they
generally underestimate how much larger the MAM ETwb
peak is than the SON one. For instance, FLUXNET-MTE
plots SON ET as roughly equivalent to MAM ET. In general,
the global ET products underestimate the magnitude of sea-
sonal variations in ETwb, although some track ETwb much
more closely than others.

Global ET products are evaluated against ETwb from 2003
to 2011 using several metrics in Table 3. Mean annual ET
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Table 2. Historical estimates of mean annual basin-wide ET from
the literature. Mean and median values are derived from the litera-
ture and presented alongside the mean annual ETwb from this study.

Source Mean ET Time span
(cm yr−1)

Balek (1977) 124.8 Climatology
Balek (1983) 122.4 Climatology
Bricquet (1988) 123.0 Climatology
Bultot (1971) 119.6 Climatology
Chishugi and Alemaw (2009) 109.8 1961–1990
Matsuyama et al. (1994) 125.0 1985–1988
Nicholson et al. (1997) 112.7 Climatology
Oki et al. (1993) 120 1985–1988
Olivry et al. (1993) 108.6 1951–1990
Pan et al. (2012) ∼ 102 1984–2006
Pinet and Souriau (1988) 118.2 Climatology
Russell and Miller (1990) 114 Climatology
Shem (2006) 122.3 1979–1994
Ukkola and Prentice (2013) ∼ 111 1963–1998
Weerasinghe et al. (2020) 118.6 1979–2010

Mean 116.8
Median 118.6

This study 117.2± 3.5 2003–2015

Figure 3. Mean monthly cycle of ETwb plotted alongside the mean
monthly cycles of seven global ET products. The gray ribbon rep-
resents ETwb uncertainty.

ranges from 110.7 cm yr−1 (GLDAS-Noah) to 127.6 cm yr−1

(FLUXCOM), compared to the ETwb annual mean of
118.0± 3.5 cm yr−1 for that time period. Global ET prod-
uct annual averages all fall within 10 % of ETwb’s, yet no
product comes close to the 6.1 cm average difference ob-
served between maximum and minimum ETwb, nor do they
match the 2.1 cm standard deviation of the ETwb time series.
All models find mean ET during MAM to exceed mean ET
during SON, but the global products feature more uniform
ET rates within each season (Fig. 3). FLUXCOM produces
the highest Pearson correlation coefficient with ETwb, while

MERRA2 produces the lowest; FLUXCOM, GLDAS-Noah,
and MERRA2 lead the products in Taylor skill score, while
FLUXNET-MTE achieves the lowest score. GLEAM v3.3a
features the lowest RMSE relative to ETwb, while MERRA2
features the highest. FLUXNET-MTE and SSEBop both ex-
hibit very low standard deviations that manifest in low Taylor
scores, suggesting these products are the worst at represent-
ing variability in Congo Basin ET.

3.4 Drivers of ET seasonality and variability

As discussed in Sect. 3.2, the shape of ETwb’s seasonal cycle
roughly follows that of PTC, since water availability and veg-
etation productivity modulate ET. However, ETwb is greater
during the MAM rainy season than in the SON rainy season,
despite the latter season being wetter than the former. On av-
erage, ETwb also exceeds PTC during June. These findings
are consistent with previous studies that found basin-wide ET
can peak during MAM (Matsuyama et al., 1994; Pan et al.,
2012; Crowhurst et al., 2020), although the drivers behind
this seasonal cycle are less clear. To help develop hypotheses
on the nature of ET’s drivers, monthly-mean ETwb is com-
pared here to several climatic drivers and indices reflecting
seasonally varying vegetation activity (Fig. 4).

Possible environmental drivers of ETwb’s seasonality in-
clude soil water availability, water demand from VPD, solar
irradiance, and temperature. GRACE-derived S can be as-
sumed to be a partial proxy for water availability (though
note that not all water measured by S is necessarily ac-
cessible to plant roots or available for soil evaporation; see
Sect. 4.2.4). S is significantly lower during SON than MAM
when considering the entire basin (Fig. 4f), consistent with
the relatively lower SON ETwb. The relatively lower SON S

could be due to the much lower precipitation during JJA than
DJF (Fig. 3) and/or due to a seasonal difference in how much
of the rainfall infiltrates the land surface. VPD is fairly low
in both wet seasons, although still elevated in September fol-
lowing the JJA dry season (Fig. 4e). Rn is lower during the
SON wet season than the MAM, likely contributing to the
lower ETwb in SON (Fig. 4c).

The variability of ET is expected to be linked to vegetation
phenology through the large contribution of transpiration to
overall ET in the densely vegetated Congo Basin (Lian et
al., 2018). However, both MAIAC EVI (Fig. 4a) and PAR-
normalized SIF (Fig. 4b) show greater vegetation greenness
and photosynthesis, respectively, during the SON wet sea-
son than during the MAM wet season (SIF peaks in October
and November with or without PAR normalization, indicat-
ing both greater total photosynthesis and more light-efficient
production during these months; see Fig. S3). The high SON
productivity without correspondingly high ETwb suggests
relatively greater water use efficiency (WUE, or the ratio of
photosynthetic production to the amount of water transpired
through plants’ stomata) in SON and/or a relatively greater
contribution of direct soil and canopy evaporation to ET in
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Table 3. Mean annual ET values, mean seasonal amplitudes, ratios of seasonal-mean ET from MAM over SON, Pearson correlation coeffi-
cients, Taylor skill scores, RMSEs, and standard deviations from 2003 to 2011 for seven global ET products in comparison to ETwb.

ET product Mean MAM JJA ETMAM/ETSON Pearson Taylor RMSE Standard
annual ET amplitude amplitude correlation skill (cm) deviation

(cm) (cm) (cm) coefficient score (cm)

ETwb 118.0± 3.5 2.9 −3.2 1.15 – – – 2.1
MOD16A2 120.1 2.0 −2.3 1.18 0.59 0.70 1.7 1.4
SSEBop 117.9 1.2 −1.9 1.06 0.68 0.48 1.6 0.9
GLEAM 120.3 1.6 −2.0 1.11 0.68 0.64 1.5 1.2
FLUXNET-MTE 111.1 1.0 −1.4 1.04 0.64 0.39 1.8 0.8
FLUXCOM 127.6 1.7 −2.5 1.09 0.73 0.72 1.6 1.4
GLDAS-Noah 110.7 1.8 −2.3 1.13 0.70 0.72 1.6 1.4
MERRA2 119.7 1.6 −2.2 1.16 0.47 0.72 2.0 1.8

Figure 4. Mean monthly cycle of ETwb (black line with gray uncertainty range) plotted alongside those of (a) MAIAC-processed EVI,
(b) SIF/PAR, (c) Rn and total PAR, (d) diffuse PAR fraction (PARdiff/PARtotal), (e) VPD, and (f) S from GRACE (red lines). Data are
averaged over the entire basin area. Note that the mean ETwb curve and scale is the same in each panel.

MAM (although bare soil evaporation is expected to be a mi-
nority of total ET in the densely forested basin; see Sect. 4.2).
WUE during SON may be higher than in March and April
(when ETwb peaks) because of the greater ratio of diffuse
PAR to total PAR during SON (Fig. 4d) which can increase
photosynthetic efficiency (Mercado et al., 2009), as further
discussed in Sect. 4.2.3.

The basin-wide analyses in Fig. 4 are almost certainly
masking significant subbasin variability. The subbasin divi-
sion of ET is not known, and dividing the coarse-resolution S
at the subbasin level is also highly uncertain. Neverthe-
less, we considered the subbasin variation of MAIAC EVI,
PAR-normalized SIF, and VPD in Fig. 5. The basin was di-
vided into the equatorial evergreen forest region, northern
deciduous ecosystems, and southern deciduous ecosystems
(Fig. S2). The deciduous regions feature larger seasonal vari-
ations in all three variables than the evergreen forest does,
but the opposite seasonalities of the northern and southern

regions partially offset one another and produce basin-wide
EVI and SIF/PAR cycles that are roughly similar to those of
the evergreen forest (Figs. 4a, b and 5b). The greater extent
of the southern deciduous region results in basin-wide EVI
and SIF/PAR minima during JJA rather than DJF, and basin-
averaged VPD likewise peaks during JJA (Fig. 4e) despite
its low variability in the extensive evergreen forest region
(Fig. 5b). Taken together, the results of Fig. 5 suggest that
a basin-wide analysis is informative despite averaging over
multiple vegetation types.

3.5 Long-term climatic shifts and their impacts in the
Congo Basin

We detect no significant linear trends in ETwb, PTC, dS/dt ,
or Q from 2002 to 2016 after removing average seasonal
cycles with BFAST (Fig. 6). However, several interannual
trends are detectable in other environmental data (Fig. 7):

https://doi.org/10.5194/hess-24-4189-2020 Hydrol. Earth Syst. Sci., 24, 4189–4211, 2020



4198 M. W. Burnett et al.: Data-driven estimates of evapotranspiration and its controls in the Congo Basin

Figure 5. (a) Average monthly cycles of MAIAC-processed EVI
(green line), SIF/PAR (red dashed line), and VPD (purple line) for
the northern deciduous area of the Congo Basin. (b, c) As with (a)
but for the equatorial evergreen and southern deciduous regions, re-
spectively. Scales are consistent between plots (a) and (c) for each
variable.

PAR, Rn, and VPD all increase significantly from 2002 to
2016 after the average seasonal cycle is removed from the
time series, indicating the Congo Basin has become sunnier
and less humid in recent years. This progression to sunnier
and less humid conditions in the Congo Basin is not reflected
in ETwb and productivity (as measured by MAIAC EVI),
which do not show long-term changes over the past 2 decades
(Figs. 6d and 7d).

4 Discussion

4.1 The value of water-balance-based ET estimates

The scarcity of operational precipitation gauges and com-
plete lack of eddy covariance towers within the Congo
Basin have previously restricted ET estimates to process-
based models, short-term ET observations at the site scale,
and global products with insufficient validation in tropical
Africa. The water-balance-based ETwb derived here provides
a basin-wide constraint on ET. It has an uncertainty that is
relatively low compared to its average seasonal cycle (Fig. 2),
and its magnitude matches well with previous long-term
ET estimates from the basin (Table 2). The shape of its an-
nual seasonal cycle (with ETwb peaking in MAM rather than
in SON) also agrees with several previous ET modeling ef-
forts in the basin (Matsuyama et al., 1994; Pan et al., 2012;

Figure 6. Linear regressions of deseasonalized monthly (a) Q,
(b) dS/dt , (c) PTC, and (d) ETwb.

Crowhurst et al., 2020). These findings support the accuracy
of the water balance model in estimating basin-wide ET.

The results of this study also reinforce the value of
the inverted-water-balance method for studying river basins
large enough to accommodate the coarse spatial resolution
of GRACE data. Compared to the difficulty of directly mea-
suring ET and the large amount of observational data needed
to constrain ET models, the inverted water balance is con-
ceptually straightforward and has relatively simple data re-
quirements. But as demonstrated here and in other large river
basins like the Amazon (Maeda et al., 2017; Swann and
Koven, 2017), inverting the water balance produces robust
estimates of ET which can be used to validate and improve
other ET models’ representation of sparsely observed basins.
Limitations of water balance ET estimates include the coarse
spatial resolution, monthly time steps, short temporal cover-
age of GRACE (2002–2016, with various data gaps), avail-
ability of river discharge data for the area of interest, and
quality of gridded P data in the region. However, the use of
dS/dt data may not be necessary in long-term ET estimates
(Weerasinghe et al., 2020), so the limitations of GRACE data
mostly affect studies examining ET variability on annual or
shorter timescales. The uncertainties of P datasets can be as-
sessed and mitigated using techniques such as TC (Stoffelen,
1998; McColl et al., 2014; Alemohammad et al., 2015; Dong
et al., 2020), but basins with more thorough gauge coverage
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Figure 7. Linear regressions of deseasonalized monthly (a) VPD,
(b) Rn, (c) PAR, and (d) MAIAC EVI.

than the Congo probably do not require such thorough anal-
ysis of multiple gridded P products.

4.2 The seasonal imbalance of ETwb and P maxima

As expected, the seasonal cycle of ETwb mostly follows that
of precipitation, with two annual dry and two annual wet sea-
sons. However, the seasonal cycles of P and ETwb feature
an interesting offset: whereas SON is the wetter of the two
rainy seasons, ETwb is greater during MAM than during SON
(Fig. 2). The ETwb peak during MAM is supported by several
previous modeling efforts with a variety of methodologies
(Matsuyama et al., 1994; Pan et al., 2012; Crowhurst et al.,
2020), indicating it is not simply an artifact of the water bal-
ance model or the data sources used here. Yet the underlying
causes of the imbalance are not well understood (Crowhurst
et al., 2020). We evaluated several possible drivers of the ob-
served MAM peak in ETwb including phenology, photosyn-
thetic production (via EVI and SIF), terrestrial water avail-
ability (via GRACE-derived S), PAR, Rn, VPD, Ta, and Ts.
Ultimately, we conclude that higher levels of solar irradi-
ance (especially photosynthetically favorable diffuse radia-
tion) and greater soil water availability during MAM provide
the most likely explanation for seasonally high ET rates.

As transpiration is the dominant component of ET
throughout the Congo Basin (Lian et al., 2018), primary pro-
ductivity (through its links to stomatal closure and active leaf

area) likely explains the seasonality of ETwb to some degree.
In fact, recent studies have found that evergreen forests in an
equatorial section of the Congo exhibit a similar greenness
seasonality to the seasonality of ETwb, with a bimodal cy-
cle generally aligning with P but peaking in MAM instead
of the wetter SON (Betbeder et al., 2014; Philippon et al.,
2016). However, these studies focused on specific areas of
evergreen forests and wetlands that may not represent the
ecohydrology of the Congo Basin’s entire equatorial rain-
forest belt and used MODIS products that do not fully ac-
count for sun-sensor geometry and other sources of error at
low latitudes (Hilker et al., 2012; Bi et al., 2016). To this
end, the MAIAC algorithm (Lyapustin et al., 2018) reduces
noise and increases the availability of clear-sky data in wet
tropical regions (Maeda et al., 2016). Here we find that, af-
ter correction with the MAIAC algorithm, EVI data from the
Congo Basin’s evergreen forest region do not present any sig-
nificant difference between the two rainy seasons (Fig. 5b),
and basin-wide MAIAC EVI appears to peak during SON
rather than MAM (Fig. 4a). Furthermore, direct estimation of
photosynthetic rates using SIF/PAR data reveals greater pro-
ductivity and light use efficiency (LUE) in SON than MAM
throughout the evergreen forest band (Fig. 5b) and the basin
as a whole (Figs. 4b and S3). The misaligned seasonal peaks
of SIF/PAR and ETwb indicate that either (a) water use ef-
ficiency (WUE) varies seasonally when generalized across
the basin, resulting in higher MAM transpiration but lower
MAM photosynthesis, or (b) the MAM peak in ET is pri-
marily driven by direct evaporation from the canopy or land
surface rather than transpiration.

4.2.1 Leaf-age-related WUE variations

Leaf age offers a possible explanation for the variable WUE
hypothesis. Studies of tropical trees have found that new
leaves can take 1–2 months to reach peak photosynthetic
capacity and WUE and that both traits tend to decline as
leaves reach 5–6 months old (Sobrado, 1994; Shirke, 2001).
Leaf age has been linked to photosynthetic seasonality within
the Amazon rainforest (Wu et al., 2016), although this ef-
fect has not been investigated in the Congo Basin. Con-
necting the phenology of Congolese forests to basin-wide
photosynthesis and transpiration must account for multiple
broad ecoregions that span the Equator and therefore face
inverted seasonalities (Figs. 5 and S2). In much of the decid-
uous woodlands of the northern (southern) basin, vegetation
leaf flushing tends to begin 1–2 months prior to the onset of
MAM (SON) rains, and senescence begins around the end
of the SON (MAM) rains, but both processes occur over the
course of 1–2 months (Guan et al., 2014; Vinya et al., 2019).
Likewise, microwave backscatter data from large areas of the
Congo’s evergreen forests imply canopy biomass and/or wa-
ter content peak during JJA and, to a lesser extent, DJF (Guan
et al., 2013; Konings et al., 2017). But phenological obser-
vations from Gabon indicate that new leaf growth is sup-
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pressed during JJA and that the full mature-leaf tree canopies
common in JJA contain an elevated fraction of senescing
leaves, so dry-season backscatter peaks in Congolese ev-
ergreen forests may not be attributable to widespread leaf-
flushing events (Bush, 2018). Overall, the phenological syn-
chronicity of leaf-out events appears to be low in the ever-
green forests of central Africa (Couralet et al., 2013; Bush,
2018), so the magnitude and hydrologic effects of evergreen
leaf flushing are probably smaller and more temporally dis-
tributed in the evergreen forests than in the deciduous wood-
lands of the basin.

After accounting for the different ecoregions within the
Congo Basin, leaf age effects alone appear unable to explain
the flipped seasonality of ETwb in the two rainy seasons: al-
though WUE increases as leaves mature, overall transpira-
tion rates in tropical deciduous leaves remain high until they
reach old age (Sobrado, 1994; Shirke, 2001). Thus, July–
August leaf flushing of the southern deciduous woodlands,
which far exceed the northern woodlands in area (Fig. S2),
would most likely increase basin-wide transpiration along-
side photosynthesis during SON. While our current under-
standing of regional phenology appears broadly consistent
with remotely sensed vegetation data, better field observa-
tions of phenology, leaf age, and associated changes in stom-
atal conductance and productivity in the different ecosystems
of the Congo Basin are needed to fully determine the role of
vegetation in modulating ET seasonality.

4.2.2 VPD and temperature

Climatic conditions beyond precipitation could also con-
tribute to the seasonal variations in WUE. For instance, high
VPD reduces WUE by drawing more water from stomata per
unit of carbon intake during transpiration. Basin-averaged
VPD data from the ERA-Interim reanalysis do not indi-
cate that MAM conditions are significantly less humid than
SON conditions (Fig. 4e), suggesting seasonal VPD varia-
tions cannot explain the swapped ETwb–precipitation wet-
season magnitudes. But the uncertainties in reanalysis-based
temperature and humidity data from tropical regions (Lorenz
and Kunstmann, 2012; Brands et al., 2013) warrant an ex-
amination of the limited in situ data available from within
the Congo Basin. Observational VPD data from weather re-
ports show that while ERA-Interim captures the shapes of
seasonal VPD cycles fairly accurately, it fails to capture
the magnitude of daytime VPDs in the evergreen rainforest
(Fig. S1). Further examination of station and reanalysis data
from within the evergreen forest region shows that rainfor-
est VPD is slightly greater during MAM than SON (Figs. 5b
and S1c–f), consistent with models based on historical pan
evaporation data across the basin (Bultot, 1971) and histor-
ical atmospheric humidity data from within the equatorial
rainforest (Lauer, 1989). However, because evergreen rain-
forest VPDs are generally low compared to other regions of
the basin (Fig. 5) and are only slightly greater during MAM

(Fig. S1c–f), VPD is not expected to be a significant driver
of ET variations at basin-wide scales.

While basin-averaged Ta does not vary drastically
throughout the year, Ts features a bimodal seasonality that
peaks primarily in September and also from February to
March (Fig. S4). Ts can regulate ET via stomatal conduc-
tance, which tends to increase with leaf temperature to a
point, although a wide range of sometimes-contradictory re-
sults have been published on this matter (Urban et al., 2017).
In this case, the poor alignment of peak Ts and ETwb values
– taken in conjunction with the widespread stomatal closures
known to occur in tropical forests during the hottest parts of
the day (Fisher et al., 2006; Konings and Gentine, 2017; Kon-
ings et al., 2017) – indicate that other variables are more di-
rectly responsible for the high ETwb observed during MAM.

4.2.3 Radiative fluxes

The magnitude and quality of radiative fluxes can drive the
dynamics of ETwb by influencing primary production as well
as WUE. Rn and total PAR are both diminished in SON rel-
ative to MAM levels (Fig. 4c), which does not explain the
SON peak in primary production observed in SIF/PAR and
EVI data (Fig. 4a and b). However, greater Rn levels dur-
ing MAM could decrease WUE by increasing water demand,
thereby driving the high ETwb levels observed in MAM.

In addition to the magnitude of the incoming radiative
flux, the quality of PAR could affect WUE and explain
the apparent decoupling of productivity from irradiance
levels and ETwb. Prior studies have found that increasing
PARdiff/PAR can raise WUE and LUE in tropical savannahs
and global forest canopies, including an Amazonian tropical
broadleaf stand (Alton et al., 2007; Kanniah et al., 2013).
Furthermore, total canopy ET has been found to decrease
as the diffuse light fraction increases (Rocha et al., 2004).
Philippon et al. (2019) examined diffuse and direct irradiance
data from the Breathing Earth System Simulator (BESS; Ryu
et al., 2018) and the Satellite Application Facility on Climate
Monitoring (CM-SAF; Müller et al., 2015) and found that the
ratio of direct irradiance is often higher during MAM than
in SON throughout much of the Congo Basin. The CERES
data produce similar results: while PARdiff/PAR peaks in
May, it remains low throughout March and April (the month
when ETwb peaks), and the greater total PAR flux in MAM is
mostly attributable to greater PARdir (Fig. S5). LUE (as ap-
proximated by PAR-normalized SIF) is greater during SON
(Figs. 4b and 5), which is consistent with the presence of
higher-quality radiation during the primary rainy season. Af-
ter removing seasonal cycles and long-term trends, monthly-
mean SIF/PAR displays a strong negative correlation with
mean PARdir but not with PARdiff, indicating photosynthetic
rates do not scale as well with increasing direct sunlight as
with diffuse sunlight (Fig. S6). These experiments suggest
the quality of irradiance during SON could allow for higher
photosynthetic rates with lower ET than during MAM, espe-
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cially since monthly PARdiff/PAR in the Congo remains be-
low 0.4 on average (Kanniah et al., 2013) and lowerRn corre-
sponds to lower water demand (Philippon et al., 2019). Even
if total PAR availability would favor a productivity peak in
MAM, lower WUE and LUE could result in plants transpir-
ing water at the highest possible rate without reaching the
productivity levels achieved in SON. Thus the quality of so-
lar irradiance potentially explains ETwb’s imbalanced sea-
sonality.

4.2.4 Terrestrial water storage

The availability of water in the rooting zone can modu-
late ETwb by directly limiting transpiration during SON. In
the Congo Basin, low average SIF values retrieved during
both dry seasons even after normalizing for incident PAR
imply that water availability could be limiting transpiration
across all ecoregions (Figs. 4b and 5), warranting investiga-
tion of the terrestrial water dynamics of the basin.

As with other variables examined in this study, seasonal
S dynamics at the basin scale are driven by the wet SON and
dry JJA seasons experienced by the larger southern portion of
the basin. Even though basin-wide P during MAM is signif-
icant, dS/dt (which measures groundwater within the root-
ing zone as well as in deeper reserves) remains much lower
than its SON levels and only seems to recharge S enough
to compensate for the slightly negative dS/dt values of Jan-
uary and February (Fig. 2), indicating that water reserves are
largely saturated during MAM and undersaturated at the on-
set of SON when averaged across the basin (Fig. 4f). This
hypothesis is consistent with prior soil moisture modeling ef-
forts, which indicate that Congolese ecosystems south of the
Equator (i.e., most of the basin’s area) feature low soil mois-
ture as SON rains begin before maintaining high soil mois-
ture and deeper water reserves through the end of the MAM
rainy season (Pokam et al., 2012; Guan et al., 2014). Terres-
trial water reserves are well-known to modulate productivity
and ET throughout the basin (Saeed et al., 2013; Guan et al.,
2014; Ndehedehe et al., 2018; Cuthbert et al., 2019), so de-
pleted S during September and October could limit transpi-
ration even after the dry season ends. This hypothesis is also
consistent with recent findings that variability in soil mois-
ture and groundwater is much more influential than variabil-
ity in rainfall with regard to productivity anomalies within
the Congo Basin (Madani et al., 2020), making variations
in plant-available soil moisture a plausible driver of the sea-
sonal ETwb imbalance when combined with the light quality
impacts on WUE outlined in the previous section.

4.2.5 Direct canopy and soil evaporation

The WUE hypotheses explored above largely focus on the
seasonality of transpiration, but seasonal variability in direct
evaporation from forest canopies and the soil system could
also potentially influence the seasonal cycle of ETwb. As out-

lined above, Rn is lower in SON than during MAM (Fig. 4c),
suggesting that there may simply be less energy driving
direct evaporation of water from the land surface. As Rn
and ETwb both peak in March and high water content in the
soil surface layer is apparently sustained throughout the rainy
seasons (Guan et al., 2014), the conditions seem appropriate
to drive increased direct evaporation during MAM. However,
the higher proportion of nighttime rains during these months
(Philippon et al., 2016) make this scenario less plausible, as
recent rainfall would have more time to drip from the canopy
to the soil surface and percolate to deeper soil levels. Ad-
ditionally, a recent study of several climate models within
the Congo Basin determined that soil and canopy evapora-
tion rates are likely similar between the two wet seasons, and
that the ETwb seasonal imbalance is more likely due to in-
creased transpiration during MAM (Crowhurst et al., 2020).
More research is required to definitively characterize the role
of direct evaporation in the seasonality of ET, but given the
dominance of transpiration as the primary component of ET
within the Congo Basin (Lian et al., 2018) and the conclu-
sions of Crowhurst et al. (2020), we find it unlikely to be the
main driver of ETwb’s MAM peak.

Taken together, the analyses above suggest that the timing
of peak ET rates in MAM rather than SON is primarily due to
a combination of greater moisture availability and higher Rn
during MAM, as well as the higher fraction of diffuse ra-
diation during that season. The decoupled seasonal peaks
of ETwb and photosynthetic productivity also indicate that
seasonal variations in WUE occur across the Congo Basin.

4.3 Comparison to global ET products

The seven global ET models evaluated generally do not cap-
ture the degrees of seasonal and interannual variability dis-
played by ETwb (Fig. 3 and Table 3). Global ET product
annual averages all fall within 10 % of ETwb’s, consistent
with Weerasinghe et al.’s (2020) finding that global ET prod-
ucts can accurately capture the magnitude of long-term ET
in the Congo Basin. Yet all seven ET products have less
temporal variability than ETwb, ranging from only ∼ 40 %
of ETwb’s variability (FLUXNET-MTE) to at most 80 % of
it (MERRA2). These metrics reflect not only the lack of sea-
sonal variability in these models (Fig. 3) but also the fact that
global ET models tend to repeat the same seasonal ET cycle
every year with only minor variations. Although some prod-
ucts feature relatively accurate seasonal cycles, ETwb makes
significant departures from its mean seasonal cycle in any
given year (Fig. 1) that are not reflected in the seven ET prod-
ucts evaluated here.

Broadly speaking, FLUXCOM and GLDAS-Noah appear
to lead global ET products in reproducing ETwb at monthly
timescales – they feature the highest Taylor scores and Pear-
son coefficients and also exhibit relatively large seasonal am-
plitudes (Table 3). However, both of these products still have
significantly lower temporal standard deviations than ETwb
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does and also display the largest overall biases from 2003 to
2011. After FLUXCOM and GLDAS-Noah, two primarily
remote-sensing-based products (MOD16A2 and GLEAM)
achieve relatively high Taylor scores and Pearson coeffi-
cients, supporting previous reports that they approximate
actual ET fairly well in tropical Africa (Schüttemeyer et
al., 2007; Opoku-Duah et al., 2008; Andam-Akorful et al.,
2015; Liu et al., 2016). Weerasinghe et al. (2020) found
that FLUXNET-MTE and SSEBop exhibit very low long-
term biases over the Congo Basin, but their low Taylor skill
scores and standard deviations suggest a significant underes-
timation of month-to-month ET variability. Finally, ET from
MERRA2 was found to possess the greatest temporal vari-
ability over the basin and, as a result, tied with FLUXCOM
and GLDAS-Noah for the highest Taylor score; however,
MERRA2 also produced the worst correlation coefficient and
highest RMSE out of the seven global products.

Our results show some disagreements with the previ-
ous model comparison efforts of Liu et al. (2016). As part
of a global water-balance-based assessment of ET prod-
ucts, Liu et al. (2016) also compare ETwb (estimated us-
ing a different approach; see below) to ET from GLEAM,
FLUXNET-MTE, GLDAS-Noah, and MERRA in the Congo
Basin. However, in our calculation, the Taylor skill score of
GLDAS-Noah appears to far outperform its value in Liu et
al. (2016); FLUXNET-MTE and MERRA2 both show mod-
est improvements in their Taylor scores, and only GLEAM
falls into its previously assigned score bin. These discrep-
ancies were likely caused by (a) the different study period
used by Liu et al. (2016), which necessitated an extrapo-
lation of GRACE data prior to 2002; (b) the exclusive use
of the GPCC Version 6 product to constrain P in their wa-
ter balance models; and (c) the use of different versions
of the four datasets common to both Liu et al. (2016) and
the present study. Nonetheless, comparison of these Tay-
lor scores indicates that the most recent generation of ET
products generally improved upon the previous generation:
FLUXCOM outperforms its predecessor, FLUXNET-MTE;
GLDAS-Noah Version 2.1 outperforms GLDAS-Noah Ver-
sion 2.0; and MERRA Version 2 improves upon MERRA
Version 1’s skill score.

4.4 Effects of long-term climatic shifts on ET

From 2002 to 2016, no significant trend is detectable in the
deseasonalized ETwb data nor in any of the other water bal-
ance component fluxes (Fig. 6). The lack of significant trends
in water balance components over the 15-year study period
is surprising given the numerous reports of declining pre-
cipitation in the Congo Basin, both in magnitude (Asefi-
Najafabady and Saatchi, 2013; Diem et al., 2014; Zhou et
al., 2014; Hua et al., 2016; Dezfuli, 2017) and in wet-season
duration (Jiang et al., 2019). However, the absence of a trend
in PTC does not prove the absence of a longer-term drying
trend that began in the 20th century – rather, it probably re-

sults from our study period, which is shorter and generally
more recent than those of the aforementioned studies; from
our analysis of rainfall over all seasons rather than during
certain 3-month windows; and from the fact that rainfall de-
clines mainly affect the northern portion of the basin (Zhou
et al., 2014; Hua et al., 2016), whereas our study is domi-
nated by the basin area south of the Equator (Fig. S2). In-
deed, careful examination of long-term precipitation records
from the literature reveals marked declines in rainfall dur-
ing the 1990s and early 2000s that did not continue signifi-
cantly into our 2002–2016 study period (Diem et al., 2014;
Dezfuli, 2017; Hua et al., 2019). The lack of an interannual
ETwb trend is consistent with the recent findings of Weeras-
inghe et al. (2020).

The lack of long-term trends in ETwb and EVI is intrigu-
ing given the changes detectable in the other environmental
variables (Figs. 7 and S7): PARdiff, PARdir, Rn, and VPD
all increase significantly from 2002 to 2016, meaning the
Congo Basin has become sunnier and less humid in recent
years. While these findings should be viewed with caution
because meteorological data are quite sparse in the basin dur-
ing the 15-year study period, the increasing VPD and irradi-
ance trends are consistent with long-term projections over the
21st century in CMIP5 models (Yuan et al., 2019; Zou et al.,
2019). Sunnier and less humid conditions caused by increas-
ing PAR, Rn, and VPD would typically lead to lower WUE
in plants, which would in turn lead to increased ET and/or
decreased EVI. Given the seasonal dependence of produc-
tivity and transpiration on irradiance levels (see Sect. 4.2.3),
the apparent lack of a corresponding long-term relationship
suggests that some mechanism may be counteracting the bi-
ological impacts of rising irradiance and VPD.

Carbon fertilization offers one possible explanation for the
lack of ETwb and EVI trends. Rising VPD can indeed re-
duce the WUE of vegetation, but conversely, rising atmo-
spheric CO2 levels can increase WUE in tropical forests by
catalyzing stomatal closure (De Kauwe et al., 2013; Keenan
et al., 2013; Van Der Sleen et al., 2015). Ukkola and Pren-
tice’s (2013) vegetation dynamics simulations yield a sizable
decrease in stomatal conductance between 1960 and 2000
in the Congo Basin, consistent with altered stomatal behav-
ior from CO2 fertilization and increasing VPD. Increasing
PAR levels also could have helped support forest productiv-
ity rates as stomatal conductance declined, although the PAR
data in Fig. S7 suggest a continual decrease in diffuse PAR
fraction that could adversely affect the WUE and LUE of
Congolese forests (Kanniah et al., 2013). In summary, even
as VPD and irradiance have increased and driven up evap-
orative demand in plant stomata, the rising concentration of
atmospheric CO2 may have allowed the Congo’s forests to
lower stomatal conductance without significantly impacting
growth or ET (Peñuelas et al., 2011; Van Der Sleen et al.,
2015). But the effects of present and future carbon fertil-
ization on WUE remain highly uncertain (Guerrieri et al.,
2019), and a recent study of herbarium samples from Con-
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golese evergreen forest trees found that while stomatal den-
sity has decreased from 1938 to 2013, inherent WUE has
paradoxically decreased over the same period (Bauters et al.,
2020). While the results of Bauters et al. (2020) pertain to
a much longer time period and smaller spatial extent than
our study and are thus difficult to compare here, they hint at
the complexity of photosynthetic responses to environmental
factors like VPD, CO2 fertilization, temperature, and water
availability and suggest that Congolese forests may feature
unique ecophysiological functions that warrant further study.
Ultimately, even if ET did not show any statistically signif-
icant trends during our 2002–2016 study period as a result
of CO2 fertilization, future ET rates could nevertheless start
to change if the compensation between decreasing radiation
quality and rising VPD on the one hand and increasing CO2
on the other hand become imbalanced or if long-term de-
clines in precipitation continue.

4.5 Opportunities for further study

This study demonstrates the value in combining in situ ob-
servations with remote sensing in data-sparse regions like the
Congo Basin. However, there are clear limitations to the wa-
ter balance approach employed here that suggest several op-
portunities for further study of the region. For instance, ap-
plying the inverted-water-balance model at the basin scale
masks differences in the magnitude and variability of ET
across the diverse regions of the Congo Basin, but the avail-
ability of river discharge data from tributaries of the Congo
River could allow for modeling of ET at the subbasin scale
(Alsdorf et al., 2016). Similarly, the monthly temporal res-
olution of the GRACE data prevents examination of diurnal
and submonthly variations in ET. While GRACE data also
represent a relatively short time span, the GRACE Follow-
On (GRACE-FO) mission promises to extend the global
S dataset well into the future. Ultimately, improved in situ
observations of hydrologic and climatic fluxes are necessary
to understand the ecohydrology of central Africa in greater
detail and at finer scales – eddy covariance towers, weather
stations, and long-term phenological surveys would all be of
great benefit to the growing field of research on the Congo
Basin.

5 Conclusions

This study leverages several remotely sensed and gauge-
based precipitation datasets, river gauge data, and terrestrial-
water-storage anomalies from GRACE to produce ET esti-
mates for the Congo Basin in central Africa at the monthly
timescale. This technique has been successfully applied to
the Amazon Basin in recent years, but to the authors’ knowl-
edge it has not yet been used in the Congo Basin except as
part of global-scale reviews of major river basins. The Congo
Basin is greatly understudied despite its importance as one

of the world’s largest river basins and one of three major
humid tropical forest regions, and quantification of basin-
wide ET and its variability is imperative for understanding
the basin’s climatic influence as well as its susceptibility to
environmental disturbances. We find annual ETwb to equal
117.2±3.5 cm yr−1, on average, from 2003 to 2015 – well in
line with many historical estimates of basin-wide ET.

Triple collocation was applied to determine the accuracy
of P products over the sparsely gauged Congo Basin, find-
ing that the recently developed NIC131-gridded dataset is the
most accurate over our study period (RMSE of 0.65 cm per
month). NIC131-gridded is followed by CHIRPS2 in terms
of accuracy (RMSE of 0.93 cm per month), while three sep-
arate products that incorporate GPCC rain gauge data fea-
ture similar variability and RMSEs (1.60 to 1.67 cm per
month). RMSEs from TC were also used to create a uni-
fied PTC time series with a mean annual precipitation of
150.4± 2.6 cm yr−1. A suite of global ET products is also
evaluated versus ETwb, with FLUXCOM and GLDAS-Noah
Version 2.1 displaying the closest agreement with the vari-
ability of ETwb from 2003 to 2011 and SSEBop most closely
reproducing long-term mean ET. However, all ET mod-
els underestimated the seasonal and interannual variability
of ETwb.

In good agreement with existing literature, rainfall appears
to exert a primary control on ET, but other environmental
drivers appear to modulate ET and cause unexpected sea-
sonal features, such as the MAM peak in ET recently ex-
plored by Crowhurst et al. (2020). Several possible causes
for this MAM ET peak were investigated, but neither VPD,
temperature, phenology, nor leaf age seasonalities could ex-
plain this MAM peak. Instead, the amount and quality of ra-
diative energy and the availability of water in the terrestrial
system appear to offer the most plausible explanations for the
seasonal imbalance in peak ETwb – higher diffuse PAR frac-
tions and lower Rn during SON allow for higher WUE, while
depleted terrestrial water stores limit the amount of water
available for transpiration. On interannual timescales, VPD,
Rn, and both direct and diffuse PAR increased from 2002
to 2016, while no trend was detectable in EVI and ETwb,
implying the rising concentration of atmospheric CO2 may
have compensated for the increasingly dry conditions facing
the Congo Basin’s forests. However, these effects may not
remain balanced in a future of higher CO2 levels, increased
VPD and temperatures, and spreading deforestation within
the basin.

Data availability. We provide our monthly basin-wide P ,
ETwb, dS/dt , discharge, and other data online at
https://doi.org/10.17605/OSF.IO/JPVMB (Burnett et al., 2020).
Most of the original data products used in this study are freely
available to the public: the HydroSHEDS basin boundary shapefile
can be retrieved from https://hydrosheds.org/page/hydrobasins (last
access: 15 January 2018) (Lehner and Grill, 2013). PERSIANN-

https://doi.org/10.5194/hess-24-4189-2020 Hydrol. Earth Syst. Sci., 24, 4189–4211, 2020

https://doi.org/10.17605/OSF.IO/JPVMB
https://hydrosheds.org/page/hydrobasins


4204 M. W. Burnett et al.: Data-driven estimates of evapotranspiration and its controls in the Congo Basin

CDR data were accessed at https://doi.org/10.7289/V51V5BWQ
(Sorooshian et al., 2014), and CHIRPS2 data were downloaded
from https://www.chc.ucsb.edu/data (last access: 25 July 2018)
(Funk et al., 2015b). The GPCC dataset was accessed at
https://doi.org/10.5676/DWD_GPCC/FD_M_V7_250 (Schnei-
der et al., 2015). GRACE data were retrieved from NASA’s
Physical Oceanography DAAC at https://doi.org/10.5067/TELND-
NC005 (Swenson, 2012), and Congo River discharge data were
downloaded from HYBAM at http://www.ore-hybam.org (last
access: 15 January 2018) (SO-HYBAM, 2015). FLUXNET-
MTE and FLUXCOM were made available by the Max Planck
Institute for Biogeochemistry; FLUXCOM may be accessed
at http://fluxcom.org (last access: 5 March 2019) (Jung et al.,
2018). GLEAM data were accessed at http://gleam.eu (last
access: 2 July 2020) (Martens et al., 2019). SSEBop can be
found at https://earlywarning.usgs.gov/fews/product/460 (last
access: 2 July 2020) (Senay et al., 2017). TRMM, MERRA2,
and GLDAS-Noah data were provided by NASA GES DISC at
https://disc.gsfc.nasa.gov/ (last access: 4 February 2018) (Huffman
et al., 2007b; Gelaro et al., 2017b; Rodell et al., 2004c). CERES data
were downloaded from https://ceres.larc.nasa.gov/order_data.php
(last access: 25 Juy 2018) (Loeb, 2017; Doelling, 2017).
ERA-Interim data were retrieved from the ECMWF at
https://www.ecmwf.int/en/forecasts/datasets (last access:
19 March 2019) (Dee et al., 2011b). MOD16A2 and
MCD12C1 data were downloaded from the USGS website at
https://lpdaac.usgs.gov/products/mod16a2v006/ (Running et
al., 2017) and https://lpdaac.usgs.gov/products/mcd12c1v006/
(last access: 7 May 2019) (Friedl and Sulla-Menashe, 2015),
respectively, and AIRS data were downloaded from NASA’s
Giovanni web interface at https://giovanni.gsfc.nasa.gov/giovanni/
(last access: 21 August 2019) (Acker and Leptoukh,
2007). ASOS and MIDAS weather data were sourced
from the UK Met Office’s CEDA website at http:
//catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
(last access: 19 March 2019) (Met Office, 2012) and from
Iowa State University’s Iowa Environmental Mesonet site
at https://mesonet.agron.iastate.edu/ASOS/ (last access:
19 March 2019) (Arritt and Herzmann, 2001).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/hess-24-4189-2020-supplement.
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