Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3583-2020
https://doi.org/10.5194/hess-24-3583-2020
Research article
 | 
16 Jul 2020
Research article |  | 16 Jul 2020

Irrigation return flow causing a nitrate hotspot and denitrification imprints in groundwater at Tinwald, New Zealand

Michael Kilgour Stewart and Philippa Lauren Aitchison-Earl

Related authors

Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Comment on “A comparison of catchment travel times and storage deduced from deuterium and tritium tracers using StorAge Selection functions” by Rodriguez et al. (2021)
Michael Kilgour Stewart, Uwe Morgenstern, and Ian Cartwright
Hydrol. Earth Syst. Sci., 25, 6333–6338, https://doi.org/10.5194/hess-25-6333-2021,https://doi.org/10.5194/hess-25-6333-2021, 2021
Short summary
Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems
Michael K. Stewart, Uwe Morgenstern, Maksym A. Gusyev, and Piotr Małoszewski
Hydrol. Earth Syst. Sci., 21, 4615–4627, https://doi.org/10.5194/hess-21-4615-2017,https://doi.org/10.5194/hess-21-4615-2017, 2017
Short summary
Application of tritium in precipitation and baseflow in Japan: a case study of groundwater transit times and storage in Hokkaido watersheds
Maksym A. Gusyev, Uwe Morgenstern, Michael K. Stewart, Yusuke Yamazaki, Kazuhisa Kashiwaya, Terumasa Nishihara, Daisuke Kuribayashi, Hisaya Sawano, and Yoichi Iwami
Hydrol. Earth Syst. Sci., 20, 3043–3058, https://doi.org/10.5194/hess-20-3043-2016,https://doi.org/10.5194/hess-20-3043-2016, 2016
Short summary
Time series of tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream
C. Duvert, M. K. Stewart, D. I. Cendón, and M. Raiber
Hydrol. Earth Syst. Sci., 20, 257–277, https://doi.org/10.5194/hess-20-257-2016,https://doi.org/10.5194/hess-20-257-2016, 2016
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024,https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024,https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Impact of reservoir evaporation on future water availability in north-eastern Brazil: a multi-scenario assessment
Gláuber Pontes Rodrigues, Arlena Brosinsky, Ítalo Sampaio Rodrigues, George Leite Mamede, and José Carlos de Araújo
Hydrol. Earth Syst. Sci., 28, 3243–3260, https://doi.org/10.5194/hess-28-3243-2024,https://doi.org/10.5194/hess-28-3243-2024, 2024
Short summary
How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model
Anjana Ekka, Yong Jiang, Saket Pande, and Pieter van der Zaag
Hydrol. Earth Syst. Sci., 28, 3219–3241, https://doi.org/10.5194/hess-28-3219-2024,https://doi.org/10.5194/hess-28-3219-2024, 2024
Short summary
Leveraging a novel hybrid ensemble and optimal interpolation approach for enhanced streamflow and flood prediction
Mohamad El Gharamti, Arezoo Rafieeinasab, and James L. McCreight
Hydrol. Earth Syst. Sci., 28, 3133–3159, https://doi.org/10.5194/hess-28-3133-2024,https://doi.org/10.5194/hess-28-3133-2024, 2024
Short summary

Cited articles

Agribase: Assure Quality, s.l. : s.n., available at: https://www.asurequality.com/services/agribase (last access: 14 July 2020), 2016. 
Aitchison-Earl, P.: Springs of the Ashburton Catchment, Environment Canterbury Technical Report U04/79, Environment, Canterbury, 2000. 
Aitchison-Earl, P.: Sources of nitrate in groundwater in the Tinwald, Ashburton area, Environment Canterbury Report No. R19/85, available at: https://api.ecan.govt.nz/TrimPublicAPI/documents/download/3664244 (last access: 13 July 2020), 2019. 
Aravena, R. and Robertson, W.: Use of multiple isotope traces to evaluate denitrification in groundwater: study of nitrate from a large-flux septic system plume, Groundwater, 36, 975–982, 1998. 
Barrell, D., Forsyth, P., and McSaveney, M.: Quaternary geology of the Rangitata Fan, Canterbury Plains, New Zealand, Institute of Geological and Nuclear Sciences Report 96/23, Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand, 1996. 
Download
Short summary
This paper is important for water resource management, being concerned with irrigation return flow causing hotspots in nitrate concentrations in groundwater and denitrification imprints where nitrate concentrations are reduced by denitrification although the dissolved oxygen concentration is not low. The work is highly significant for modelling of nitrate transport through soil–groundwater systems, for understanding denitrification processes, and for managing fertilizer application to land.