Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2817-2020
https://doi.org/10.5194/hess-24-2817-2020
Research article
 | 
29 May 2020
Research article |  | 29 May 2020

Emerging climate signals in the Lena River catchment: a non-parametric statistical approach

Eric Pohl, Christophe Grenier, Mathieu Vrac, and Masa Kageyama

Related authors

Central Asia's spatiotemporal glacier response ambiguity due to data inconsistencies and regional simplifications
Martina Barandun and Eric Pohl
The Cryosphere, 17, 1343–1371, https://doi.org/10.5194/tc-17-1343-2023,https://doi.org/10.5194/tc-17-1343-2023, 2023
Short summary
Denudation rates across the Pamir based on 10Be concentrations in fluvial sediments: dominance of topographic over climatic factors
M. C. Fuchs, R. Gloaguen, S. Merchel, E. Pohl, V. A. Sulaymonova, C. Andermann, and G. Rugel
Earth Surf. Dynam., 3, 423–439, https://doi.org/10.5194/esurf-3-423-2015,https://doi.org/10.5194/esurf-3-423-2015, 2015
Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains
E. Pohl, M. Knoche, R. Gloaguen, C. Andermann, and P. Krause
Earth Surf. Dynam., 3, 333–362, https://doi.org/10.5194/esurf-3-333-2015,https://doi.org/10.5194/esurf-3-333-2015, 2015
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Mathematical applications
The role of atmospheric rivers in the distribution of heavy precipitation events over North America
Sara M. Vallejo-Bernal, Frederik Wolf, Niklas Boers, Dominik Traxl, Norbert Marwan, and Jürgen Kurths
Hydrol. Earth Syst. Sci., 27, 2645–2660, https://doi.org/10.5194/hess-27-2645-2023,https://doi.org/10.5194/hess-27-2645-2023, 2023
Short summary
Study on a mother wavelet optimization framework based on change-point detection of hydrological time series
Jiqing Li, Jing Huang, Lei Zheng, and Wei Zheng
Hydrol. Earth Syst. Sci., 27, 2325–2339, https://doi.org/10.5194/hess-27-2325-2023,https://doi.org/10.5194/hess-27-2325-2023, 2023
Short summary
Projected changes in droughts and extreme droughts in Great Britain strongly influenced by the choice of drought index
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023,https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Atmospheric water transport connectivity within and between ocean basins and land
Dipanjan Dey, Aitor Aldama Campino, and Kristofer Döös
Hydrol. Earth Syst. Sci., 27, 481–493, https://doi.org/10.5194/hess-27-481-2023,https://doi.org/10.5194/hess-27-481-2023, 2023
Short summary
Technical Note: Space–time statistical quality control of extreme precipitation observations
Abbas El Hachem, Jochen Seidel, Florian Imbery, Thomas Junghänel, and András Bárdossy
Hydrol. Earth Syst. Sci., 26, 6137–6146, https://doi.org/10.5194/hess-26-6137-2022,https://doi.org/10.5194/hess-26-6137-2022, 2022
Short summary

Cited articles

Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke, C., Schirrmeister, L., Pfeiffer, E.-M., and Kutzbach, L.: Permafrost Thaw and Liberation of Inorganic Nitrogen in Eastern Siberia, Permafrost Periglac. Process., 28, 605–618, https://doi.org/10.1002/ppp.1958, 2017. 
Benestad, R. E.: A comparison between two empirical downscaling strategies, Int. J. Climatol., 21, 1645–1668, https://doi.org/10.1002/joc.703, 2001. 
Benestad, R. E., Mezghani, A., and Parding, K. M.: esd V1.0, Zenodo, https://doi.org/10.5281/zenodo.29385, 2015. 
Bianchi, M.: Bandwidth Selection in Density Estimation, in: XploRe: An Interactive Statistical Computing Environment, Springer New York, NY, 101–112, 1995. 
Boike, J., Grau, T., Heim, B., Günther, F., Langer, M., Muster, S., Gouttevin, I., and Lange, S.: Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: Wetting, drying, and fires, Global Planet. Change, 139, 116–127, https://doi.org/10.1016/j.gloplacha.2016.01.001, 2016. 
Download
Short summary
Existing approaches to quantify the emergence of climate change require several user choices that make these approaches less objective. We present an approach that uses a minimum number of choices and showcase its application in the extremely sensitive, permafrost-dominated region of eastern Siberia. Designed as a Python toolbox, it allows for incorporating climate model, reanalysis, and in situ data to make use of numerous existing data sources and reduce uncertainties in obtained estimates.