Articles | Volume 24, issue 4
https://doi.org/10.5194/hess-24-1985-2020
https://doi.org/10.5194/hess-24-1985-2020
Research article
 | 
22 Apr 2020
Research article |  | 22 Apr 2020

Catchment-scale drought: capturing the whole drought cycle using multiple indicators

Abraham J. Gibson, Danielle C. Verdon-Kidd, Greg R. Hancock, and Garry Willgoose

Related authors

A coupled soilscape–landform evolution model: model formulation and initial results
W. D. Dimuth P. Welivitiya, Garry R. Willgoose, and Greg R. Hancock
Earth Surf. Dynam., 7, 591–607, https://doi.org/10.5194/esurf-7-591-2019,https://doi.org/10.5194/esurf-7-591-2019, 2019
Short summary
Using paleoclimate reconstructions to analyse hydrological epochs associated with Pacific decadal variability
Lanying Zhang, George Kuczera, Anthony S. Kiem, and Garry Willgoose
Hydrol. Earth Syst. Sci., 22, 6399–6414, https://doi.org/10.5194/hess-22-6399-2018,https://doi.org/10.5194/hess-22-6399-2018, 2018
Short summary
Global sensitivity analysis of parameter uncertainty in landscape evolution models
Christopher J. Skinner, Tom J. Coulthard, Wolfgang Schwanghart, Marco J. Van De Wiel, and Greg Hancock
Geosci. Model Dev., 11, 4873–4888, https://doi.org/10.5194/gmd-11-4873-2018,https://doi.org/10.5194/gmd-11-4873-2018, 2018
Short summary
Development and evaluation of a stochastic daily rainfall model with long-term variability
A. F. M. Kamal Chowdhury, Natalie Lockart, Garry Willgoose, George Kuczera, Anthony S. Kiem, and Nadeeka Parana Manage
Hydrol. Earth Syst. Sci., 21, 6541–6558, https://doi.org/10.5194/hess-21-6541-2017,https://doi.org/10.5194/hess-21-6541-2017, 2017
Short summary
Soilscape evolution of aeolian-dominated hillslopes during the Holocene: investigation of sediment transport mechanisms and climatic–anthropogenic drivers
Sagy Cohen, Tal Svoray, Shai Sela, Greg Hancock, and Garry Willgoose
Earth Surf. Dynam., 5, 101–112, https://doi.org/10.5194/esurf-5-101-2017,https://doi.org/10.5194/esurf-5-101-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Instruments and observation techniques
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method
Rui Li, Guofeng Zhu, Siyu Lu, Liyuan Sang, Gaojia Meng, Longhu Chen, Yinying Jiao, and Qinqin Wang
Hydrol. Earth Syst. Sci., 27, 4437–4452, https://doi.org/10.5194/hess-27-4437-2023,https://doi.org/10.5194/hess-27-4437-2023, 2023
Short summary
Isotopic variations in surface waters and groundwaters of an extremely arid basin and their responses to climate change
Yu Zhang, Hongbing Tan, Peixin Cong, Dongping Shi, Wenbo Rao, and Xiying Zhang
Hydrol. Earth Syst. Sci., 27, 4019–4038, https://doi.org/10.5194/hess-27-4019-2023,https://doi.org/10.5194/hess-27-4019-2023, 2023
Short summary
Seasonal variation and influence factors of river water isotopes in the East Asian monsoon region: a case study in the Xiangjiang River basin spanning 13 hydrological years
Xiong Xiao, Xinping Zhang, Zhuoyong Xiao, Zhiguo Rao, Xinguang He, and Cicheng Zhang
Hydrol. Earth Syst. Sci., 27, 3783–3802, https://doi.org/10.5194/hess-27-3783-2023,https://doi.org/10.5194/hess-27-3783-2023, 2023
Short summary
El Niño–Southern Oscillation (ENSO)-driven hypersedimentation in the Poechos Reservoir, northern Peru
Anthony Foucher, Sergio Morera, Michael Sanchez, Jhon Orrillo, and Olivier Evrard
Hydrol. Earth Syst. Sci., 27, 3191–3204, https://doi.org/10.5194/hess-27-3191-2023,https://doi.org/10.5194/hess-27-3191-2023, 2023
Short summary

Cited articles

AVHRR – Advanced Very High Resolution Radiometer: AVHRR Normalized Difference Vegetation Index (NDVI) Composites Digital Object Identifier, https://doi.org/10.5066/F7707ZKN, 2020. 
BBC: Cape Town drought: South African city may avoid `day zero', available at: https://www.bbc.com/news/world-africa-43321093, last access: 23 April 2018. 
Below, R., Grover-Kopec, E., and Dilley, M.: Documenting drought-related disasters: a global reassessment, J. Environ. Dev., 16, 328–344, https://doi.org/10.1177/1070496507306222, 2007. 
Botterill, L. C.: Uncertain Climate: The Recent History of Drought Policy in Australia, Aust. J. Polit. Hist., 49, 61–74, https://doi.org/10.1111/1467-8497.00281, 2003. 
Botterill, L. C. and Cockfield, G. (Eds.): Drought, Risk management, and policy: Decision-making under uncertainty. Drought and water crises, CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA, 33487–2742, 2013. 
Download
Short summary
To be better prepared for drought, we need to be able to characterize how they begin, translate to on-ground impacts and how they end. We created a 100-year drought record for an area on the east coast of Australia and compared this with soil moisture and vegetation data. Drought reduces vegetation and soil moisture, but recovery rates are different across different catchments. Our methods can be universally applied and show the need to develop area-specific data to inform drought management.