Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1227-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-1227-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model
Fredy and Nadine Herrmann Institute of Earth Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
Francesco Marra
Fredy and Nadine Herrmann Institute of Earth Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
National Research Council of Italy, Institute of Atmospheric Sciences and Climate, CNR-ISAC, Bologna 40129, Italy
Yehouda Enzel
Fredy and Nadine Herrmann Institute of Earth Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
Dorita Rostkier-Edelstein
Fredy and Nadine Herrmann Institute of Earth Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
Department of Applied Mathematics, Environmental Sciences Division, IIBR, Ness-Ziona 7410001, Israel
Efrat Morin
Fredy and Nadine Herrmann Institute of Earth Sciences, the Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
Related authors
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Joëlle C. Rieder, Franziska Aemisegger, Elad Dente, and Moshe Armon
EGUsphere, https://doi.org/10.5194/egusphere-2024-539, https://doi.org/10.5194/egusphere-2024-539, 2024
Short summary
Short summary
The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help in assessing future water availability.
Haggai Eyal, Moshe Armon, Yehouda Enzel, and Nadav G. Lensky
Earth Surf. Dynam., 11, 547–574, https://doi.org/10.5194/esurf-11-547-2023, https://doi.org/10.5194/esurf-11-547-2023, 2023
Short summary
Short summary
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth sciences. We study a chain of processes connecting causative Mediterranean cyclones, coeval floods, storm waves generated by mesoscale funneled wind, and coastal gravel transport. This causes northward dispersion of gravel along the modern Dead Sea coast, which has also persisted since the late Pleistocene, resulting in beach berms and fan deltas always being deposited north of channel mouths.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
Kevin Kenfack, Francesco Marra, Zéphirin Yepdo Djomou, Lucie Angennes Djiotang Tchotchou, Alain Tchio Tamoffo, and Derbetini Appolinaire Vondou
Weather Clim. Dynam., 5, 1457–1472, https://doi.org/10.5194/wcd-5-1457-2024, https://doi.org/10.5194/wcd-5-1457-2024, 2024
Short summary
Short summary
The results of this study show that moisture advection induced by horizontal wind anomalies and vertical moisture advection induced by vertical velocity anomalies were crucial mechanisms behind the anomalous October 2019 exceptional rainfall increase over western central Africa. The information we derive can be used to support risk assessment and management in the region and to improve our resilience to ongoing climate change.
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024, https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Short summary
Knowledge of extreme precipitation probability at various spatial–temporal scales is crucial. We estimate extreme precipitation return levels at multiple scales (10 min–24 h, 0.25–500 km2) in the eastern Mediterranean using radar data. We show our estimates are comparable to those derived from averaged daily rain gauges. We then explore multi-scale extreme precipitation across coastal, mountainous, and desert regions.
Rajani Kumar Pradhan, Yannis Markonis, Francesco Marra, Efthymios I. Nikolopoulos, Simon Michael Papalexiou, and Vincenzo Levizzani
EGUsphere, https://doi.org/10.5194/egusphere-2024-1626, https://doi.org/10.5194/egusphere-2024-1626, 2024
Short summary
Short summary
This study compared global satellite and one reanalysis precipitation dataset to assess diurnal variability. We found that all datasets capture key diurnal precipitation patterns, with maximum precipitation in the afternoon over land and early morning over the ocean. However, there are differences in the exact timing and amount of precipitation. This suggests that it is better to use a combination of datasets for potential applications rather than relying on a single dataset.
Ellina Agayar, Franziska Aemisegger, Moshe Armon, Alexander Scherrmann, and Heini Wernli
Nat. Hazards Earth Syst. Sci., 24, 2441–2459, https://doi.org/10.5194/nhess-24-2441-2024, https://doi.org/10.5194/nhess-24-2441-2024, 2024
Short summary
Short summary
This study presents the results of a climatological investigation of extreme precipitation events (EPEs) in Ukraine for the period 1979–2019. During all seasons EPEs are associated with pronounced upper-level potential vorticity (PV) anomalies. In addition, we find distinct seasonal and regional differences in moisture sources. Several extreme precipitation cases demonstrate the importance of these processes, complemented by a detailed synoptic analysis.
Shai Abir, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky
Atmos. Chem. Phys., 24, 6177–6195, https://doi.org/10.5194/acp-24-6177-2024, https://doi.org/10.5194/acp-24-6177-2024, 2024
Short summary
Short summary
Understanding air–sea heat exchange is vital for studying ocean dynamics. Eddy covariance measurements over the Gulf of Eilat revealed a 3.22 m yr-1 evaporation rate, which is inconsistent with bulk formulae estimations in stable atmospheric conditions, requiring bulk formulae to be revisited in these environments. The surface fluxes have a net cooling effect on the gulf water on an annual mean (-79 W m-2), balanced by a strong exchange flux between the Red Sea and the Gulf of Eilat.
Joëlle C. Rieder, Franziska Aemisegger, Elad Dente, and Moshe Armon
EGUsphere, https://doi.org/10.5194/egusphere-2024-539, https://doi.org/10.5194/egusphere-2024-539, 2024
Short summary
Short summary
The Sahara was wetter in the past and may become wetter in the future. Lake remnants are evidence of the desert’s wetter past. If the Sahara gets wetter in the future, these lakes may serve as a water resource. However, it is unclear how these lakes get filled and how moisture is carried into the desert and converted into rain in the first place. Therefore, we examine processes currently leading to the filling of a dry lake in the Sahara, which can help in assessing future water availability.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Haggai Eyal, Moshe Armon, Yehouda Enzel, and Nadav G. Lensky
Earth Surf. Dynam., 11, 547–574, https://doi.org/10.5194/esurf-11-547-2023, https://doi.org/10.5194/esurf-11-547-2023, 2023
Short summary
Short summary
Extracting paleoenvironmets from sedimentologic and geomorphic records is a main goal in Earth sciences. We study a chain of processes connecting causative Mediterranean cyclones, coeval floods, storm waves generated by mesoscale funneled wind, and coastal gravel transport. This causes northward dispersion of gravel along the modern Dead Sea coast, which has also persisted since the late Pleistocene, resulting in beach berms and fan deltas always being deposited north of channel mouths.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Nadav Peleg, Herminia Torelló-Sentelles, Grégoire Mariéthoz, Lionel Benoit, João P. Leitão, and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1233–1240, https://doi.org/10.5194/nhess-23-1233-2023, https://doi.org/10.5194/nhess-23-1233-2023, 2023
Short summary
Short summary
Floods in urban areas are one of the most common natural hazards. Due to climate change enhancing extreme rainfall and cities becoming larger and denser, the impacts of these events are expected to increase. A fast and reliable flood warning system should thus be implemented in flood-prone cities to warn the public of upcoming floods. The purpose of this brief communication is to discuss the potential implementation of low-cost acoustic rainfall sensors in short-term flood warning systems.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Shalev Siman-Tov and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1079–1093, https://doi.org/10.5194/nhess-23-1079-2023, https://doi.org/10.5194/nhess-23-1079-2023, 2023
Short summary
Short summary
Debris flows represent a threat to infrastructure and the population. In arid areas, they are observed when heavy rainfall hits steep slopes with sediments. Here, we use digital surface models and radar rainfall data to detect and characterize the triggering and non-triggering rainfall conditions. We find that rainfall intensity alone is insufficient to explain the triggering. We suggest that antecedent rainfall could represent a critical factor for debris flow triggering in arid regions.
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022, https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Short summary
Early flood warnings are one of the most effective tools to save lives and goods. Machine learning (ML) models can improve flood prediction accuracy but their use in operational frameworks is limited. The paper presents a flood warning system, operational in India and Bangladesh, that uses ML models for forecasting river stage and flood inundation maps and discusses the models' performances. In 2021, more than 100 million flood alerts were sent to people near rivers over an area of 470 000 km2.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Yoav Ben Dor, Francesco Marra, Moshe Armon, Yehouda Enzel, Achim Brauer, Markus Julius Schwab, and Efrat Morin
Clim. Past, 17, 2653–2677, https://doi.org/10.5194/cp-17-2653-2021, https://doi.org/10.5194/cp-17-2653-2021, 2021
Short summary
Short summary
Laminated sediments from the deepest part of the Dead Sea unravel the hydrological response of the eastern Mediterranean to past climate changes. This study demonstrates the importance of geological archives in complementing modern hydrological measurements that do not fully capture natural hydroclimatic variability, which is crucial to configure for understanding the impact of climate change on the hydrological cycle in subtropical regions.
Yair Rinat, Francesco Marra, Moshe Armon, Asher Metzger, Yoav Levi, Pavel Khain, Elyakom Vadislavsky, Marcelo Rosensaft, and Efrat Morin
Nat. Hazards Earth Syst. Sci., 21, 917–939, https://doi.org/10.5194/nhess-21-917-2021, https://doi.org/10.5194/nhess-21-917-2021, 2021
Short summary
Short summary
Flash floods are among the most devastating and lethal natural hazards worldwide. The study of such events is important as flash floods are poorly understood and documented processes, especially in deserts. A small portion of the studied basin (1 %–20 %) experienced extreme rainfall intensities resulting in local flash floods of high magnitudes. Flash floods started and reached their peak within tens of minutes. Forecasts poorly predicted the flash floods mostly due to location inaccuracy.
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
William Amponsah, Pierre-Alain Ayral, Brice Boudevillain, Christophe Bouvier, Isabelle Braud, Pascal Brunet, Guy Delrieu, Jean-François Didon-Lescot, Eric Gaume, Laurent Lebouc, Lorenzo Marchi, Francesco Marra, Efrat Morin, Guillaume Nord, Olivier Payrastre, Davide Zoccatelli, and Marco Borga
Earth Syst. Sci. Data, 10, 1783–1794, https://doi.org/10.5194/essd-10-1783-2018, https://doi.org/10.5194/essd-10-1783-2018, 2018
Short summary
Short summary
The EuroMedeFF database comprises 49 events that occurred in France, Israel, Germany, Slovenia, Romania, and Italy. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the verification of flash flood hydrological models and for hydro-meteorological forecast systems. It provides, moreover, a sample of rainfall and flood discharge extremes in different climates.
Idit Belachsen, Francesco Marra, Nadav Peleg, and Efrat Morin
Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, https://doi.org/10.5194/hess-21-5165-2017, 2017
Short summary
Short summary
Spatiotemporal rainfall patterns in arid environments are not well-known. We derived properties of convective rain cells over the arid Dead Sea region from a long-term radar archive. We found differences in cell properties between synoptic systems and between flash-flood and non-flash-flood events. Large flash floods are associated with slow rain cells, directed downstream with the main catchment axis. Results from this work can be used for hydrological models and stochastic storm simulations.
Francesco Marra, Elisa Destro, Efthymios I. Nikolopoulos, Davide Zoccatelli, Jean Dominique Creutin, Fausto Guzzetti, and Marco Borga
Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, https://doi.org/10.5194/hess-21-4525-2017, 2017
Short summary
Short summary
Previous studies have reported a systematic underestimation of debris flow occurrence thresholds, due to the use of sparse networks in non-stationary rain fields. We analysed high-resolution radar data to show that spatially aggregated estimates (e.g. satellite data) largely reduce this issue, in light of a reduced estimation variance. Our findings are transferable to other situations in which lower envelope curves are used to predict point-like events in the presence of non-stationary fields.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
I. Neugebauer, M. J. Schwab, N. D. Waldmann, R. Tjallingii, U. Frank, E. Hadzhiivanova, R. Naumann, N. Taha, A. Agnon, Y. Enzel, and A. Brauer
Clim. Past, 12, 75–90, https://doi.org/10.5194/cp-12-75-2016, https://doi.org/10.5194/cp-12-75-2016, 2016
Short summary
Short summary
Micro-facies changes and elemental variations in deep Dead Sea sediments are used to reconstruct relative lake level changes for the early last glacial period. The results indicate a close link of hydroclimatic variability in the Levant to North Atlantic-Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields. First petrographic analyses of gravels in the deep core question the recent hypothesis of a Dead Sea dry-down at the end of the last interglacial.
N. Peleg, E. Shamir, K. P. Georgakakos, and E. Morin
Hydrol. Earth Syst. Sci., 19, 567–581, https://doi.org/10.5194/hess-19-567-2015, https://doi.org/10.5194/hess-19-567-2015, 2015
N. Peleg, M. Ben-Asher, and E. Morin
Hydrol. Earth Syst. Sci., 17, 2195–2208, https://doi.org/10.5194/hess-17-2195-2013, https://doi.org/10.5194/hess-17-2195-2013, 2013
E. Shamir, L. Ben-Moshe, A. Ronen, T. Grodek, Y. Enzel, K. P. Georgakakos, and E. Morin
Hydrol. Earth Syst. Sci., 17, 1021–1034, https://doi.org/10.5194/hess-17-1021-2013, https://doi.org/10.5194/hess-17-1021-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Technical note: A guide to using three open-source quality control algorithms for rainfall data from personal weather stations
Technical note: Investigating the potential for smartphone-based monitoring of evapotranspiration and land surface energy-balance partitioning
Exploring patterns in precipitation intensity–duration–area–frequency relationships using weather radar data
Technical Note: A simple feedforward artificial neural network for high temporal resolution classification of wet and dry periods using signal attenuation from commercial microwave links
An intercomparison of four gridded precipitation products over Europe using the three-cornered-hat method
Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates
Statistical characteristics of raindrop size distribution during rainy seasons in complicated mountain terrain
Evaluation of precipitation measurement methods using data from a precision lysimeter network
Quantitative rainfall analysis of the 2021 mid-July flood event in Belgium
Multi-scale temporal analysis of evaporation on a saline lake in the Atacama Desert
Coastal and orographic effects on extreme precipitation revealed by weather radar observations
Unshielded precipitation gauge collection efficiency with wind speed and hydrometeor fall velocity
Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria
Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific
Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland
Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe
Evaluation of the WMO Solid Precipitation Intercomparison Experiment (SPICE) transfer functions for adjusting the wind bias in solid precipitation measurements
Rainfall estimation from a German-wide commercial microwave link network: optimized processing and validation for 1 year of data
Effect of disdrometer type on rain drop size distribution characterisation: a new dataset for south-eastern Australia
Quantitative precipitation estimation with weather radar using a data- and information-based approach
Continuous, near-real-time observations of water stable isotope ratios during rainfall and throughfall events
Rain erosivity map for Germany derived from contiguous radar rain data
Citizen science flow – an assessment of simple streamflow measurement methods
Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS
Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall
The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset
Precipitation characteristics and associated weather conditions on the eastern slopes of the Canadian Rockies during March–April 2015
Dendrohydrology and water resources management in south-central Chile: lessons from the Río Imperial streamflow reconstruction
Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers
Obtaining sub-daily new snow density from automated measurements in high mountain regions
Deriving surface soil moisture from reflected GNSS signal observations from a grassland site in southwestern France
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements
Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria
The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation
Measuring precipitation with a geolysimeter
Convective rainfall in a dry climate: relations with synoptic systems and flash-flood generation in the Dead Sea region
Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop
Water-use dynamics of an alien-invaded riparian forest within the Mediterranean climate zone of the Western Cape, South Africa
Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds
Area-averaged evapotranspiration over a heterogeneous land surface: aggregation of multi-point EC flux measurements with a high-resolution land-cover map and footprint analysis
Analysis of single-Alter-shielded and unshielded measurements of mixed and solid precipitation from WMO-SPICE
Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa
Rainfall and streamflow sensor network design: a review of applications, classification, and a proposed framework
The quantification and correction of wind-induced precipitation measurement errors
Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment
Areal rainfall estimation using moving cars – computer experiments including hydrological modeling
Recent changes and drivers of the atmospheric evaporative demand in the Canary Islands
A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland
Making rainfall features fun: scientific activities for teaching children aged 5–12 years
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024, https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Short summary
The understanding of spatio-temporal variability of evapotranspiration (ET) is currently limited by a lack of measurement techniques that are low cost and that can be applied anywhere at any time. Here we show that evapotranspiration can be estimated accurately using observations made by smartphone sensors, suggesting that smartphone-based ET monitoring could provide a realistic and low-cost alternative for real-time ET estimation in the field.
Talia Rosin, Francesco Marra, and Efrat Morin
Hydrol. Earth Syst. Sci., 28, 3549–3566, https://doi.org/10.5194/hess-28-3549-2024, https://doi.org/10.5194/hess-28-3549-2024, 2024
Short summary
Short summary
Knowledge of extreme precipitation probability at various spatial–temporal scales is crucial. We estimate extreme precipitation return levels at multiple scales (10 min–24 h, 0.25–500 km2) in the eastern Mediterranean using radar data. We show our estimates are comparable to those derived from averaged daily rain gauges. We then explore multi-scale extreme precipitation across coastal, mountainous, and desert regions.
Erlend Øydvin, Maximilian Graf, Christian Chwala, Mareile Astrid Wolff, Nils-Otto Kitterød, and Vegard Nilsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-647, https://doi.org/10.5194/egusphere-2024-647, 2024
Short summary
Short summary
Two simple neural networks are trained to detect rainfall events using signal loss from commercial microwave links. Whereas existing rainfall event detection methods have focused on hourly resolution reference data, this study uses weather radar and rain gauges with 5 minutes and 1 minute temporal resolution respectively. Our results show that the developed neural networks can detect rainfall events with a higher temporal precision than existing methods.
Llorenç Lledó, Thomas Haiden, and Matthieu Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2024-807, https://doi.org/10.5194/egusphere-2024-807, 2024
Short summary
Short summary
High-quality observational datasets are essential to perform forecast verification and improve weather forecast services. When it comes to verifying precipitation, a high-resolution, global-coverage and good-quality dataset is not yet available. This research analyses the strengths and shortcomings of four observational products that employ complementary measurement techniques to estimate surface precipitation. Satellites provide good spatial coverage, but other products are still more accurate.
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024, https://doi.org/10.5194/hess-28-649-2024, 2024
Short summary
Short summary
Ground-based radar precipitation products typically need adjustment with rain gauge accumulations to achieve a reasonable accuracy. Crowdsourced rain gauge networks have a much higher density than conventional ones. Here, a 1-year personal weather station (PWS) gauge dataset is obtained. After quality control, the 1 h PWS gauge accumulations are merged with pan-European radar accumulations. The potential of crowdsourcing to improve radar precipitation products in (near) real time is confirmed.
Wenqian Mao, Wenyu Zhang, and Menggang Kou
Hydrol. Earth Syst. Sci., 27, 3895–3910, https://doi.org/10.5194/hess-27-3895-2023, https://doi.org/10.5194/hess-27-3895-2023, 2023
Short summary
Short summary
Drop size distribution characteristics vary with microphysical characteristics. We choose the Qilian mountains and represent the southern and northern slopes and the interior. To investigate discrepancies, DSD characteristics and Z–R relationships are analyzed based on continuous observations in the rainy season. We obtain the finer precipitation of mountains and refine the accuracy of quantitative precipitation estimation, which would help develop cloud water resources in mountainous areas.
Tobias Schnepper, Jannis Groh, Horst H. Gerke, Barbara Reichert, and Thomas Pütz
Hydrol. Earth Syst. Sci., 27, 3265–3292, https://doi.org/10.5194/hess-27-3265-2023, https://doi.org/10.5194/hess-27-3265-2023, 2023
Short summary
Short summary
We compared hourly data from precipitation gauges with lysimeter reference data at three sites under different climatic conditions. Our results show that precipitation gauges recorded 33–96 % of the reference precipitation data for the period under consideration (2015–2018). Correction algorithms increased the registered precipitation by 9–14 %. It follows that when using point precipitation data, regardless of the precipitation measurement method used, relevant uncertainties must be considered.
Michel Journée, Edouard Goudenhoofdt, Stéphane Vannitsem, and Laurent Delobbe
Hydrol. Earth Syst. Sci., 27, 3169–3189, https://doi.org/10.5194/hess-27-3169-2023, https://doi.org/10.5194/hess-27-3169-2023, 2023
Short summary
Short summary
The exceptional flood of July 2021 in central Europe impacted Belgium severely. This study aims to characterize rainfall amounts in Belgium from 13 to 16 July 2021 based on observational data (i.e., rain gauge data and a radar-based rainfall product). The spatial and temporal distributions of rainfall during the event aredescribed. In order to document such a record-breaking event as much as possible, the rainfall data are shared with the scientific community on Zenodo for further studies.
Felipe Lobos-Roco, Oscar Hartogensis, Francisco Suárez, Ariadna Huerta-Viso, Imme Benedict, Alberto de la Fuente, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 26, 3709–3729, https://doi.org/10.5194/hess-26-3709-2022, https://doi.org/10.5194/hess-26-3709-2022, 2022
Short summary
Short summary
This research brings a multi-scale temporal analysis of evaporation in a saline lake of the Atacama Desert. Our findings reveal that evaporation is controlled differently depending on the timescale. Evaporation is controlled sub-diurnally by wind speed, regulated seasonally by radiation and modulated interannually by ENSO. Our research extends our understanding of evaporation, contributing to improving the climate change assessment and efficiency of water management in arid regions.
Francesco Marra, Moshe Armon, and Efrat Morin
Hydrol. Earth Syst. Sci., 26, 1439–1458, https://doi.org/10.5194/hess-26-1439-2022, https://doi.org/10.5194/hess-26-1439-2022, 2022
Short summary
Short summary
We present a new method for quantifying the probability of occurrence of extreme rainfall using radar data, and we use it to examine coastal and orographic effects on extremes. We identify three regimes, directly related to precipitation physical processes, which respond differently to these forcings. The methods and results are of interest for researchers and practitioners using radar for the analysis of extremes, risk managers, water resources managers, and climate change impact studies.
Jeffery Hoover, Michael E. Earle, Paul I. Joe, and Pierre E. Sullivan
Hydrol. Earth Syst. Sci., 25, 5473–5491, https://doi.org/10.5194/hess-25-5473-2021, https://doi.org/10.5194/hess-25-5473-2021, 2021
Short summary
Short summary
Transfer functions with dependence on wind speed and precipitation fall velocity are evaluated alongside transfer functions with wind speed and temperature dependence for unshielded precipitation gauges. The transfer functions with fall velocity dependence reduced the RMSE of unshielded gauge measurements relative to the functions based on wind speed and temperature, demonstrating the importance of fall velocity for precipitation gauge collection efficiency and transfer functions.
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021, https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Short summary
We assess an operational merged gauge–radar precipitation product over a period of 12 years, using gridded precipitation fields from a dense gauge network (WegenerNet) in southeastern Austria. We analyze annual data, seasonal data, and extremes using different metrics. We identify individual events using a simple threshold based on the interval between two consecutive events and evaluate the events' characteristics in both datasets.
Jayalakshmi Janapati, Balaji Kumar Seela, Pay-Liam Lin, Meng-Tze Lee, and Everette Joseph
Hydrol. Earth Syst. Sci., 25, 4025–4040, https://doi.org/10.5194/hess-25-4025-2021, https://doi.org/10.5194/hess-25-4025-2021, 2021
Short summary
Short summary
Typhoon (TY) and non-typhoon (NTY) rainy days in northern Taiwan summer seasons showed more large drops on NTY than TY rainy days. Relatively higher convective activity and drier conditions in NTY than TY lead to variations in microphysical characteristics between TY and NTY rainy days. The raindrop size distribution and kinetic energy relations assessed for TY and NTY rainfall can be useful for evaluating the radar rainfall estimation algorithms, cloud modeling, and rainfall erosivity studies.
Peter Widmoser and Dominik Michel
Hydrol. Earth Syst. Sci., 25, 1151–1163, https://doi.org/10.5194/hess-25-1151-2021, https://doi.org/10.5194/hess-25-1151-2021, 2021
Short summary
Short summary
With respect to ongoing discussions about the causes of energy imbalance, a method for closing the latent heat flux gap based on lysimeter measurements is assessed at four measurement stations over grassland in humid and semiarid climates. The applied partial closure yields excellent adjustments of eddy covariance data as compared to results found in the literature. The method also allows a distinction between systematic and random deviation of eddy covariance and lysimeter measurements.
Monica Ionita, Viorica Nagavciuc, and Bin Guan
Hydrol. Earth Syst. Sci., 24, 5125–5147, https://doi.org/10.5194/hess-24-5125-2020, https://doi.org/10.5194/hess-24-5125-2020, 2020
Short summary
Short summary
Analysis of the largest 10 floods in the lower Rhine, between 1817 and 2015, shows that all these extreme flood peaks have been preceded, up to 7 d in advance, by intense moisture transport from the tropical North Atlantic basin in the form of narrow bands also known as atmospheric rivers. The results presented in this study offer new insights regarding the importance of moisture transport as the driver of extreme flooding in the lower part of the Rhine catchment area.
Craig D. Smith, Amber Ross, John Kochendorfer, Michael E. Earle, Mareile Wolff, Samuel Buisán, Yves-Alain Roulet, and Timo Laine
Hydrol. Earth Syst. Sci., 24, 4025–4043, https://doi.org/10.5194/hess-24-4025-2020, https://doi.org/10.5194/hess-24-4025-2020, 2020
Short summary
Short summary
During the World Meteorological Organization Solid Precipitation Intercomparison Experiment (SPICE), transfer functions were developed to adjust automated gauge measurements of solid precipitation for systematic bias due to wind. The transfer functions were developed by combining data from eight sites, attempting to make them more universally applicable in a range of climates. This analysis is an assessment of the performance of those transfer functions, using data collected when SPICE ended.
Maximilian Graf, Christian Chwala, Julius Polz, and Harald Kunstmann
Hydrol. Earth Syst. Sci., 24, 2931–2950, https://doi.org/10.5194/hess-24-2931-2020, https://doi.org/10.5194/hess-24-2931-2020, 2020
Short summary
Short summary
Commercial microwave links (CMLs), which form large parts of the backhaul from the ubiquitous cellular communication networks, can be used to estimate path-integrated rainfall rates. This study presents the processing and evaluation of the largest CML data set to date, covering the whole of Germany with almost 4000 CMLs. The CML-derived rainfall information compares well to a standard precipitation data set from the German Meteorological Service, which combines radar and rain gauge data.
Adrien Guyot, Jayaram Pudashine, Alain Protat, Remko Uijlenhoet, Valentijn R. N. Pauwels, Alan Seed, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 4737–4761, https://doi.org/10.5194/hess-23-4737-2019, https://doi.org/10.5194/hess-23-4737-2019, 2019
Short summary
Short summary
We characterised for the first time the rainfall microphysics for Southern Hemisphere temperate latitudes. Co-located instruments were deployed to provide information on the sampling effect and spatio-temporal variabilities at micro scales. Substantial differences were found across the instruments, increasing with increasing values of the rain rate. Specific relations for reflectivity–rainfall are presented together with related uncertainties for drizzle and stratiform and convective rainfall.
Malte Neuper and Uwe Ehret
Hydrol. Earth Syst. Sci., 23, 3711–3733, https://doi.org/10.5194/hess-23-3711-2019, https://doi.org/10.5194/hess-23-3711-2019, 2019
Short summary
Short summary
In this study, we apply a data-driven approach to quantitatively estimate precipitation using weather radar data. The method is based on information theory concepts. It uses predictive relations expressed by empirical discrete probability distributions, which are directly derived from data rather than the standard deterministic functions.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Karl Auerswald, Franziska K. Fischer, Tanja Winterrath, and Robert Brandhuber
Hydrol. Earth Syst. Sci., 23, 1819–1832, https://doi.org/10.5194/hess-23-1819-2019, https://doi.org/10.5194/hess-23-1819-2019, 2019
Short summary
Short summary
Radar rain data enable for the first time portraying the erosivity pattern with high spatial and temporal resolution. This allowed quantification of erosivity in Germany with unprecedented detail. Compared to previous estimates, erosivity has strongly increased and its seasonal distribution has changed, presumably due to climate change. As a consequence, erosion for some crops is 4 times higher than previously estimated.
Jeffrey C. Davids, Martine M. Rutten, Anusha Pandey, Nischal Devkota, Wessel David van Oyen, Rajaram Prajapati, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 23, 1045–1065, https://doi.org/10.5194/hess-23-1045-2019, https://doi.org/10.5194/hess-23-1045-2019, 2019
Short summary
Short summary
Wise management of water resources requires data. Nevertheless, the amount of water data being collected continues to decline. We evaluated potential citizen science approaches for measuring flows of headwater streams and springs. After selecting salt dilution as the preferred approach, we partnered with Nepali students to cost-effectively measure flows and water quality with smartphones at 264 springs and streams which provide crucial water supplies to the rapidly expanding Kathmandu Valley.
Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, https://doi.org/10.5194/hess-23-207-2019, 2019
Short summary
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.
Laurent Delobbe, Arnaud Watlet, Svenja Wilfert, and Michel Van Camp
Hydrol. Earth Syst. Sci., 23, 93–105, https://doi.org/10.5194/hess-23-93-2019, https://doi.org/10.5194/hess-23-93-2019, 2019
Short summary
Short summary
In this study, we explore the use of an underground superconducting gravimeter as a new source of in situ observations for the evaluation of radar-based precipitation estimates. The comparison of radar and gravity time series over 15 years shows that short-duration intense rainfall events cause a rapid decrease in the measured gravity. Rainfall amounts can be derived from this decrease. The gravimeter allows capture of rainfall at a much larger spatial scale than a traditional rain gauge.
Camila Alvarez-Garreton, Pablo A. Mendoza, Juan Pablo Boisier, Nans Addor, Mauricio Galleguillos, Mauricio Zambrano-Bigiarini, Antonio Lara, Cristóbal Puelma, Gonzalo Cortes, Rene Garreaud, James McPhee, and Alvaro Ayala
Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, https://doi.org/10.5194/hess-22-5817-2018, 2018
Short summary
Short summary
CAMELS-CL provides a catchment dataset in Chile, including 516 catchment boundaries, hydro-meteorological time series, and 70 catchment attributes quantifying catchments' climatic, hydrological, topographic, geological, land cover and anthropic intervention features. By using CAMELS-CL, we characterise hydro-climatic regional variations, assess precipitation and potential evapotranspiration uncertainties, and analyse human intervention impacts on catchment response.
Julie M. Thériault, Ida Hung, Paul Vaquer, Ronald E. Stewart, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 22, 4491–4512, https://doi.org/10.5194/hess-22-4491-2018, https://doi.org/10.5194/hess-22-4491-2018, 2018
Short summary
Short summary
Precipitation events associated with rain and snow on the eastern slopes of the Rocky Mountains, Canada, are a critical aspect of the regional water cycle. The goal is to characterize the precipitation and weather conditions in the Kananaskis Valley, Alberta, during a field experiment. Mainly dense solid precipitation reached the surface and occurred during downslope and upslope conditions. The precipitation phase has critical implications on the severity of flooding events in the area.
Alfonso Fernández, Ariel Muñoz, Álvaro González-Reyes, Isabella Aguilera-Betti, Isadora Toledo, Paulina Puchi, David Sauchyn, Sebastián Crespo, Cristian Frene, Ignacio Mundo, Mauro González, and Raffaele Vignola
Hydrol. Earth Syst. Sci., 22, 2921–2935, https://doi.org/10.5194/hess-22-2921-2018, https://doi.org/10.5194/hess-22-2921-2018, 2018
Short summary
Short summary
Short-term river discharge records hamper assessment of the severity of modern droughts in south-central Chile, making effective water management difficult. To support decision-making, we present a ~300-year tree-ring reconstruction of summer discharge for this region. Results show that since 1980, droughts have become more frequent and are related to a shift in large-scale climate. We argue that water managers should use this long-term view to better allocate water rights.
Marta Angulo-Martínez, Santiago Beguería, Borja Latorre, and María Fernández-Raga
Hydrol. Earth Syst. Sci., 22, 2811–2837, https://doi.org/10.5194/hess-22-2811-2018, https://doi.org/10.5194/hess-22-2811-2018, 2018
Short summary
Short summary
Two optical disdrometers, OTT Parsivel2 disdrometer and Thies Clima laser precipitation monitor (LPM), are compared. Analysis of 2 years of one-minute replicated data showed significant differences. Thies LPM recorded a larger number of particles than Parsivel2 and a higher proportion of small particles, resulting in higher rain rates and amounts and differences in radar reflectivity and kinetic energy. Possible causes for these differences, and their practical consequences, are discussed.
Kay Helfricht, Lea Hartl, Roland Koch, Christoph Marty, and Marc Olefs
Hydrol. Earth Syst. Sci., 22, 2655–2668, https://doi.org/10.5194/hess-22-2655-2018, https://doi.org/10.5194/hess-22-2655-2018, 2018
Short summary
Short summary
We calculated hourly new snow densities from automated measurements. This time interval reduces the influence of settling of the freshly deposited snow. We found an average new snow density of 68 kg m−3. The observed variability could not be described using different parameterizations, but a relationship to temperature is partly visible at hourly intervals. Wind speed is a crucial parameter for the inter-station variability. Our findings are relevant for snow models working on hourly timescales.
Sibo Zhang, Jean-Christophe Calvet, José Darrozes, Nicolas Roussel, Frédéric Frappart, and Gilles Bouhours
Hydrol. Earth Syst. Sci., 22, 1931–1946, https://doi.org/10.5194/hess-22-1931-2018, https://doi.org/10.5194/hess-22-1931-2018, 2018
Short summary
Short summary
Surface soil moisture was retrieved from a grassland site in southwestern France using the GNSS-IR technique. In order to efficiently limit the impact of perturbing vegetation effects, the grass growth period and the senescence period are treated separately. While the vegetation biomass effect can be corrected for, the litter water interception influences the observations and cannot be easily accounted for.
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Tilden Meyers, Samuel Buisan, Ketil Isaksen, Ragnar Brækkan, Scott Landolt, and Al Jachcik
Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, https://doi.org/10.5194/hess-22-1437-2018, 2018
Short summary
Short summary
Due to the effects of wind, precipitation gauges typically underestimate the amount of precipitation that occurs as snow. Measurements recorded during a World Meteorological Organization intercomparison of precipitation gauges were used to evaluate and improve the adjustments that are available to address this issue. Adjustments for specific types of precipitation gauges and wind shields were tested and recommended.
Bart Schilperoort, Miriam Coenders-Gerrits, Willem Luxemburg, César Jiménez Rodríguez, César Cisneros Vaca, and Hubert Savenije
Hydrol. Earth Syst. Sci., 22, 819–830, https://doi.org/10.5194/hess-22-819-2018, https://doi.org/10.5194/hess-22-819-2018, 2018
Short summary
Short summary
Using the
DTStechnology, we measured the evaporation of a forest using fibre optic cables. The cables work like long thermometers, with a measurement every 12.5 cm. We placed the cables vertically along the tower, one cable being dry, the other kept wet. By looking at the dry and wet cable temperatures over the height we are able to study heat storage and the amount of water the forest is evaporating. These results can be used to better understand the storage and heat exchange of forests.
Sungmin O, Ulrich Foelsche, Gottfried Kirchengast, Juergen Fuchsberger, Jackson Tan, and Walter A. Petersen
Hydrol. Earth Syst. Sci., 21, 6559–6572, https://doi.org/10.5194/hess-21-6559-2017, https://doi.org/10.5194/hess-21-6559-2017, 2017
Short summary
Short summary
We evaluate gridded satellite rainfall estimates, from GPM IMERG, through a direct grid-to-grid comparison with gauge data from the WegenerNet Feldbach (WEGN) network in southeastern Austria. As the WEGN data are independent of the IMERG gauge adjustment process, we could analyze the IMERG estimates across its three different runs. Our results show the effects of additional retrieval processes on the final rainfall estimates, and consequently provide IMERG accuracy information for data users.
René D. Garreaud, Camila Alvarez-Garreton, Jonathan Barichivich, Juan Pablo Boisier, Duncan Christie, Mauricio Galleguillos, Carlos LeQuesne, James McPhee, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 21, 6307–6327, https://doi.org/10.5194/hess-21-6307-2017, https://doi.org/10.5194/hess-21-6307-2017, 2017
Short summary
Short summary
This work synthesizes an interdisciplinary research on the megadrought (MD) that has afflicted central Chile since 2010. Although 1- or 2-year droughts are not infrequent in this Mediterranean-like region, the ongoing dry period stands out because of its longevity and large extent, leading to unseen hydrological effects and vegetation impacts. Understanding the nature and biophysical impacts of the MD contributes to confronting a dry, warm future regional climate scenario in subtropical regions.
Craig D. Smith, Garth van der Kamp, Lauren Arnold, and Randy Schmidt
Hydrol. Earth Syst. Sci., 21, 5263–5272, https://doi.org/10.5194/hess-21-5263-2017, https://doi.org/10.5194/hess-21-5263-2017, 2017
Short summary
Short summary
This research provides an example of how groundwater pressures measured in deep observation wells can be used as a reliable estimate, and perhaps as a reference, for event-based precipitation. Changes in loading at the surface due to the weight of precipitation are transferred to the groundwater formation and can be measured in the observation well. Correlations in precipitation measurements made with the
geolysimeterand the co-located sheltered precipitation gauge are high.
Idit Belachsen, Francesco Marra, Nadav Peleg, and Efrat Morin
Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, https://doi.org/10.5194/hess-21-5165-2017, 2017
Short summary
Short summary
Spatiotemporal rainfall patterns in arid environments are not well-known. We derived properties of convective rain cells over the arid Dead Sea region from a long-term radar archive. We found differences in cell properties between synoptic systems and between flash-flood and non-flash-flood events. Large flash floods are associated with slow rain cells, directed downstream with the main catchment axis. Results from this work can be used for hydrological models and stochastic storm simulations.
Sibo Zhang, Nicolas Roussel, Karen Boniface, Minh Cuong Ha, Frédéric Frappart, José Darrozes, Frédéric Baup, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 21, 4767–4784, https://doi.org/10.5194/hess-21-4767-2017, https://doi.org/10.5194/hess-21-4767-2017, 2017
Short summary
Short summary
GNSS SNR data were obtained from an intensively cultivated wheat field in southwestern France. The data were used to retrieve soil moisture and vegetation characteristics during the growing period of wheat. Vegetation growth broke up the constant height assumption used in soil moisture retrieval algorithms. Soil moisture could not be retrieved after wheat tillering. A new algorithm based on a wavelet analysis was implemented and used to retrieve vegetation height.
Bruce C. Scott-Shaw, Colin S. Everson, and Alistair D. Clulow
Hydrol. Earth Syst. Sci., 21, 4551–4562, https://doi.org/10.5194/hess-21-4551-2017, https://doi.org/10.5194/hess-21-4551-2017, 2017
Short summary
Short summary
In South Africa, the invasion of riparian forests by alien trees has the potential to affect the limited water resources. To justify alien clearing programs, hydrological benefits are required. Spatial upscaling of measured sapflows showed that an alien stand used 6 times more water per unit area than the indigenous stand. A gain in groundwater recharge and/or streamflow would be achieved if the alien species were removed from riparian forests and rehabilitated back to their natural state.
Francesco Marra, Elisa Destro, Efthymios I. Nikolopoulos, Davide Zoccatelli, Jean Dominique Creutin, Fausto Guzzetti, and Marco Borga
Hydrol. Earth Syst. Sci., 21, 4525–4532, https://doi.org/10.5194/hess-21-4525-2017, https://doi.org/10.5194/hess-21-4525-2017, 2017
Short summary
Short summary
Previous studies have reported a systematic underestimation of debris flow occurrence thresholds, due to the use of sparse networks in non-stationary rain fields. We analysed high-resolution radar data to show that spatially aggregated estimates (e.g. satellite data) largely reduce this issue, in light of a reduced estimation variance. Our findings are transferable to other situations in which lower envelope curves are used to predict point-like events in the presence of non-stationary fields.
Feinan Xu, Weizhen Wang, Jiemin Wang, Ziwei Xu, Yuan Qi, and Yueru Wu
Hydrol. Earth Syst. Sci., 21, 4037–4051, https://doi.org/10.5194/hess-21-4037-2017, https://doi.org/10.5194/hess-21-4037-2017, 2017
John Kochendorfer, Rodica Nitu, Mareile Wolff, Eva Mekis, Roy Rasmussen, Bruce Baker, Michael E. Earle, Audrey Reverdin, Kai Wong, Craig D. Smith, Daqing Yang, Yves-Alain Roulet, Samuel Buisan, Timo Laine, Gyuwon Lee, Jose Luis C. Aceituno, Javier Alastrué, Ketil Isaksen, Tilden Meyers, Ragnar Brækkan, Scott Landolt, Al Jachcik, and Antti Poikonen
Hydrol. Earth Syst. Sci., 21, 3525–3542, https://doi.org/10.5194/hess-21-3525-2017, https://doi.org/10.5194/hess-21-3525-2017, 2017
Short summary
Short summary
Precipitation measurements were combined from eight separate precipitation testbeds to create multi-site transfer functions for the correction of unshielded and single-Alter-shielded precipitation gauge measurements. Site-specific errors and more universally applicable corrections were created from these WMO-SPICE measurements. The importance and magnitude of such wind speed corrections were demonstrated.
Nobuhle P. Majozi, Chris M. Mannaerts, Abel Ramoelo, Renaud Mathieu, Alecia Nickless, and Wouter Verhoef
Hydrol. Earth Syst. Sci., 21, 3401–3415, https://doi.org/10.5194/hess-21-3401-2017, https://doi.org/10.5194/hess-21-3401-2017, 2017
Short summary
Short summary
The study analysed the quality and partitioning of a 15-year surface energy dataset from Skukuza flux tower. The yearly mean energy balance ratio (EBR) was 0.93, with the dry season having the lowest ratio. Night ratio was lower than daytime, with analysis showing an increase in EBR with increase in friction velocity, which is also linked to time of day. The energy partitioning showed that sensible heat flux is the dominant portion in the dry season, and latent heat flux during the wet season.
Juan C. Chacon-Hurtado, Leonardo Alfonso, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 21, 3071–3091, https://doi.org/10.5194/hess-21-3071-2017, https://doi.org/10.5194/hess-21-3071-2017, 2017
Short summary
Short summary
This paper compiles most of the studies (as far as the authors are aware) on the design of sensor networks for measurement of precipitation and streamflow. The literature shows that there is no overall consensus on the methods for the evaluation of sensor networks, as different design criteria often lead to different solutions. This paper proposes a methodology for the classification of methods, and a general framework for the design of sensor networks.
John Kochendorfer, Roy Rasmussen, Mareile Wolff, Bruce Baker, Mark E. Hall, Tilden Meyers, Scott Landolt, Al Jachcik, Ketil Isaksen, Ragnar Brækkan, and Ronald Leeper
Hydrol. Earth Syst. Sci., 21, 1973–1989, https://doi.org/10.5194/hess-21-1973-2017, https://doi.org/10.5194/hess-21-1973-2017, 2017
Short summary
Short summary
Snowfall measurements recorded using precipitation gauges are subject to significant underestimation due to the effects of wind. Using measurements recorded at two different precipitation test beds, corrections for unshielded gauges and gauges within different types of windshields were developed and tested. Using the new corrections, uncorrectable errors were quantified, and measurement biases were successfully eliminated.
Stephen D. Parkes, Matthew F. McCabe, Alan D. Griffiths, Lixin Wang, Scott Chambers, Ali Ershadi, Alastair G. Williams, Josiah Strauss, and Adrian Element
Hydrol. Earth Syst. Sci., 21, 533–548, https://doi.org/10.5194/hess-21-533-2017, https://doi.org/10.5194/hess-21-533-2017, 2017
Short summary
Short summary
Determining atmospheric moisture sources is required for understanding the water cycle. The role of land surface fluxes is a particular source of uncertainty for moisture budgets. Water vapour isotopes have the potential to improve constraints on moisture sources. In this work relationships between water vapour isotopes and land–atmosphere exchange are studied. Results show that land surface evaporative fluxes play a minor role in the daytime water and isotope budgets in semi-arid environments.
Ehsan Rabiei, Uwe Haberlandt, Monika Sester, Daniel Fitzner, and Markus Wallner
Hydrol. Earth Syst. Sci., 20, 3907–3922, https://doi.org/10.5194/hess-20-3907-2016, https://doi.org/10.5194/hess-20-3907-2016, 2016
Short summary
Short summary
The value of using moving cars for rainfall measurement purposes (RCs) was investigated with laboratory experiments by Rabiei et al. (2013). They analyzed the Hydreon and Xanonex optical sensors against different rainfall intensities. A continuous investigation of using RCs with the derived uncertainties from laboratory experiments for areal rainfall estimation as well as implementing the data in a hydrological model are addressed in this study.
Sergio M. Vicente-Serrano, Cesar Azorin-Molina, Arturo Sanchez-Lorenzo, Ahmed El Kenawy, Natalia Martín-Hernández, Marina Peña-Gallardo, Santiago Beguería, and Miquel Tomas-Burguera
Hydrol. Earth Syst. Sci., 20, 3393–3410, https://doi.org/10.5194/hess-20-3393-2016, https://doi.org/10.5194/hess-20-3393-2016, 2016
Short summary
Short summary
In this work we analyse the recent evolution and meteorological drivers of the atmospheric evaporative demand in the Canary Islands. We found that the reference evapotranspiration increased by 18.2 mm decade−1 – on average – between 1961 and 2013, with the highest increase recorded during summer. This increase was mainly driven by changes in the aerodynamic component, caused by a statistically significant reduction of the relative humidity.
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016, https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Short summary
This paper presents a novel system to issue heavy rainfall alerts for predefined geographical regions by evaluating the sum of precipitation fallen in the immediate past and expected in the near future. In order to objectively define the thresholds for the alerts, an extreme rainfall analysis for the 159 regions used for official warnings in Switzerland was developed. It is shown that the system has additional lead time with respect to thunderstorm tracking tools targeted for convective storms.
Auguste Gires, Catherine L. Muller, Marie-Agathe le Gueut, and Daniel Schertzer
Hydrol. Earth Syst. Sci., 20, 1751–1763, https://doi.org/10.5194/hess-20-1751-2016, https://doi.org/10.5194/hess-20-1751-2016, 2016
Short summary
Short summary
Educational activities are now a common channel to increase impact of research projects. Here, we present innovative activities for young children that aim to help them (and their teachers) grasp some of the complex underlying scientific issues in environmental fields. The activities developed are focused on rainfall: observation and modeling of rain drop size and the succession of dry and rainy days, and writing of a scientific book. All activities were implemented in classrooms.
Cited articles
Ahlborn, M., Armon, M., Ben Dor, Y., Neugebauer, I., Schwab, M. J.,
Tjallingii, R., Shoqeir, J. H., Morin, E., Enzel, Y., and Brauer, A.:
Increased frequency of torrential rainstorms during a regional late Holocene
eastern Mediterranean drought, Quaternary Res., 89, 425–431,
https://doi.org/10.1017/qua.2018.9, 2018. a
Alfieri, L., Thielen, J., and Pappenberger, F.: Ensemble hydro-meteorological
simulation for flash flood early detection in southern Switzerland, J. Hydrol., 424-425, 143–153, https://doi.org/10.1016/j.jhydrol.2011.12.038,, 2012. a
Alpert, P. and Shay-EL, Y.: The moisture Source for the Winter Cyclones in the
Eastern Mediterranean, Israel Meteorological Research Papers, 5, 20–27,
1994. a
Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino,
M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S., and
Manes, A.: The paradoxical increase of Mediterranean extreme daily rainfall
in spite of decrease in total values, Geophys. Res. Lett., 29,
1536, https://doi.org/10.1029/2001GL013554, 2002. a, b
Alpert, P., Osetinsky, I., Ziv, B., and Shafir, H.: Semi-objective
classification for daily synoptic systems: Application to the eastern
Mediterranean climate change, Int. J. Climatol., 24,
1001–1011, https://doi.org/10.1002/joc.1036, 2004. a, b, c, d
Amponsah, W., Ayral, P.-A., Boudevillain, B., Bouvier, C., Braud, I., Brunet, P., Delrieu, G., Didon-Lescot, J.-F., Gaume, E., Lebouc, L., Marchi, L., Marra, F., Morin, E., Nord, G., Payrastre, O., Zoccatelli, D., and Borga, M.: Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods, Earth Syst. Sci. Data, 10, 1783–1794, https://doi.org/10.5194/essd-10-1783-2018, 2018. a
Anthes, R. A., Kuo, Y.-H., Baumhefner, D. P., Errico, R. M., and Bettge, T. W.:
Predictability of Mesoscale Atmospheric Motions, Adv. Geophys.,
28, 159–202, https://doi.org/10.1016/S0065-2687(08)60188-0,
1985. a
Armon, M., Dente, E., Smith, J. A., Enzel, Y., and Morin, E.: Synoptic-scale
control over modern rainfall and flood patterns in the Levant drylands with
implications for past climates, J. Hydrometeorol., 19, 1077–1096,
https://doi.org/10.1175/JHM-D-18-0013.1, 2018. a, b, c, d, e, f, g, h, i, j, k, l
Armon, M., Morin, E., and Enzel, Y.: Overview of modern atmospheric patterns
controlling rainfall and floods into the Dead Sea: Implications for the
lake's sedimentology and paleohydrology, Quaternary Sci. Rev., 216,
58–73, https://doi.org/10.1016/j.quascirev.2019.06.005,
2019. a, b, c
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R.,
Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily
precipitation climate data record from multisatellite observations for
hydrological and climate studies, B. Am. Meteorol.
Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1, 2015. a
Ban, N., Schmidli, J., and Schär, C.: Evaluation of the
convection-resolving regional climate modeling approach in decade-long
simulations, J. Geophys. Res., 119, 7889–7907,
https://doi.org/10.1002/2014JD021478, 2014. a, b
Belachsen, I., Marra, F., Peleg, N., and Morin, E.: Convective rainfall in a dry climate: relations with synoptic systems and flash-flood generation in the Dead Sea region, Hydrol. Earth Syst. Sci., 21, 5165–5180, https://doi.org/10.5194/hess-21-5165-2017, 2017. a, b, c
Bližňák, V., Kašpar, M., and Müller, M.: Radar-based
summer precipitation climatology of the Czech Republic, Int.
J. Climatol., 38, 677–691, https://doi.org/10.1002/joc.5202, 2018. a
Bloschl, G. and Sivapalan, M.: Scale Issues in Hydrological Modelling: a
Review, Hydrol. Process., 9, 251–2901,
1995. a
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore
pressure, WIRES-Water, 3, 439–459,
https://doi.org/10.1002/wat2.1126,
2016. a
Borga, M. and Morin, E.: Characteristics of Flash Flood Regimes in the
Mediterranean Region, in: Storminess and Environmental Change Climate
Forcing and Responses in the Mediterranean Region, edited by: Diodato, N. and
Bellocchi, G., chap. 5, 65–76, Springer Netherlands, Dordrecht,
https://doi.org/10.1007/978-94-007-7948-8_5, 2014. a
Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrometeorological
Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps,
J. Hydrometeorol., 8, 1049–1067, https://doi.org/10.1175/JHM593.1, 2007. a
Borga, M., Anagnostou, E. N., Blöschl, G., and Creutin, J. D.: Flash
flood forecasting, warning and risk management: The HYDRATE project,
Environmental Science and Policy, 14, 834–844,
https://doi.org/10.1016/j.envsci.2011.05.017, 2011. a
Borga, M., Stoffel, M., Marchi, L., Marra, F., and Jakob, M.: Hydrogeomorphic
response to extreme rainfall in headwater systems: Flash floods and debris
flows, J. Hydrol., 518, 194–205,
https://doi.org/10.1016/j.jhydrol.2014.05.022, 2014. a
Cassola, F., Ferrari, F., and Mazzino, A.: Numerical simulations of
Mediterranean heavy precipitation events with the WRF model: A verification
exercise using different approaches, Atmos. Res., 164–165,
210–225, https://doi.org/10.1016/j.atmosres.2015.05.010,
2015. a
Chan, S. C., Kendon, E. J., Roberts, N., Blenkinsop, S., and Fowler, H. J.:
Large-scale predictors for extreme hourly precipitation events in
convection-permitting climate simulations, J. Climate, 31,
2115–2131, https://doi.org/10.1175/JCLI-D-17-0404.1, 2018. a
Ciach, G. J. and Krajewski, W. F.: Analysis and modeling of spatial
correlation structure in small-scale rainfall in Central Oklahoma, Adv. Water Resour., 29, 1450–1463, https://doi.org/10.1016/j.advwatres.2005.11.003,
2006. a
Collier, C. G.: Flash flood forecasting: What are the limits of
predictability?, Q. J. Roy. Meteor. Soc., 133,
3–23, https://doi.org/10.1002/qj.29,
2007. a
Cristiano, E., ten Veldhuis, M.-C., and van de Giesen, N.: Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review, Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, 2017. a
Davis, C., Brown, B., and Bullock, R.: Object-Based Verification of
Precipitation Forecasts. Part I: Methodology and Application to Mesoscale
Rain Areas, Mon. Weather Rev., 134, 1772–1784,
https://doi.org/10.1175/MWR3145.1, 2006. a, b
Dayan, U. and Morin, E.: Flash flood – producing rainstorms over the Dead
Sea: A review, New frontiers in Dead Sea paleoenvironmental research:
Geological Society of America Special Paper, 401, 53–62,
https://doi.org/10.1130/2006.2401(04), 2006. a, b
Dayan, U., Ziv, B., Margalit, A., Morin, E., and Sharon, D.: A severe autumn
storm over the Middle-East: Synoptic and mesoscale convection analysis,
Theor. Appl. Climatol., 69, 103–122,
https://doi.org/10.1007/s007040170038, 2001. a
Dayan, U., Nissen, K., and Ulbrich, U.: Review Article: Atmospheric conditions inducing extreme precipitation over the eastern and western Mediterranean, Nat. Hazards Earth Syst. Sci., 15, 2525–2544, https://doi.org/10.5194/nhess-15-2525-2015, 2015. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N.,
and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
Deng, L., McCabe, M. F., Stenchikov, G., Evans, J. P., and Kucera, P. a.:
Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the
Weather Research and Forecasting Model, J. Hydrometeorol., 16,
615–630, https://doi.org/10.1175/JHM-D-14-0126.1,
2015. a
De Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., and
Lelieveld, J.: Extreme precipitation events in the Middle East: Dynamics of
the Active Red Sea Trough, J. Geophys. Res.-Atmos.,
118, 7087–7108, https://doi.org/10.1002/jgrd.50569, 2013. a, b, c
Diomede, T., Marsigli, C., Montani, A., Nerozzi, F., and Paccagnella, T.:
Calibration of limited-area ensemble precipitation forecasts for
hydrological predictions, Mon. Weather Rev., 142, 2176–2197,
https://doi.org/10.1175/MWR-D-13-00071.1, 2014. a
Doswell, C. A., Brooks, H. E., and Maddox, R. A.: Flash Flood Forecasting: An
Ingredients-Based Methodology, Weather Forecast., 11, 560–581,
https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2, 1996. a, b, c
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K.,
Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C.,
Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V.,
Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K.,
Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard,
E., Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S.,
Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A
10-Year Multidisciplinary Program on the Mediterranean Water Cycle, B. Am. Meteorol. Soc., 95, 1063–1082,
https://doi.org/10.1175/BAMS-D-12-00242.1, 2014. a
Durrans, S. R., Julian, L. T., and Yekta, M.: Estimation of Depth-Area
Relationships using Radar-Rainfall Data, J. Hydrol. Eng.,
7, 356–367, https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(356), 2002. a
Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R., Kunkel, K. E.,
and Ambenje, P.: Observed variability and trends in extreme climate events:
A brief review, B. Am. Meteorol. Soc., 81,
417–425, https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2, 2000. a
El-Samra, R., Bou-Zeid, E., and El-Fadel, M.: To what extent does
high-resolution dynamical downscaling improve the representation of climatic
extremes over an orographically complex terrain?, Theor. Appl.
Climatol., 134, 265–282,
https://doi.org/10.1007/s00704-017-2273-8, 2018. a, b
EMS Mekorot Projects Ltd: Rainfall data from a C-band weather radar,
http://www.emsmekorotprojects.com/, last access: May 2019.
Enzel, Y., Amit, R., Dayan, U., Crouvi, O., Kahana, R., Ziv, B., and Sharon,
D.: The climatic and physiographic controls of the eastern Mediterranean
over the late Pleistocene climates in the southern Levant and its neighboring
deserts, Global Planet. Change, 60, 165–192,
https://doi.org/10.1016/j.gloplacha.2007.02.003, 2008. a
European Centre for Medium-Range Weather Forecasts: ERA-Interim Project, Single Parameter 6-Hourly Surface Analysis and Surface Forecast Time Series, updated monthly, https://doi.org/10.5065/D64747WN, 2012. a
Farhan, Y. and Anbar, A.: Fragile Landscape : Impact and Consequences of May
2014 Flash-flood Disaster in the Aqaba Area, Southern Jordan, Research
Journal of Environmental and Earth Sciences, 6, 451–465, 2014. a
Flaounas, E., Kotroni, V., Lagouvardos, K., Gray, S. L., Rysman, J. F., and
Claud, C.: Heavy rainfall in Mediterranean cyclones. Part I: contribution of
deep convection and warm conveyor belt, Clim. Dynam., 50, 2935–2949,
https://doi.org/10.1007/s00382-017-3783-x, 2018. a
Flaounas, E., Fita, L., Lagouvardos, K., and Kotroni, V.: Heavy rainfall in
Mediterranean cyclones, Part II: Water budget, precipitation efficiency and
remote water sources, Clim. Dynam., 53, 2539–2555,
https://doi.org/10.1007/s00382-019-04639-x, 2019. a
Fosser, G., Khodayar, S., and Berg, P.: Benefit of convection permitting
climate model simulations in the representation of convective precipitation,
Clim. Dynam., 44, 45–60, https://doi.org/10.1007/s00382-014-2242-1, 2014. a
Gamo, M.: Thickness of the dry convection and large-scale subsidence above
deserts, Bound.-Lay. Meteorol., 79, 265–278, https://doi.org/10.1007/BF00119441,
1996. a
Gehne, M., Hamill, T. M., Kiladis, G. N., and Trenberth, K. E.: Comparison of
global precipitation estimates across a range of temporal and spatial
scales, J. Climate, 29, 7773–7795, https://doi.org/10.1175/JCLI-D-15-0618.1,
2016. a
Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and Ebert, E. E.:
Intercomparison of Spatial Forecast Verification Methods, Weather
Forecast., 24, 1416–1430, https://doi.org/10.1175/2009WAF2222269.1,
2009. a
Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean
region, Global Planet. Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008. a
Goldreich, Y.: The spatial distribution of annual rainfall in Israel - a
review, Theor. Appl. Climatol., 50, 45–59,
https://doi.org/10.1007/BF00864902, 1994. a
Goldreich, Y.: The climate of Israel: observation, research and application,
Springer Science & Business Media, https://doi.org/10.1007/978-1-4615-0697-3, 2012. a, b
Goldreich, Y., Mozes, H., and Rosenfeld, D.: Radar analysis of cloud systems
and their rainfall yield in Israel, Israel J. Earth Sci., 53,
63–76, https://doi.org/10.1560/G68K-30MN-D5V0-KUHU, 2004. a
Gómez-Navarro, J. J., Raible, C. C., García-Valero, J. A., Messmer,
M., Montávez, J. P., and Martius, O.: Event selection for dynamical
downscaling: a neural network approach for physically-constrained
precipitation events, Clim. Dynam., https://doi.org/10.1007/s00382-019-04818-w, 2019. a
Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissmann, M.,
Reich, H., Brousseau, P., Montmerle, T., Wattrelot, E., Bučánek,
A., Mile, M., Hamdi, R., Lindskog, M., Barkmeijer, J., Dahlbom, M.,
Macpherson, B., Ballard, S., Inverarity, G., Carley, J., Alexander, C.,
Dowell, D., Liu, S., Ikuta, Y., and Fujita, T.: Survey of data assimilation
methods for convective-scale numerical weather prediction at operational
centres, Q. J. Roy. Meteor. Soc., 144,
1218–1256, https://doi.org/10.1002/qj.3179, 2018. a
Hahmann, A. N., Rostkier-Edelstein, D., Warner, T. T., Vandenberghe, F., Liu,
Y., Babarsky, R., and Swerdlin, S. P.: A reanalysis system for the
generation of mesoscale climatographies, J. Appl. Meteorol.
Clim., 49, 954–972, https://doi.org/10.1175/2009JAMC2351.1, 2010. a
Hamill, T. M., Hagedorn, R., and Whitaker, J. S.: Probabilistic forecast
calibration using ECMWF and GFS ensemble reforecasts. Part II:
Precipitation, Mon. Weather Rev., 136, 2620–2632,
https://doi.org/10.1175/2007MWR2411.1, 2008. a
Hersbach, H.: The ERA5 Atmospheric Reanalysis, AGU Fall Meeting Abstracts, December 2016, San Francisco, USA,
2016. a
Hochman, A., Harpaz, T., Saaroni, H., and Alpert, P.: The seasons' length in
21st century CMIP5 projections over the eastern Mediterranean, Int.
J. Climatol., 38, 2627–2637,
https://doi.org/10.1002/joc.5448, 2018a. a
Hochman, A., Mercogliano, P., Alpert, P., Saaroni, H., and Bucchignani, E.:
High-resolution projection of climate change and extremity over Israel using
COSMO-CLM, Int. J. Climatol., 38, 5095–5106,
https://doi.org/10.1002/joc.5714, 2018b. a, b
Hochman, A., Kunin, P., Alpert, P., Harpaz, T., Saaroni, H., and
Rostkier-Edelstein, D.: Statistical downscaling of seasonal precipitation
over Israel for the 21st century, using CMIP5 projections, Int.
J. Climatol., 40, 2062–2077, 2020. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944,
2008. a
Ivatek-Šahdan, S., Stanešić, A., Tudor, M., Odak
Plenković, I., and Janeković, I.: Impact of SST on heavy
rainfall events on eastern Adriatic during SOP1 of HyMeX, Atmos.
Res., 200, 36–59, https://doi.org/10.1016/j.atmosres.2017.09.019, 2018. a
Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further
Developments of the Convection, Viscous Sublayer, and Turbulence Closure
Schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2, 1994. a, b
Kahana, R., Ziv, B., Enzel, Y., and Dayan, U.: Synoptic climatology of major
floods in the Negev Desert, Israel, Int. J. Climatol.,
22, 867–882, https://doi.org/10.1002/joc.766, 2002. a, b, c
Kalma, J. D. and Franks, S. W.: Rainfall in arid and semi-arid regions, in:
Understanding Water in a Dry Environment, edited by: Simmers, I., chap. 2,
15–64, Taylor & Francis, Lisse, the Netherlands, 2003. a
Karklinsky, M. and Morin, E.: Spatial characteristics of radar-derived
convective rain cells over southern Israel, Meteorol. Z., 15,
513–520, https://doi.org/10.1127/0941-2948/2006/0153, 2006. a
Keil, C., Heinlein, F., and Craig, G. C.: The convective adjustment time-scale
as indicator of predictability of convective precipitation, Q.
J. Roy. Meteor. Soc., 140, 480–490,
https://doi.org/10.1002/qj.2143, 2014. a
Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R., and Kushnir, Y.: Climate
change in the Fertile Crescent and implications of the recent Syrian
drought, P. Natl. Acad. Sci. USA, 112, 3241–3246,
https://doi.org/10.1073/pnas.1421533112, 2015. a
Kendon, E. J., Roberts, N. M., Fowler, H. J., Roberts, M. J., Chan, S. C., and
Senior, C. A.: Heavier summer downpours with climate change revealed by
weather forecast resolution model, Nat. Clim. Change, 4, 570–576,
https://doi.org/10.1038/nclimate2258, 2014. a, b
Khodayar, S., Fosser, G., Berthou, S., Davolio, S., Drobinski, P., Ducrocq, V.,
Ferretti, R., Nuret, M., Pichelli, E., Richard, E., and Bock, O.: A seamless
weather–climate multi-model intercomparison on the representation of a high
impact weather event in the western Mediterranean: HyMeX IOP12, Q.
J. Roy. Meteor. Soc., 142, 433–452,
https://doi.org/10.1002/qj.2700, 2016. a
Khodayar, S., Kalthoff, N., and Kottmeier, C.: Atmospheric conditions
associated with heavy precipitation events in comparison to seasonal means in
the western mediterranean region, Clim. Dynam., 51, 951–967,
https://doi.org/10.1007/s00382-016-3058-y, 2018. a, b
Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P.,
Skofronick-Jackson, G., and Kirschbaum, D. B.: So, how much of the Earth's
surface is covered by rain gauges?, B. Am. Meteorol.
Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-00283.1, 2017. a
Krichak, S. O., Alpert, P., and Krishnamurti, T. N.: Interaction of topography
and tropospheric flow – A possible generator for the Red Sea Trough?,
Meteorol. Atmos. Phys., 63, 149–158, https://doi.org/10.1007/BF01027381,
1997. a, b
Krichak, S. O., Tsidulko, M., and Alpert, P.: November 2, 1994, severe storms
in the southeastern Mediterranean, Atmos. Res., 53, 45–62,
https://doi.org/10.1016/S0169-8095(99)00045-9,
2000. a
Kushnir, Y., Dayan, U., Ziv, B., Morin, E., and Enzel, Y.: Climate of the
Levant: phenomena and mechanisms, in: Quaternary of the Levant:
environments, climate change, and humans, edited by: Enzel, Y. and Ofer,
B.-Y., chap. 4, 31–44, Cambridge University Press, Cambridge, UK, 2017. a
Maraun, D., Wetterhall, F., Chandler, R. E., Kendon, E. J., Widmann, M.,
Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C.,
Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developements to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314,
2010. a
Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E. N.: Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean, Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, 2017. a, b, c, d, e
Marra, F., Zoccatelli, D., Armon, M., and Morin, E.: A simplified MEV
formulation to model extremes emerging from multiple nonstationary underlying
processes, Adv. Water Resour., 127, 280–290,
https://doi.org/10.1016/j.advwatres.2019.04.002,
2019. a, b, c
Marsham, J. H., Hobby, M., Allen, C. J. T., Banks, J. R., Bart, M., Brooks,
B. J., Cavazos-Guerra, C., Engelstaedter, S., Gascoyne, M., Lima, A. R.,
Martins, J. V., McQuaid, J. B., O'Leary, A., Ouchene, B., Ouladichir, A.,
Parker, D. J., Saci, A., Salah-Ferroudj, M., Todd, M. C., and Washington,
R.: Meteorology and dust in the central Sahara: Observations from Fennec
supersite-1 during the June 2011 Intensive Observation Period, J.
Geophys. Res.-Atmos., 118, 4069–4089, https://doi.org/10.1002/jgrd.50211, 2013. a
Mass, C. F., Ovens, D., Westrick, K., and Colle, B. A.: Does Increasing
Horizontal Resolution Produce More Skillful Forecasts?, B.
Am. Meteorol. Soc., 83, 407–430,
https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2, 2002. a
Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X., Anthony, S., Ray, R., Vose, R. S., Gleason, B. E., and Houston, T. G.: Global Historical Climatology Network – Daily (GHCN-Daily), Version 3, NOAA National Climatic Data Center, https://doi.org/10.7289/V5D21VHZ, 2012. a
Meredith, E. P., Rust, H. W., and Ulbrich, U.: A classification algorithm for selective dynamical downscaling of precipitation extremes, Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, 2018. a
Merz, R. and Blöschl, G.: A process typology of regional floods, Water
Resour. Res., 39, 1–20, https://doi.org/10.1029/2002WR001952, 2003. a
Morin, E., Krajewski, W. F., Goodrich, D. C., Gao, X., and Sorooshian, S.:
Estimating Rainfall Intensities from Weather Radar Data: The
Scale-Dependency Problem, J. Hydrometeorol., 4, 782–797,
https://doi.org/10.1175/1525-7541(2003)004<0782:ERIFWR>2.0.CO;2, 2003. a
Morin, E., Harats, N., Jacoby, Y., Arbel, S., Getker, M., Arazi, A., Grodek, T., Ziv, B., and Dayan, U.: Studying the extremes: hydrometeorological investigation of a flood-causing rainstorm over Israel, Adv. Geosci., 12, 107–114, https://doi.org/10.5194/adgeo-12-107-2007, 2007. a, b
Morin, E., Jacoby, Y., Navon, S., and Bet-Halachmi, E.: Towards flash-flood
prediction in the dry Dead Sea region utilizing radar rainfall information,
Adv. Water Resour., 32, 1066–1076,
https://doi.org/10.1016/j.advwatres.2008.11.011,
2009. a, b
Morin, E., Marra, F., and Armon, M.: Dryland Precipitation Climatology from Satellite Observations, in: Satellite Precipitation Measurement,
edited by: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., and Turk,
F. J., Springer, Heidelberg, Germany, 2020. a
Nasta, P., Adane, Z., Lock, N., Houston, A., and Gates, J. B.: Links between
episodic groundwater recharge rates and rainfall events classified according
to stratiform-convective storm scoring: A plot-scale study in eastern
Nebraska, Agr. Forest Meteorol., 259, 154–161,
https://doi.org/10.1016/j.agrformet.2018.05.003, 2018. a
Nerini, D., Besic, N., Sideris, I., Germann, U., and Foresti, L.: A non-stationary stochastic ensemble generator for radar rainfall fields based on the short-space Fourier transform, Hydrol. Earth Syst. Sci., 21, 2777–2797, https://doi.org/10.5194/hess-21-2777-2017, 2017. a
Nicholson, S. E.: Dryland climatology, Cambridge University Press, New York,
https://doi.org/10.1017/CBO9780511973840, 2011. a, b
Nuissier, O., Joly, B., Joly, A., Ducrocq, V., and Arbogast, P.: A statistical
downscaling to identify the large-scale circulation patterns associated with
heavy precipitation events over southern France, Q. J.
Roy. Meteor. Soc., 137, 1812–1827, https://doi.org/10.1002/qj.866, 2011. a
Panziera, L., James, C. N., and Germann, U.: Mesoscale organization and
structure of orographic precipitation producing flash floods in the Lago
Maggiore region, Q. J. Roy. Meteor. Soc., 141,
224–248, https://doi.org/10.1002/qj.2351, 2015. a
Panziera, L., Gabella, M., Germann, U., and Martius, O.: A 12-year
radar-based climatology of daily and sub-daily extreme precipitation over
the Swiss Alps, Int. J. Climatol., 38, 3749–3769,
https://doi.org/10.1002/joc.5528,
2018. a, b
Pastor, F., Estrela, M. J., Peñarrocha, D., and Millán, M. M.:
Torrential Rains on the Spanish Mediterranean Coast: Modeling the Effects of
the Sea Surface Temperature, J. Appl. Meteorol., 40, 1180–1195,
https://doi.org/10.1175/1520-0450(2001)040<1180:trotsm>2.0.co;2, 2002. a
Peleg, N. and Morin, E.: Convective rain cells: Radar-derived spatiotemporal
characteristics and synoptic patterns over the eastern Mediterranean,
J. Geophys. Res.-Atmos., 117, 1–17,
https://doi.org/10.1029/2011JD017353,
2012. a, b, c
Peleg, N., Marra, F., Fatichi, S., Molnar, P., Morin, E., Sharma, A., and
Burlando, P.: Intensification of convective rain cells at warmer
temperatures observed from high-resolution weather radar data, J.
Hydrometeorol., 19, 715–726, https://doi.org/10.1175/JHM-D-17-0158.1,
2018. a, b, c
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., Van Lipzig, N. P., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and
challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475,
2015. a, b, c, d
Raveh-Rubin, S. and Wernli, H.: Large-scale wind and precipitation extremes in
the Mediterranean: a climatological analysis for 1979–2012, Q.
J. Roy. Meteor. Soc., 141, 2404–2417,
https://doi.org/10.1002/qj.2531,
2015. a
Rinat, Y., Marra, F., Zoccatelli, D., and Morin, E.: Controls of flash flood
peak discharge in Mediterranean basins and the special role of
runoff-contributing areas, J. Hydrol., 565, 846–860,
https://doi.org/10.1016/j.jhydrol.2018.08.055, 2018. a, b
Roberts, N.: Assessing the spatial and temporal variation in the skill of
precipitation forecasts from an NWP model, Meteorol. Appl.,
15, 163–169, https://doi.org/10.1002/met.57, 2008. a
Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall
Accumulations from High-Resolution Forecasts of Convective Events, Mon.
Weather Rev., 136, 78–97, https://doi.org/10.1175/2007MWR2123.1,
2008. a, b, c
Romine, G. S., Schwartz, C. S., Snyder, C., Anderson, J. L., and Weisman,
M. L.: Model Bias in a Continuously Cycled Assimilation System and Its
Influence on Convection-Permitting Forecasts, Mon. Weather Rev., 141,
1263–1284, https://doi.org/10.1175/MWR-D-12-00112.1, 2013. a
Rostkier-Edelstein, D., Kunin, P., Hopson, T. M., and Givati, A.: Statistical
downscaling of seasonal precipitation in Israel, Int. J.
Climatol., 36, 590–606, https://doi.org/10.1002/joc.4368, 2015. a
Rubin, S., Ziv, B., and Paldor, N.: Tropical Plumes over Eastern North Africa
as a Source of Rain in the Middle East, Mon. Weather Rev., 135,
4135–4148, https://doi.org/10.1175/2007MWR1919.1,
2007. a, b
Saaroni, H., Halfon, N., Ziv, B., Alpert, P., and Kutiel, H.: Links between
the rainfall regime in Israel and location and intensity of Cyprus lows,
Int. J. Climatol., 30, 1014–1025, https://doi.org/10.1002/joc.1912,
2010. a, b
Saaroni, H., Ziv, B., Lempert, J., Gazit, Y., and Morin, E.: Prolonged dry
spells in the Levant region: Climatologic-synoptic analysis, Int.
J. Climatol., 2236, 2223–2236, https://doi.org/10.1002/joc.4143,
2014. a
Saltikoff, E., Friedrich, K., Soderholm, J., Lengfeld, K., Nelson, B., Becker,
A., Hollmann, R., Urban, B., Heistermann, M., and Tassone, C.: An overview
of using weather radar for climatological studies: Successes, challenges and
potential., B. Am. Meteorol. Soc., 100, 1739–1752,
https://doi.org/10.1175/bams-d-18-0166.1, 2019. a
Samuels, R., Rimmer, A., and Alpert, P.: Effect of extreme rainfall events on
the water resources of the Jordan River, J. Hydrol., 375,
513–523, https://doi.org/10.1016/j.jhydrol.2009.07.001, 2009. a
Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C.,
Giorgi, F., Karl, T. R., Kendon, E. J., Tank, A. M., O'Gorman, P. A.,
Sillmann, J., Zhang, X., and Zwiers, F. W.: Percentile indices for assessing
changes in heavy precipitation events, Climatic Change, 137, 201–216,
https://doi.org/10.1007/s10584-016-1669-2, 2016. a
Schick, A. P.: Hydrologic aspects of floods in extreme arid environments, in:
Flood geomorphology, edited by: Baker, V. R., Kochel, R. C., and Patton,
P. C., chap. 12, 189–203, John Wiley and Sons, New York, USA, 1988. a
Schwartz, C. S., Romine, G. S., Sobash, R. A., Fossell, K. R., and Weisman,
M. L.: NCAR's Experimental Real-Time Convection-Allowing Ensemble Prediction
System, Weather Forecast., 30, 1645–1654,
https://doi.org/10.1175/WAF-D-15-0103.1, 2015. a
Seager, R., Liu, H., Henderson, N., Simpson, I., Kelley, C., Shaw, T., Kushnir,
Y., and Ting, M.: Causes of increasing aridification of the mediterranean
region in response to rising greenhouse gases, J. Climate, 27,
4655–4676, https://doi.org/10.1175/JCLI-D-13-00446.1, 2014. a
Sharon, D.: The spottiness of rainfall in a desert area, J.
Hydrol., 17, 161–175, https://doi.org/10.1016/0022-1694(72)90002-9,
1972. a, b, c, d
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A Description of the
Advanced Research WRF Version 3, https://doi.org/10.5065/D68S4MVH, 2008. a
Smith, J. A., Baeck, M. L., Zhang, Y., and Doswell, C. A.: Extreme Rainfall
and Flooding from Supercell Thunderstorms, J. Hydrometeorol., 2,
469–489, https://doi.org/10.1175/1525-7541(2001)002<0469:ERAFFS>2.0.CO;2, 2001. a
Smith, J. A., Baeck, M. L., Villarini, G., Welty, C., Miller, A. J., and
Krajewski, W. F.: Analyses of a long-term, high-resolution radar rainfall
data set for the Baltimore metropolitan region, Water Resour. Res.,
48, 1–14, https://doi.org/10.1029/2011WR010641, 2012. a
Sowers, J., Vengosh, A., and Weinthal, E.: Climate change, water resources,
and the politics of adaptation in the Middle East and North Africa, Climatic
Change, 104, 599–627, https://doi.org/10.1007/s10584-010-9835-4, 2010. a
Tarolli, P., Borga, M., Morin, E., and Delrieu, G.: Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions, Nat. Hazards Earth Syst. Sci., 12, 1255–1265, https://doi.org/10.5194/nhess-12-1255-2012, 2012. a, b, c, d
Taylor, R. G., Todd, M. C., Kongola, L., Maurice, L., Nahozya, E., Sanga, H.,
and Macdonald, A. M.: Evidence of the dependence of groundwater resources on
extreme rainfall in East Africa, Nat. Clim. Change, 3, 374–378,
https://doi.org/10.1038/nclimate1731, 2013. a
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek,
M., Gayno, G., Wegiel, J., and Cuenca, R. H.: Implementation and
verification of the unified NOAH land surface model in the WRF model
(Formerly Paper Number 17.5), in: 20th Conference on Weather Analysis and
Forecasting/16th Conference on Numerical Weather Prediction, January 2004, Seattle, Washington, USA, 11–15,
2004. a
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit
Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme.
Part II: Implementation of a New Snow Parameterization, Mon. Weather
Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008. a
Thorndahl, S., Smith, J. A., Baeck, M. L., and Krajewski, W. F.: Analyses of
the temporal and spatial structures of heavy rainfall from a catalog of
high-resolution radar rainfall fields, Atmos. Res., 144, 111–125,
https://doi.org/10.1016/j.atmosres.2014.03.013,
2014. a
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in
Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a, b
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing
character of precipitation, B. Am. Meteorol. Soc.,
84, 1205–1218, https://doi.org/10.1175/BAMS-84-9-1205, 2003. a
Tubi, A., Dayan, U., and Lensky, I. M.: Moisture transport by tropical plumes
over the Middle East: a 30-year climatology, Q. J. Roy.
Meteor. Soc., 143, 3165–3176, https://doi.org/10.1002/qj.3170, 2017. a, b
UN-Habitat: Cities and Climate Change: Global Report on Human Settlements
2011, Tech. rep., London & Washington, D.C., available at:
http://books.google.com/books?hl=en&lr=&id=GZG5x6SbeSAC&oi=fnd&pg=PA91&dq=Cities+and+Climate+Change&ots=adeiArrg6X&sig=9TeIo2HeRHPqS1KwBKsvkC78Afg (last access: May 2019),
2011. a
Villarini, G., Mandapaka, P. V., Krajewski, W. F., and Moore, R. J.: Rainfall
and sampling uncertainties: A rain gauge perspective, J. Geophys.
Res.-Atmos., 113, 1–12, https://doi.org/10.1029/2007JD009214, 2008. a
Vincendon, B., Ducrocq, V., Nuissier, O., and Vié, B.: Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting, Nat. Hazards Earth Syst. Sci., 11, 1529–1544, https://doi.org/10.5194/nhess-11-1529-2011, 2011. a
Warner, T. T.: Desert Meteorology, Cambridge University Press, New York,
https://doi.org/10.1256/wea.201.04,
2004. a
Warner, T. T.: Numerical Weather and Climate Prediction, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511763243, 2010. a
Wernli, H., Paulat, M., Hagen, M., and Frei, C.: SAL—A Novel Quality Measure
for the Verification of Quantitative Precipitation Forecasts, Mon.
Weather Rev., 136, 4470–4487, https://doi.org/10.1175/2008MWR2415.1,
2008. a, b, c
Wernli, H., Hofmann, C., and Zimmer, M.: Spatial Forecast Verification Methods
Intercomparison Project: Application of the SAL Technique, Weather
Forecast., 24, 1472–1484, https://doi.org/10.1175/2009WAF2222271.1,
2009. a, b
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson,
F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the
intensity and frequency of short-duration extreme rainfall, Rev.
Geophys., 52, 522–555, https://doi.org/10.1002/2014RG000464, 2014. a, b
Yang, L., Smith, J. A., Baeck, M. L., Bou-Zeid, E., Jessup, S. M., Tian, F.,
and Hu, H.: Impact of Urbanization on Heavy Convective Precipitation under
Strong Large-Scale Forcing: A Case Study over the Milwaukee–Lake Michigan
Region, J. Hydrometeorol., 15, 261–278,
https://doi.org/10.1175/JHM-D-13-020.1,
2014. a
Yano, J. I. I., Ziemian´ski, M. Z., Cullen, M., Termonia, P., Onvlee, J.,
Bengtsson, L., Carrassi, A., Davy, R., Deluca, A., Gray, S. L., Homar, V.,
Köhler, M. I., Krichak, S., Michaelides, S., Phillips, V. T., Soares,
P. M., and Wyszogrodzki, A. A.: Scientific challenges of convective-scale
numerical weather prediction, B. Am. Meteorol.
Soc., 99, 699–710, https://doi.org/10.1175/BAMS-D-17-0125.1, 2018.
a
Zepeda-Arce, J., Foufoula-Georgiou, E., and Droegemeier, K. K.: Space-time
rainfall organization and its role in validating quantitative precipitation
forecasts, J. Geophys. Res.-Atmos., 105,
10129–10146, https://doi.org/10.1029/1999JD901087, 2000. a, b
Zhang, C., Wang, Y., and Hamilton, K.: Improved Representation of Boundary
Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke
Cumulus Parameterization Scheme, Mon. Weather Rev., 139, 3489–3513,
https://doi.org/10.1175/MWR-D-10-05091.1, 2011. a, b
Zhang, F., Bei, N., Rotunno, R., Snyder, C., and Epifanio, C. C.: Mesoscale
Predictability of Moist Baroclinic Waves: Convection-Permitting Experiments
and Multistage Error Growth Dynamics, J. Atmos. Sci.,
64, 3579–3594, https://doi.org/10.1175/JAS4028.1, 2007. a
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson,
T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in
extremes based on daily temperature and precipitation data, WIRES Clim. Change, 2, 851–870,
https://doi.org/10.1002/wcc.147, 2011. a
Zittis, G., Bruggeman, A., Camera, C., Hadjinicolaou, P., and Lelieveld, J.:
The added value of convection permitting simulations of extreme
precipitation events over the eastern Mediterranean, Atmos. Res.,
191, 20–33, https://doi.org/10.1016/j.atmosres.2017.03.002, 2017. a
Ziv, B., Harpaz, T., Saaroni, H., and Blender, R.: A new methodology for
identifying daughter cyclogenesis: application for the Mediterranean Basin,
Int. J. Climatol., 35, 3847–3861, https://doi.org/10.1002/joc.4250, 2015. a
Zoccatelli, D., Marra, F., Armon, M., Rinat, Y., Smith, J. A., and Morin, E.: Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins, Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, 2019. a, b, c
Short summary
Heavy precipitation events (HPEs), occurring around the globe, lead to natural hazards as well as to water resource recharge. Rainfall patterns during HPEs vary from one case to another and govern their effect. Thus, correct prediction of these patterns is crucial for coping with HPEs. However, the ability of weather models to generate such patterns is unclear. Here, we characterise rainfall patterns during HPEs based on weather radar data and evaluate weather model simulations of these events.
Heavy precipitation events (HPEs), occurring around the globe, lead to natural hazards as well...