



# Supplement of

# Radar-based characterisation of heavy precipitation in the eastern Mediterranean and its representation in a convection-permitting model

Moshe Armon et al.

Correspondence to: Moshe Armon (moshe.armon@mail.huji.ac.il)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

## Supplementary material

#### S1. Fractions Skill Score (FSS) statistic

The fractions skill score (FSS; Roberts and Lean, 2008) statistic is defined for each rainfall threshold (q) using a binary field (I) that equals 1 wherever pixel values are  $\geq q$ , and 0 elsewhere. Thus, the fraction of radar-derived (observed) pixels for a given rainfall threshold over a given neighbourhood length n (i.e., spatial averaging), termed  $O_n$ , and the similar modelled fraction derived from the Weather Research and Forecasting (WRF) model  $(M_n)$ , are used to calculate the mean square error (MSE) as follows:

(Eq. S1) 
$$MSE_n \equiv \overline{(O_n - M_n)^2}$$
,

where the overbar denotes averaging. The MSE is then used to calculate the FSS:

(Eq. S2) 
$$FSS_n \equiv \frac{MSE_n - MSE_{(n)ref}}{MSE_{(n)perfect} - MSE_{(n)ref}} = 1 - \frac{MSE_n}{MSE_{(n)ref}}$$

where  $MSE_{(n)perfect} \equiv 0$  is the MSE of a perfect forecast, and  $MSE_{(n)ref} \equiv \overline{O_n^2} + \overline{M_n^2}$ . The uniform FSS is defined as halfway between a random forecast and a perfect skill forecast:

(Eq. S3) 
$$FSS_{(n)uniform} \equiv \frac{1+f_{(n)0}}{2}$$
,

where  $f_0$  is the observed frequency, i.e., the fraction of observed pixels exceeding the threshold over the entire domain using a neighbourhood length of size n.

#### S2. Structure–amplitude–location (SAL) analysis

The structure-amplitude-location analysis (SAL; Wernli et al., 2008) shown in the text also requires setting up a rainfall threshold (f) that enables distinguishing precipitation objects that are greater than this threshold. Following is a summary of the calculation of each of the three components of SAL.

A component (amplitude):

(Eq. S4) 
$$A = \frac{\overline{R_M} - \overline{R_O}}{\frac{1}{2}(\overline{R_M} + \overline{R_O})}$$

where *R* is the rainfall accumulation field and *M* and *O* denote modelled (WRF) and observed (radar) rain, respectively, and  $A \in [-2,2]$ .

The *L* component (location) is the sum of two components. The first one  $(L_1)$  is a normalised measure of the distance between the centre of mass of the modelled and observed rain fields, and the second  $(L_2)$ 

considers the average distance between the centre of mass of the total precipitation fields and individual precipitation objects within them, as follows:

(Eq. S5) 
$$L_1 = \frac{|x_M - x_O|}{d}$$
,

where x denotes the centre of mass of a rain field and d is the largest possible geographical distance along the considered domain.

The second location component  $(L_2)$  weights each precipitation object using its total amount of rain  $(R_n)$ and a weighted average distance (r):

(Eq. S6) 
$$r = \frac{\sum_{n=1}^{M} R_n |x - x_n|}{\sum_{n=1}^{M} R_n}$$
,

where *n* is an index of precipitation objects ranging from 1 to the number of objects existing (*M*).  $L_2$  is computed through the difference between the modelled distance ( $r_M$ ) and the observed one ( $r_O$ ), calculated according to Eq. S7, for the modelled and observed precipitation objects, respectively.

(Eq. S7) 
$$L_2 = 2(\frac{|r_M - r_O|}{d})$$

Finally, the *L* component is simply the sum of  $L_1$  and  $L_2$ :

(Eq. S8) 
$$L = L_1 + L_2$$

where  $L \in [0,2]$ .

The S component (structure) is calculated through a scaled volume of each precipitation object  $(V_n)$ :

(Eq. S9) 
$$V_n = \frac{R_n}{R_n^{max}}$$
,

where  $R_n^{max}$  is the maximum rainfall value of the precipitation object n. The weighted mean of the scaled volume is calculated through:

(Eq. S10) 
$$V = \frac{\sum_{n=1}^{M} R_n V_n}{\sum_{n=1}^{M} R_n},$$

which is then used to calculate the S component:

(Eq. S11) 
$$S = \frac{V_M - V_O}{\frac{1}{2}(V_M + V_O)},$$

where  $V_M$  and  $V_O$  represent the scaled volume calculated using the modelled and observed rain fields, respectively, and  $S \in [-2,2]$ .

# S3. Heavy precipitation events (HPEs) identified and analysed

|                | Start time*      | End time*        | Synoptic                    | HPE duration [h] |   |   |    |    |    |    |
|----------------|------------------|------------------|-----------------------------|------------------|---|---|----|----|----|----|
| П <b>Г</b> С # |                  |                  | classification <sup>#</sup> | 1                | 3 | 6 | 12 | 24 | 48 | 72 |
| 1              | 2-11-1991 9:00   | 5-11-1991 9:00   | MC                          | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 2              | 22-2-1992 8:00   | 27-2-1992 21:00  | MC                          |                  |   |   |    |    | Х  | Х  |
| 3              | 23-11-1992 9:00  | 26-11-1992 7:00  | MC                          | Х                | Х | Х | Х  |    |    |    |
| 4              | 12-12-1992 14:00 | 18-12-1992 13:00 | MC                          | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 5              | 31-3-1993 9:00   | 2-4-1993 2:00    | ARST                        |                  |   | Х |    |    |    |    |
| 6              | 21-12-1993 12:00 | 23-12-1993 15:00 | ARST                        |                  |   |   |    |    | Х  |    |
| 7              | 21-2-1994 19:00  | 25-2-1994 0:00   | MC                          |                  | Х | Х | Х  |    |    |    |
| 8              | 1-11-1994 15:00  | 7-11-1994 13:00  | ARST                        | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 9              | 14-11-1994 1:00  | 18-11-1994 5:00  | MC                          | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 10             | 15-12-1994 12:00 | 20-12-1994 21:00 | MC                          | Х                | Х |   |    | Х  | Х  | Х  |
| 11             | 28-12-1994 10:00 | 31-12-1994 23:00 | MC                          |                  |   | Х |    |    |    |    |
| 12             | 4-2-1995 8:00    | 9-2-1995 10:00   | MC                          |                  |   |   |    | Х  | Х  | Х  |
| 13             | 1-11-1995 11:00  | 3-11-1995 14:00  | MC                          | Х                | Х |   |    |    |    |    |
| 14             | 7-11-1995 10:00  | 10-11-1995 17:00 | MC                          |                  |   |   |    |    |    | Х  |
| 15             | 6-3-1996 13:00   | 8-3-1996 4:00    | MC                          |                  | Х | Х | Х  | Х  | Х  |    |
| 16             | 11-12-1996 14:00 | 14-12-1996 15:00 | ARST                        | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 17             | 13-1-1997 11:00  | 17-1-1997 7:00   | MC                          | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 18             | 3-3-1997 6:00    | 4-3-1997 16:00   | MC                          | Х                | Х | Х | Х  |    |    |    |
| 19             | 19-10-1997 11:00 | 20-10-1997 10:00 | MC                          |                  | Х | Х | Х  |    |    |    |
| 20             | 25-11-1997 10:00 | 27-11-1997 9:00  | ARST                        |                  | Х | Х | Х  | Х  |    |    |
| 21             | 4-4-1998 4:00    | 4-4-1998 17:00   | MC                          |                  |   | Х | Х  |    |    |    |
| 22             | 28-12-1998 6:00  | 31-12-1998 21:00 | MC                          | Х                | Х | Х | Х  | Х  |    |    |
| 23             | 13-12-1999 6:00  | 15-12-1999 8:00  | MC                          | Х                | Х | Х | Х  |    |    |    |
| 24             | 18-1-2000 6:00   | 24-1-2000 2:00   | MC                          |                  | Х | Х | Х  | Х  | Х  | Х  |
| 25             | 25-1-2000 15:00  | 28-1-2000 20:00  | MC                          | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 26             | 12-2-2000 22:00  | 16-2-2000 16:00  | MC                          | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 27             | 29-11-2000 0:00  | 1-12-2000 10:00  | MC                          |                  |   |   | Х  | Х  | Х  | Х  |
| 28             | 19-12-2000 6:00  | 21-12-2000 17:00 | MC                          | Х                | Х |   |    |    |    |    |
| 29             | 30-4-2001 9:00   | 2-5-2001 17:00   | MC                          | Х                | Х | Х | Х  | Х  | Х  | Х  |
| 30             | 9-12-2002 6:00   | 12-12-2002 6:00  | MC                          |                  | Х | Х | Х  | Х  | Х  | Х  |
| 31             | 2-1-2003 16:00   | 4-1-2003 12:00   | MC                          |                  | Х | Х |    |    |    |    |
| 32             | 27-1-2003 10:00  | 30-1-2003 13:00  | MC                          | Х                | Х | Х | Х  | Х  |    | Х  |
| 33             | 3-2-2003 0:00    | 5-2-2003 16:00   | MC                          |                  |   |   | Х  | Х  | Х  |    |
| 34             | 17-2-2003 19:00  | 22-2-2003 23:00  | MC                          |                  |   |   |    |    | Х  | Х  |
| 35             | 24-2-2003 1:00   | 28-2-2003 2:00   | MC                          |                  |   |   | Х  | Х  | X  | X  |

Table S1 – HPEs identified and analysed in this study

| 36 | 1-12-2003 14:00  | 5-12-2003 20:00  | ARST | Х | Х | Х | Х | Х | Х | Х |
|----|------------------|------------------|------|---|---|---|---|---|---|---|
| 37 | 14-12-2003 16:00 | 15-12-2003 10:00 | MC   | Х | Х | Х | Х | Х |   |   |
| 38 | 15-12-2005 15:00 | 18-12-2005 9:00  | MC   |   | Х | Х | Х |   |   |   |
| 39 | 18-12-2007 14:00 | 21-12-2007 8:00  | MC   |   |   | Х | Х | Х | Х |   |
| 40 | 2-1-2008 3:00    | 5-1-2008 19:00   | MC   |   | Х | Х | Х | Х | Х | Х |
| 41 | 17-1-2010 16:00  | 22-1-2010 6:00   | MC   | Х | Х | Х | Х | Х | Х | Х |

\*Local winter time (UTC+2), presented as day-month-year and hour.

\*Simplified synoptic classification (Sect. 3.4 in the main text).

### S4. WRF namelist.input file example

| &time_control      |                         |
|--------------------|-------------------------|
| run_days           | = 0,                    |
| run_hours          | = 138,                  |
| run_minutes        | = 0,                    |
| run_seconds        | = 0,                    |
| start_year         | = 2010, 2010, 2010,     |
| start_month        | = 01, 01, 01,           |
| start_day          | = 16, 16, 16,           |
| start_hour         | = 12, 12, 12,           |
| start_minute       | = 00, 00, 00,           |
| start_second       | = 00, 00, 00,           |
| end_year           | = 2010, 2010, 2010,     |
| end_month          | = 01, 01, 01,           |
| end_day            | = 22, 22, 22,           |
| end_hour           | = 06, 06, 06,           |
| end_minute         | = 00, 00, 00,           |
| end_second         | = 00, 00, 00,           |
| interval_seconds   | = 21600                 |
| input_from_file    | = .true.,.true.,.true., |
| history_interval   | = 360, 180, 10,         |
| frames_per_outfile | = 1, 1, 1,              |
| restart            | = .false.,              |
| restart_interval   | = 1440,                 |
| io_form_history    | = 2,                    |

io\_form\_restart = 2,

io\_form\_input = 2,

io\_form\_boundary = 2,

= 0,

debug\_level

iofields\_filename = "varsNot2Use\_d01.txt", "varsNot2Use\_d02.txt", "varsNot2Use\_d03.txt",

ignore\_iofields\_warning = .true.,

/

&domains

| time_step           | = 8,                 |
|---------------------|----------------------|
| time_step_fract_nur | n = 0,               |
| time_step_fract_den | = 1,                 |
| use_adaptive_time_s | tep = .true.,        |
| step_to_output_time | e = .true.,          |
| target_cfl          | = 1.2, 1.2,1.2,      |
| target_hcfl         | = .84, .84,0.84,     |
| max_step_increase_  | pct = 5, 51,51,      |
| starting_time_step  | = -1, -1,-1,         |
| max_time_step       | = -1, -1,-1,         |
| min_time_step       | = -1, -1,-1,         |
| adaptation_domain   | = 1,                 |
| max_dom             | = 3,                 |
| e_we = 100, 2       | 221, 551,            |
| e_sn = 100, 2       | 221, 551,            |
| e_vert              | = 68, 68, 68,        |
| p_top_requested     | = 2500,              |
| num_metgrid_levels  | = 61,                |
| num_metgrid_soil_le | evels = 4,           |
| dx                  | = 25000, 5000, 1000, |
| dy                  | = 25000, 5000, 1000, |
| grid_id             | = 1, 2, 3,           |
| parent_id           | = 0, 1, 2,           |
| i_parent_start = 1  | , 28, 55,            |

j\_parent\_start = 1, 28, 55, parent\_grid\_ratio = 1, 5, 5, parent\_time\_step\_ratio = 1, 5, 5, feedback = 1, smooth\_option = 0, /

### &physics

| mp_physics           |       |       |    | = 8, 8, 8, |
|----------------------|-------|-------|----|------------|
| cu_physics           |       |       |    | = 6, 6, 0, |
| ra_lw_physics        |       |       |    | = 4, 4, 4, |
| ra_sw_physics        |       |       |    | = 4, 4, 4, |
| bl_pbl_physics       |       |       |    | = 2, 2, 2, |
| sf_sfclay_physics    |       |       |    | = 2, 2, 2, |
| sf_surface_physics   |       |       |    | = 2, 2, 2, |
| radt                 | = 15, | 15,   | 1  | 5,         |
| bldt                 | = 0,  | 0,    | 0, |            |
| cudt                 | = 2,  | 2,    | 2, |            |
| icloud               | = 1,  |       |    |            |
| isfflx               |       |       |    | = 1,       |
| ifsnow               |       |       |    | = 1,       |
| num_soil_layers      |       | = 4,  |    |            |
| num_land_cat         |       | = 21, | ,  |            |
| sf_urban_physics     |       | = 0,  | 0  | , 0,       |
| surface_input_source | e     |       |    | = 1,       |
| /                    |       |       |    |            |

#### &fdda

/

#### &dynamics

w\_damping = 1,

| diff_opt        | = 1, 1, 1,                |
|-----------------|---------------------------|
| km_opt          | = 4, 4, 4,                |
| diff_6th_opt    | = 0, 0, 0,                |
| diff_6th_factor | = 0.12, 0.12, 0.12,       |
| base_temp       | = 290.                    |
| damp_opt        | = 3,                      |
| zdamp           | = 5000., 5000., 5000.,    |
| dampcoef        | = 0.2, 0.2, 0.2           |
| khdif           | = 0, 0, 0,                |
| kvdif           | = 0, 0, 0,                |
| epssm           | = 0.2, 0.2, 0.2,          |
| non_hydrostatic | = .true., .true., .true., |
| moist_adv_opt   | = 1, 1, 1,                |
| scalar_adv_opt  | = 1, 1, 1,                |
| gwd_opt         | = 1,                      |
| /               |                           |

# &bdy\_control

| spec_bdy_width | = 5,                       |
|----------------|----------------------------|
| spec_zone      | = 1,                       |
| relax_zone     | = 4,                       |
| specified      | = .true., .false.,.false., |
| nested         | = .false., .true., .true., |
| /              |                            |

# &grib2

# /

&namelist\_quilt nio\_tasks\_per\_group = 0, nio\_groups = 1, /

### S5. Figures



Figure S1: An example of the spatial autocorrelation analysis (Sects. 3.5.4, 4.4.2 in the main text). The left panel shows a 10-min rainfall map based on radar data from HPE #1. The right panel shows the 2-D autocorrelation field of the same map. The red ellipse represents the approximate  $e^{-1}$  correlation region and its axes are in black. Deviation of the major axes from the east-west axis (grey) is denoted  $\alpha$ . The short-to-long axis ratio defines the ellipticity of the autocorrelation field.



Figure S2: Accumulated precipitation (convective [RAINC] + non-convective [RAINNC] rainfall) in the coarsest WRF domain during HPE #5 (Table S1) and the approximate range of the Shacham radar (Fig. 1 in the main text). Notice the absence of rainfall within the radar range, as opposed to the radar QPE (Fig. 8a in the main text).