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Abstract. Heavy precipitation events (HPEs) can lead to nat-
ural hazards (e.g. floods and debris flows) and contribute
to water resources. Spatiotemporal rainfall patterns govern
the hydrological, geomorphological, and societal effects of
HPEs. Thus, a correct characterisation and prediction of rain-
fall patterns is crucial for coping with these events. Informa-
tion from rain gauges is generally limited due to the sparse-
ness of the networks, especially in the presence of sharp cli-
matic gradients. Forecasting HPEs depends on the ability of
weather models to generate credible rainfall patterns. This
paper characterises rainfall patterns during HPEs based on
high-resolution weather radar data and evaluates the perfor-
mance of a high-resolution, convection-permitting Weather
Research and Forecasting (WRF) model in simulating these
patterns. We identified 41 HPEs in the eastern Mediterranean
from a 24-year radar record using local thresholds based on
quantiles for different durations, classified these events into
two synoptic systems, and ran model simulations for them.
For most durations, HPEs near the coastline were charac-
terised by the highest rain intensities; however, for short du-
rations, the highest rain intensities were found for the in-
land desert. During the rainy season, the rain field’s centre of
mass progresses from the sea inland. Rainfall during HPEs is
highly localised in both space (less than a 10 km decorrela-
tion distance) and time (less than 5 min). WRF model simu-
lations were accurate in generating the structure and location
of the rain fields in 39 out of 41 HPEs. However, they showed
a positive bias relative to the radar estimates and exhibited er-

rors in the spatial location of the heaviest precipitation. Our
results indicate that convection-permitting model outputs can
provide reliable climatological analyses of heavy precipita-
tion patterns; conversely, flood forecasting requires the use
of ensemble simulations to overcome the spatial location er-
rors.

1 Introduction

Heavy precipitation events (HPEs) cause natural hazards
such as flash, riverine, and urban floods as well as land-
slides and debris flows; they also serve as a resource for
recharging groundwater and surface water reservoirs (e.g.
Bogaard and Greco, 2016; Borga et al., 2014; Borga and
Morin, 2014; Doswell et al., 1996; Nasta et al., 2018; Raveh-
Rubin and Wernli, 2015; Samuels et al., 2009; Taylor et al.,
2013; UN-Habitat, 2011). Diverse rainfall patterns during
HPEs cause different hydrological responses; thus, an accu-
rate representation of rainfall patterns during these events is
crucial for detecting and predicting climate-change-induced
precipitation changes (Maraun et al., 2010; Trenberth et al.,
2003). In particular, understanding the specific interactions
between rainstorms and catchments is critical in small wa-
tersheds, where accurate, high spatiotemporal resolution ob-
servations and forecasts are required (e.g. Bloschl and Siva-
palan, 1995; Cristiano et al., 2017). However, these data may
not be available through operational tools, such as rain gauge

Published by Copernicus Publications on behalf of the European Geosciences Union.



1228 M. Armon et al.: Radar-based characterisation of heavy precipitation

networks and coarse-scale weather models (e.g. commonly
used, global or even regional circulation models). Thus, high-
resolution observation and HPE forecasts remain a challenge
(Borga et al., 2011; Collier, 2007; Doswell et al., 1996).

Rain gauge data can be used to quantify general charac-
teristics of HPEs (such as rain intensity and depth on a point
scale), but their density is generally insufficient to adequately
represent the spatial gradients, particularly in the case of
sparsely gauged regions, short-lived events, and arid climates
(Amponsah et al., 2018; Kidd et al., 2017; Morin et al., 2009,
2020). This problem is enhanced in regions characterised by
high climatic gradients such as the eastern Mediterranean,
hereafter referred to as “EM” (El-Samra et al., 2018; Marra
et al., 2017; Marra and Morin, 2015; Morin et al., 2007;
Rostkier-Edelstein et al., 2014). Thus, a high-resolution char-
acterisation of HPEs in such regions must be supported by
other types of records. Remotely sensed precipitation es-
timates, such as those acquired from weather radars, pro-
vide the necessary spatiotemporal resolutions (e.g. 1 km and
5 min) and coverage (regional scale) and have been shown
to be useful for analysing specific events (e.g. Borga et al.,
2007; Dayan et al., 2001; Krichak et al., 2000; Smith et al.,
2001). Where continuous radar records exist, they have been
used in climatological studies as well (Belachsen et al., 2017;
Bližňák et al., 2018; Peleg and Morin, 2012; Saltikoff et al.,
2019; Smith et al., 2012). However, climatological charac-
terisations of rainfall patterns during HPEs are rare in the lit-
erature and often based on rain gauge identification of those
events (Panziera et al., 2018; Thorndahl et al., 2014).

High-resolution numerical weather prediction (NWP)
models allow for the simulation and forecasting of HPEs,
and, as added value, they enable an understanding of their
past and present patterns to be developed as well as a pre-
diction of possible future behaviours (Cassola et al., 2015;
Deng et al., 2015; El-Samra et al., 2018; Kendon et al.,
2014; Prein et al., 2015; Rostkier-Edelstein et al., 2014; Yang
et al., 2014). In particular, convection-permitting models are
increasingly used in weather forecasts, climatological stud-
ies, and event-based reanalyses (e.g. Ban et al., 2014; Fosser
et al., 2014; Hahmann et al., 2010; Khodayar et al., 2016;
Prein et al., 2015; Rostkier-Edelstein et al., 2015). Such mod-
els downscale global or regional NWP models and provide
a direct representation of convective rainfall that, due to its
high intensity and local characteristics, often plays a ma-
jor role in HPEs (e.g. Flaounas et al., 2018). In addition,
these models can provide 3-D fields of otherwise unmea-
surable meteorological variables, thereby contributing to our
understanding of the dynamics of HPEs. Studies based on
high-resolution NWP models commonly focus on specific
cases. For example, Zittis et al. (2017) examined the perfor-
mance of a high-resolution NWP model during five HPEs in
the EM and identified large discrepancies between grid- and
gauge-based precipitation datasets, making it hard to vali-
date the model. Only a few studies have examined the cli-
matology of model results, with the aim of either determin-

ing the atmospheric conditions that trigger HPEs or under-
standing the overall rainfall pattern in comparison to obser-
vational records (e.g. Flaounas et al., 2019; Kendon et al.,
2014; Khodayar et al., 2018). Commonly, climate change
studies based on high-resolution NWP models characterise
the expected changes in precipitation, focusing on rainfall
intensity or frequency, or some derived index (e.g. Ban et al.,
2014; Hochman et al., 2018b; Schär et al., 2016; Westra et al.,
2014).

A basic question, however, remains open: to what degree
is the model description of rainfall during HPEs credible?
Moreover, the model’s ability to reproduce rainfall patterns
can differ among synoptic types. To answer this question,
both a realistic spatiotemporal representation of rainfall dur-
ing HPEs and a large number of observed HPEs, triggered
by various synoptic systems, are necessary. In this paper, we
present a successful step in this direction based on a cor-
rected and calibrated 24-year-long record of weather radar
data recently developed for the EM, which has been found
to adequately represent extreme precipitation events (Marra
and Morin, 2015). As an essential step in understanding and
quantifying rainfall-generating processes involved in HPEs
and as a basis for a future study that will include downscaling
of climate change projections to understand changes in rain-
fall patterns, here we aim to (i) characterise high-resolution
rainfall patterns (seasonality, spatial distribution of inten-
sities, location, and spatiotemporal structure) during HPEs
in the hydroclimatically heterogeneous EM and (ii) assess
the capabilities of a regional convection-permitting weather
model to simulate these patterns. To this aim, we identified
all HPEs embedded in the radar record (41 events) and simu-
lated them using a convection-permitting Weather Research
and Forecasting (WRF) model (Skamarock et al., 2008). This
long and consistent high-resolution dataset is unique; thus, it
is interesting both for examining HPE climatology and as a
basis for convection-permitting model evaluation. Consider-
ing that our observations are based on radar data, they are
certainly not perfect. Therefore, we quantified and compared
several rainfall characteristics from both radar estimates and
simulated rainfall to evaluate the model’s ability to reproduce
the rainfall patterns and to obtain climatological characteris-
tics of HPEs.

The paper is structured as follows: Sect. 2 describes the
study region; the radar and weather model data are explained
in Sect. 3.1 and 3.2, respectively; identification and synoptic
classification of HPEs are presented in Sect. 3.3 and 3.4, re-
spectively; the methods used to evaluate model performance
are presented in Sect. 3.5; Sect. 4 presents the results of
the evaluation and characterisation of rainfall patterns during
HPEs; Sect. 5 provides a discussion; and Sect. 6 concludes.
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2 Study region

This study focuses on the EM region, where Mediterranean
climate (which can reach a mean annual precipitation of
more than 1000 mmyr−1) drops to hyperarid (less than
50 mmyr−1) over a short distance (Goldreich, 2012) (Fig. 1).
Precipitation is dominated by rainfall, and it mainly occurs
between October and May, with summer months (June to
September) being essentially dry (Kushnir et al., 2017). Most
of this rainfall is associated with cold north-westerly flows in
the rear part of Mediterranean cyclones (MCs). These MCs
pass above the warm water of the Mediterranean Sea, absorb-
ing moisture and precipitating it over the EM region (Alpert
et al., 2004; Alpert and Shay-EL, 1994; Armon et al., 2019;
Saaroni et al., 2010; Ziv et al., 2015). High surface water
temperature favours high-intensity rainfall and floods, most
commonly at the beginning of the rainy season and near the
sea. As the MCs move inland and towards the desert, a sub-
stantial amount of the moisture is lost, and rainfall occur-
rence and amounts are greatly reduced (Enzel et al., 2008).
In this arid region, HPEs are associated not only with MCs
(Kahana et al., 2002) but also with active Red Sea troughs
(ARSTs) (Ashbel, 1938; Krichak et al., 1997; De Vries et al.,
2013) and, more rarely, with tropical plumes (Armon et al.,
2018; Rubin et al., 2007; Tubi et al., 2017). Commonly, rain-
fall during ARSTs is of a spotty nature, can reach far into the
desert, and can be of very high intensity (Armon et al., 2018;
Sharon, 1972). Conversely, during tropical plumes, rainfall
is widespread, potentially covering most of the region simul-
taneously with moderate intensities. Desert HPEs frequently
result in large and sometimes devastating flash floods (e.g.
Armon et al., 2018; Dayan and Morin, 2006; Farhan and An-
bar, 2014; Kahana et al., 2002; Saaroni et al., 2014; Seager
et al., 2014). Projections for precipitation in the EM indicate
a substantial decrease in annual rainfall amounts (Giorgi and
Lionello, 2008). However, the importance of credible HPE
simulations stems from, among others, opposing trends that
may appear between the number and intensity of HPEs gen-
erated by different synoptic conditions (Alpert et al., 2002;
Hochman et al., 2018b, 2020; Marra et al., 2019); for exam-
ple, based on Dead Sea sedimentological data, it has been
suggested that when MC frequency is reduced, i.e. there is a
regional drought, the frequency of HPEs generated by AR-
STs may increase (Ahlborn et al., 2018).

3 Methodology and data

3.1 Weather radar data

The weather radar data used in this study consist of 24 hy-
drological years (September–August), between 1990–1991
and 2013–2014, observed by the Electrical Mechanical Ser-
vices (EMS/Shacham) non-Doppler C-band weather radar
(5.35 cm wavelength), located at Ben Gurion Airport (Fig. 1;

31.998◦ N, 34.908◦ E). Its effective range is 185 km. Raw
radar reflectivity data were translated to quantitative pre-
cipitation estimates (QPEs) using a fixed Z–R relationship
(Z = 316 ·R1.5) and applying physically based corrections
and gauge-based adjustment procedures (see details in Marra
and Morin, 2015). This produced QPEs at 1 km2 and roughly
5 min resolutions. Examining the radar QPE and compar-
ing it with rain gauges at an hourly and yearly resolution
yielded a root-mean-square error of 1.4–3.2 mmh−1 and 13–
220 mmyr−1, respectively, and a bias of 0.8–1.1 (hourly)
and 0.9–1.1 (yearly) (Marra and Morin, 2015). This archive
has previously been used for a series of studies focusing
on high-intensity precipitation, including precipitation fre-
quency analysis (Marra et al., 2017; Marra and Morin, 2015),
floods (Rinat et al., 2018; Zoccatelli et al., 2019), and char-
acterisation of convective rain cells (Belachsen et al., 2017;
Peleg et al., 2018). A few of the following issues potentially
affecting the QPE should be mentioned. The radar was turned
off during the dry season and, for technical reasons, some-
times during the wet season; thus, a few severe storms were
missed and are not included in the archive. A long-term de-
cline in the availability and quality of radar data might have
decreased the number of high-quality archived HPEs over
the years, mainly since 2010. As we did not aim to provide
a complete climatology, these aspects were not expected to
influence the results of the study. For technical reasons, the
radar products were not always available at their intended
temporal resolution (approximately 5 min) and longer gaps
may exist between consecutive radar scans. Gaps of less than
20 min between consecutive radar scans were linearly inter-
polated to recreate the 5 min resolution; gaps of more than
20 min were treated as missing data. Due to the uneven spa-
tial distribution of the rain gauges, adjustment procedures
may inadequately represent the south-easternmost areas cov-
ered by the radar, where the gauge network is most sparse.
Finally, due to overshooting of the radar beam, precipitation
occurring east of the Dead Sea (Fig. 1) is generally underes-
timated.

3.2 WRF model configuration

The WRF model was configured using three two-way nested
domains, with a 1 : 5 resolution ratio between them (Fig. 1)
and 68 vertical levels (model top is at 25 hPa). The inner
domain (551 pixels× 551 pixels) was set at a 1 km2 hori-
zontal resolution, in order to be comparable with the radar
data. To comply with the Courant–Friedrichs–Lewy numer-
ical stability criterion, model time steps in the innermost
domain were between 4 and 8 s (Warner, 2011). However,
to spare computer storage, outputs were saved at 10 min
intervals. When analysed, the WRF grid was interpolated
using nearest-neighbour interpolation from a Lambert pro-
jection grid to a similar-sized grid on a transverse Merca-
tor projection, as in the radar archive. It is important to
note that a 1 km2 spatial resolution enables the explicit res-
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Figure 1. Study region. (a) Climate zones in the eastern Mediterranean, three nested domains used in the weather model (D1-3; purple,
green, and blue) and the radar domain (red). (b) Mean annual rainfall isohyets, radar, and innermost model domains. Climatic classification
is from the Atlas of Israel (2011). Basemap source: U.S. National Park Service.

olution of convection, without the use of parameterisation
(e.g. Prein et al., 2015). The two outer domains used the
WRF Tiedtke scheme for the parameterisation of convection
(Tiedtke, 1989; C. Zhang et al., 2011). The model input data
were 6-hourly ERA-Interim reanalyses, at approximately an
80 km horizontal resolution, and with 60 vertical levels, in-
cluding sea surface temperature, along with basic meteoro-
logical parameters (Dee et al., 2011). The model was used to
simulate the HPEs identified in the radar archive (Sect. 3.3;
Table S1 in the Supplement). Each simulation started 24 h
prior to the beginning of the event, rounded down to the pre-
vious 6 h, and finished at the end of the HPE, rounded up to
the next 6 h. Therefore, the spin-up period of each simulation
was at least 24 h. Additional model settings, presented in Ta-
ble 1, were selected because they are considered suitable for
convection-permitting simulations (e.g. Romine et al., 2013;
Schwartz et al., 2015).

3.3 HPE identification

HPEs have various definitions in different research fields and
geographical regions. For example, climatologically, HPEs
are commonly associated with a specific time interval (i.e.
sub-daily to a number of consecutive days) during which pre-
cipitation depth surpasses a threshold representing a prede-

fined quantile (e.g. 95th or 99th) or a high but constant in-
tensity (e.g. 10, 20, or 50 mmd−1; see Drobinski et al., 2014;
Nuissier et al., 2011; Westra et al., 2014; X. Zhang et al.,
2011). In contrast, hydrological definitions usually focus on
the resulting flood. In general, a good definition of a HPE
should also include the areal dimension to enable hydrolog-
ical and social impacts to be taken into account (Easterling
et al., 2000).

Here we define HPEs by the exceedance of local, quantile-
based thresholds over a sufficiently large area. The decision
to set local thresholds was due to the sharp climatic gradi-
ent characterising the study area. To decrease the computa-
tional effort and guarantee adequate temporal sampling, the
HPE identification was based on a radar database compris-
ing hourly intervals for which at least 60 % of the expected
radar scans were available (Marra et al., 2017). For a set of
durations between 1 and 72 h, we defined the threshold as
the 99.5th quantile of the non-zero (i.e. more than 0.1 mm)
hourly amounts observed in each radar pixel. The range of
examined durations was chosen to represent both short- and
long-lived HPEs. It should be noted that the same storm can
be identified as a HPE for multiple durations. Depending on
the duration and location, the amounts obtained are equiva-
lent to annual return periods of roughly 2–10 years (Fig. 2).
To account for the spatial scale, we classified all time inter-
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Table 1. WRF model settings and specifications.

Outer nest Middle nest Inner nest

Domains

Spatial resolution (km) 25× 25 5× 5 1× 1
Temporal resolution (s) ∼ 100 ∼ 20 4–8
Domain size (pixels) 100× 100 221× 221 551× 551
Number of vertical layers 68 68 68
Model top (hPa) 25 25 25

Physics

Cumulus scheme (outer and middle nests only) Tiedtke (Tiedtke, 1989; C. Zhang et al., 2011)
Microphysical scheme Thompson (Thompson et al., 2008)
Radiative transfer scheme RRTMG short wave and long wave (Iacono et al., 2008)
Planetary boundary layer scheme Mellor–Yamada–Janjić (Janjić, 1994)
Surface layer scheme Eta similarity scheme (Janjić, 1994)
Land surface model Unified Noah land surface (Tewari et al., 2004)

Figure 2. The 99.5 % rain intensity quantile of each radar pixel for durations of 1 h (top-left panel) to 72 h (bottom-right panel). Notice
the change in the colour scale between different durations. Also shown are annual return periods of the rain-intensity threshold averaged
over nine pixels around 11 locations (generalised extreme value fit of the rain gauge annual maxima series, using the method of probability-
weighted moments, with records of at least 44 years). These computed annual return periods range between 1.8 and 10.4 years. White areas
found mostly to the east of the radar were masked out according to the black line in Fig. 6c (Sect. 4.2).

vals during which at least 1000 pixels (i.e. 1000 km2) ex-
ceed their local threshold as HPEs. Jointly, these thresholds
(99.5 % for each pixel, and an aggregation of 1000 pixels for
an event) settle the trade-off between having too many (or
too few) events and accounting for HPEs that are too local
(or only including the most widespread rainstorms). These
selected thresholds enable the analysis of a reasonable num-
ber of diverse HPEs, with some being quite local and others
more widespread.

The selection procedure yielded 76–98 individual events
for each of the examined durations, summing to 120 when
overlaps between durations were included. Similar to Marra

and Morin (2015), storms were separated by at least 24 h with
less than 100 pixels displaying rainfall of more than 0.1 mm.
As the ERA-Interim data are available at a 6 h resolution,
rainstorms that were too short (less than 12 h) were excluded
from the analysis. Storms longer than 144 h were excluded
to avoid major changes in sea surface temperature during
events. In addition, events were discarded manually when the
radar data were abundantly contaminated by ground clutter
due to anomalous propagation or when other data-quality is-
sues were observed. The final list of HPEs consisted of 41 in-
dependent events spanning 3.4±1.6 d on average (Table S1).
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For each of these events, a filter was used to remove pix-
els with residual ground clutter. Pixels in which the prob-
ability of rain detection (POD, i.e. the fraction of time in
which the pixel exceeds 0.1 mmh−1) exceeds 10 % and is
larger than 1.9 times the average POD of the surrounding
area (25km× 25 km) were removed. The extent of the ex-
plored area and of the ratio were chosen subjectively after
examining ranges between 1 and 3 (for the ratio) and 5 and
50 km (for the areal extent). Additional areas known to be
persistently contaminated by ground echoes (from our expe-
rience and earlier studies) were masked out manually (e.g.
the circular area near the radar). Together, these procedures
excluded approximately 0.5 % of the radar pixels.

3.4 Synoptic classification

We classified the HPEs into two classes representing the
most common rainy synoptic circulation patterns prevailing
in the region: MC and ARST. To do so, we relied on the
semi-objective synoptic classification by Alpert et al. (2004),
based on daily (at 12:00 UTC) meteorological fields at the
1000 hPa pressure level from the NCEP/NCAR reanalysis
(2.5◦ spatial resolution). We classified a HPE as a MC if one
of the following conditions occurred: (i) most of the days
comprising the HPE were considered, according to Alpert
et al. (2004), as days with either a MC or a high-pressure
system following a MC; (ii) one of the days during the HPE
was a MC and none of them were an ARST. Similarly, we
classified a HPE as an ARST if (i) most of its days were clas-
sified as ARST according to Alpert et al. (2004) or (ii) one
of its days was an ARST and none of them were a MC.
The above-mentioned tropical plume synoptic pattern (Rubin
et al., 2007; Tubi et al., 2017) is not part of our classification
because of its low frequency and because it does not appear
in near-sea-level pressure meteorological fields. Specifically,
one HPE (HPE 41; Table S1) was characterised, during its 5 d
span, first by the prevalence of a tropical plume (Armon et al.,
2018) and then by a MC; it was classified here as a MC. De-
spite the simplification, these two classes have recently been
shown to exhibit distinct characteristics of rainfall intensity
distribution (Marra et al., 2019). Indeed, 85 % and 15 % of
HPEs were classified as MCs and ARSTs, respectively (Ta-
ble S1), reasonably following the expected proportions of the
two synoptic circulation patterns (Goldreich et al., 2004; Saa-
roni et al., 2010).

3.5 Evaluation of simulated rain fields

Inaccurate initial conditions in the presence of non-linear
precipitation-generation processes, along with the presence
of atmospheric instabilities, may limit the atmospheric pre-
dictability and, consequently, modelling skill (Anthes et al.,
1985). Moreover, increasing the model resolution may pose
difficulties in a pixel-by-pixel evaluation of the forecasts (e.g.
Davis et al., 2006; Mass et al., 2002). Approaches that are

more suitable for high-resolution rainfall fields range from
simple visual comparisons to more sophisticated, object-
oriented or filtering methods capable of representing spa-
tiotemporal properties of the fields (e.g. Davis et al., 2006;
Gilleland et al., 2009; Roberts and Lean, 2008). In this study,
we applied visual comparisons and several numerical mea-
sures to compare the observed radar QPE with the WRF-
derived rain field.

3.5.1 Fractions skill score

To evaluate rainfall accumulation for different neighbour-
hood sizes (namely, spatial scales), we used the method sug-
gested by Roberts and Lean (2008). The methodology in-
cludes a conversion of the continuous rain field to a binary
field based on the exceedance of a given rain-depth thresh-
old. The fraction of model-output positive pixels (i.e. pixels
that have exceeded the threshold) within a certain neighbour-
hood size is then compared with the matching fraction from
the radar QPE, via the fractions skill score (FSS) statistic
(Sect. S1 in the Supplement). When the forecast is perfect
and unbiased, i.e. when an equal number of observed (in our
case, radar) and forecasted (WRF) pixels exceed the thresh-
old, the FSS is equal to 1. If there is a bias, the FSS will tend
asymptotically to a lower value. To quantitatively evaluate
the model’s ability to predict the observed rainfall above the
selected threshold, within a close-enough distance, the uni-
form FSS (halfway between a random forecast and a perfect
skill forecast, yielding a hit rate of 0.5; Sect. S1) is also calcu-
lated. A FSS that is larger than the uniform FSS is considered
skilful. It is important to note that if the FSS exceeds the uni-
form FSS on too large a spatial scale, the forecast might still
be skilful, but it is not useful. We applied the FSS method
to the cumulative rain field, comparing the radar QPEs and
WRF rainfall output (Sect. 4.3).

3.5.2 Structure–amplitude–location analysis

To evaluate the characteristics of the WRF precipitation fore-
cast errors, we used the object-oriented structure–amplitude–
location (SAL) analysis (Wernli et al., 2008) (Sect. S2 in the
Supplement). As in the FSS analysis, it was applied to the cu-
mulative rain field. The SAL analysis splits the rain field into
three distinct components and yields a skill score for the fore-
cast of each of them; in each of the components, a zero score
indicates a perfect forecast. The amplitude component (A)
expresses the model’s over- or underestimation of the total
rainfall for a specific rainstorm (with A ∈ [−2,2], and A= 1
or A=−1 indicating over- and underestimation by a fac-
tor of 3, respectively). The location component (L ∈ [0,2])
sums the differences between modelled and observed (i) cen-
tre of mass of precipitation and (ii) average distance between
the centre of mass and the location of precipitation objects
that constitute the rain field (i.e. connected regions in which
the cumulative rainfall exceeds 1/15 of the maximal cumu-
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lated value; Wernli et al., 2008). The structure component
(S ∈ [−2,2]) quantifies the tendency of the forecasted pre-
cipitation objects to be either too smooth (positive values) or
too noisy (negative values) relative to the observations.

3.5.3 Depth–area–duration curves

Areal rainfall amounts are crucial drivers of the hydrolog-
ical response and are important for understanding rainfall
structure and triggering mechanisms (e.g. Armon et al., 2018;
Durrans et al., 2002; Kalma and Franks, 2003; Zepeda-Arce
et al., 2000). To quantify and compare observed and sim-
ulated areal rainfall amounts, we used depth–area–duration
(DAD) curves, which represent the areal extent for which
given rainfall depths over specific durations are exceeded
(Zepeda-Arce et al., 2000).

3.5.4 Autocorrelation structure of rain fields

High-intensity, small-scale convective rain cells are among
the main factors generating flash floods in small, mountain-
ous and desert catchments (e.g. Armon et al., 2018; Doswell
et al., 1996; Merz and Blöschl, 2003), and their fine spa-
tiotemporal structure directly affects the potential of rain
gauge monitoring (Marra and Morin, 2018). To analyse the
convective rain structure, we computed the spatial autocorre-
lation structure of the maps containing convective elements
from both the observed radar QPE and the WRF output using
the methodology presented by Marra and Morin (2018) (an
example is given in Fig. S1). We interpolated the radar QPEs
to 10 min intervals to match the model’s temporal resolution,
and defined all rain maps in which at least one convective rain
cell (defined as a connected region ≥ 3 km2 with rain inten-
sity exceeding 10 mmh−1 and including at least one pixel ex-
ceeding 25 mmh−1) is observed as convective rainfall fields
(Marra and Morin, 2018). We computed the 2-D spatial au-
tocorrelation function of the convective fields following the
method in Nerini et al. (2017). A three-parameter exponential
function (Eq. 1) was fitted to the 2-D spatial autocorrelation
to quantify the correlation distance:

r(h)= ae
−

(
h
b

)c

, (1)

where h is the lag distance, b is the correlation distance (the
distance at which the correlation drops to r = e−1), and a

and c are the nugget and shape parameters of the curve, re-
spectively. Equation (1) results in an approximation of the
1-D autocorrelation function of convective rain fields. The
spatial heterogeneity of the autocorrelation field is quantified
by calculating the deviation of the 2-D autocorrelation field
from isotropy, following the approach in Marra and Morin
(2018). To this end, we defined the ellipticity of the 2-D au-
tocorrelation as the ratio of the minor to major axis of the
(approximated) ellipse encompassing the r = e−1 region of
the spatial autocorrelation field (Fig. S1).

Figure 3. Monthly probability of occurrence of rainy days near the
radar location (green; Bet Dagan rain gauge; 32.0◦ N, 34.8◦ E), and
of HPEs from the radar archive (orange). Hatching represents HPEs
classified as ARSTs.

The temporal autocorrelation is computed by converting
the 2-D spatial domain to a 1-D array and adopting time
as the second dimension, as proposed by Marra and Morin
(2018). It is worth noting that the computed temporal corre-
lation distance neglects advection (Eulerian perspective) and
is therefore shorter than the correlation distance obtained in
a Lagrangian perspective.

4 Results

4.1 Quasi-climatology of HPEs

Of the 41 identified HPEs, 35 occurred during MC synoptic
prevalence and the rest during ARST prevalence. Despite the
dependence of the identification on the quality and availabil-
ity of the radar data, our analysis can be considered “quasi-
climatological”, as the selected HPEs do not exhibit obvi-
ous biases with respect to the rain climatology in the region:
(i) their seasonality follows the seasonal pattern of EM rainy
days (Fig. 3), although HPEs occur more frequently at the
beginning of the winter, presumably due to the high sea sur-
face temperatures; (ii) HPEs are identified throughout the
radar archive (with zero to seven HPEs per year); (iii) the
frequency of the prevailing synoptic circulation patterns dur-
ing HPEs (Table S1) resembles the frequency observed on
rainy days (Marra et al., 2019); and (iv) HPEs characterised
by ARST prevalence are common only during the transition
seasons (Fig. 3 in this paper; e.g. De Vries et al., 2013).

For most examined durations, rain amounts defining the
HPEs are larger near the Mediterranean coast, extending a
few kilometres off- and onshore (Fig. 2). This resembles
the observed pattern of high rain intensities near the coast,
rather than inland (Karklinsky and Morin, 2006; Peleg and
Morin, 2012; Sharon and Kutiel, 1986), which has also been
reported for extreme precipitation quantiles observed from
both weather radar and satellite sensors (Marra et al., 2017).
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In contrast, short durations (less than 12 h) exhibit the highest
rain intensities in the arid areas of the region. The frequency
of rain in the arid areas is lower than in the rest of the re-
gion (Goldreich, 2012); thus, the 99.5 % quantiles are based
on fewer data. Nevertheless, the reported higher extreme rain
amounts for shorter durations are in agreement with previ-
ous studies, which showed that highly localised convective
rainfall is more common during HPEs in the desert than in
other climatic environments in the EM (Marra et al., 2017;
Marra and Morin, 2015; Sharon, 1972). In the mountains,
the opposite case is seen: rainfall is produced more signifi-
cantly through stratiform (or shallow convection) processes,
and rain amounts for short durations are therefore relatively
lower (Sharon and Kutiel, 1986). For the longer durations,
rain intensities in the mountains are comparable to the in-
tensities near the coast, probably resulting from the tendency
of rain to persist in orography-affected regions (e.g. Panziera
et al., 2015; Tarolli et al., 2012).

Affected by higher rain intensities, the centre of mass of
the precipitation field for each of the HPEs is located near the
EM coastline (Fig. 4). Nevertheless, a seasonal pattern ap-
pears, with a general landward shift of the centre of mass dur-
ing the rainy season (Fig. 4). This is caused by land–sea dif-
ferential heating and heat capacities and resembles the sea-
sonal pattern of rain intensities in the EM (Goldreich, 1994;
Sharon and Kutiel, 1986). In fact, this points out the ob-
served preference of convective clouds to form above high-
temperature surfaces, i.e. the sea surface or nearby coastal
plains in autumn or early winter as well as farther inland in
the spring. In terms of seasonality, the WRF-simulated cen-
tres of mass exhibit a similar, even if slightly less obvious,
landward pattern. It must be noted that ARST-type events
in the WRF results are biased eastwards compared with the
radar results, which could be related to the WRF’s worse per-
formance with respect to such events (e.g. Sect. 4.3). More-
over, the exact location of the radar-observed centre of mass
can suffer from range degradation, which may cause these
centres to be biased towards the radar location.

According to the definition applied in this study, a given
event can be considered a HPE for more than one dura-
tion. This can happen when the thresholds associated with
the examined durations (Sect. 3.3) are exceeded either at the
same location or in different regions. The durations associ-
ated with each HPE are listed in Table S1. The co-occurrence
of each HPE duration with the rest of the examined durations
is shown in Fig. 5; these co-occurrence values are similar to
values determined in the Alps by Panziera et al. (2018). For
example, 79 % of the HPEs at a 24 h duration are also HPEs
at a 72 h duration. Figure 5 indicates a high dependence (i.e.
co-occurrence) of the short-duration HPEs (3–12 h). Simi-
larly, there is a high dependence within the long-duration
HPEs (24–72 h). Nevertheless, even the shortest (duration)
HPEs examined here show a rather high co-occurrence with
the longest (duration) HPEs (probabilities in all cases greater
than or equal to 0.5).

4.2 Bias

Figure 6 shows the rainfall accumulated during all HPEs as
estimated by the weather radar, modelled by the WRF, and
measured by rain gauges (Fig. 6a, b, and d, respectively).
Bias, defined herein as the normalised difference between
WRF rainfall and radar QPE

(
WRF−radar

radar

)
, in percent, is

shown in Fig. 6c. In 69 % of the studied region, the bias lies
between +200 % and −67 %, although some areas show a
strong positive bias (Fig. 6c). The three stations highlighted
in the figure (the values shown for radar and WRF represent
the average of the nine pixels surrounding the gauge loca-
tions) show how this large bias is mostly caused by radar
underestimation. In fact, these areas are generally located far
from the radar or in the eastern portion of the radar coverage,
where radar QPE suffers from range degradation and beam
overshoot due to the presence of mountains. In some other
areas, the bias seems related to residual beam blockages. Un-
derestimation (a bias less than zero) is also apparent in re-
gions with ground clutter, and some spatial inconsistencies
related to the interpolation of a few fully blocked beams can
also be noticed. To avoid interference of these radar estima-
tion inaccuracies with our results, we focus only on the areas
in which the bias lies between +200 % and −67 % (Fig. 6c).
Still, a portion of the area close to the radar is characterised
by negative bias, which could be attributed to simulated rain
intensities that are too low. A similar pattern was also shown
in Rostkier-Edelstein et al. (2014) where it was attributed to
intensities that were too low during deep MCs.

4.3 Visual, neighbourhood and object-based evaluation
of WRF model simulations

Visual comparison of observed (radar) and simulated (WRF)
rainfall fields yielded mostly (subjectively) good results in
terms of the spatial rainfall patterns, such as widespread ver-
sus localised rainfall. As an example, Fig. 7 presents a well-
simulated HPE case (HPE 1, Table S1). In addition, the dis-
tributions of rainfall among pixels were generally well repre-
sented (Fig. 7d). At the same time, pixel-based comparisons
were deemed inappropriate for such an analysis, as shown
in the scatter plot (Fig. 7e). Most of the examined HPEs led
to similar observations, with the exception of two HPEs in
which the WRF model clearly failed to represent the rain-
fall patterns. An example of such a poor simulation is given
in Fig. 8 (HPE 5, Table S1). Both of these poorly simu-
lated HPEs were characterised by relatively short total storm
spans (1.7 and 2 d), just exceeding the durations that defined
them as HPEs (6 and 3–24 h, respectively). Synoptically, they
were classified as ARSTs, a system generally characterised
by local, short-lived convection associated with a localised
rainfall-triggering mechanism (Armon et al., 2018). The skill
of mesoscale models (e.g. WRF) is poorer in simulating these
types of events, mainly due to their short predictability and
stochastic nature (see e.g. Yano et al., 2018). Although a
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Figure 4. Centres of mass of cumulative rainfall of each of the HPEs derived from (a) the radar QPE and (b) WRF. Colours represent the
month of occurrence. Synoptic classification according to Sect. 3.4.

Figure 5. Probability of a HPE with a given examined duration
listed on the x axis conditioned on being a HPE with a duration
listed on the y axis.

deeper understanding of these aspects can be beneficial for
improving future simulations, it falls outside the scope of this
study and requires future dedicated research efforts.

The FSS of the first HPE (Fig. 7f) further manifests the
accuracy of the simulated rainfall fields. The forecast has a
larger FSS than the uniform FSS for all of the examined cu-
mulative rainfall amounts less than or equal to 50 mm, even
at the model resolution (1 km). For larger cumulative rainfall,
the FSS is unstable due to the limited number of observations
of such cases; thus, no conclusions about the suitability of the
results can be made for the occurrence of such high cumula-
tive rainfall. It is only for the higher rainfall amounts, e.g.
125 mm, corresponding to less than 1 % of the pixels in this

HPE, that the model forecast is unskilled at all spatial scales,
i.e. the uniform FSS outperforms the WRF forecast FSS (yet,
these results are also based on a limited number of data).

During EM rainstorms, cumulative rainfall values are dis-
tributed unevenly in space, and extremely high rainfall depths
are embedded within the larger aerial coverage of lower rain-
fall depths (e.g. Armon et al., 2018; Dayan and Morin, 2006;
Morin et al., 2007). Thus, forecasting the spatial distribution
(location and spatial frequency) of low cumulative rainfall
is easier than forecasting the distribution of the high end of
cumulative rainfall, even when averaging is conducted over
large scales. The minimal scale (Roberts and Lean, 2008) at
which the FSS of the model’s forecast is higher than the uni-
form FSS was calculated for the occurrence of a range (1–
200 mm) of cumulative rainfall depths for all of the identi-
fied HPEs (Fig. 9). This allows for the estimation of the min-
imal scales for skilful rainfall detection for rain depths that
are equal to or greater than an arbitrary cumulative rain depth
threshold. For example, the original model resolution yielded
a skilful forecast for the occurrence of cumulative rainfall
depths of less than 25 mm in 50 % of the HPEs (Fig. 9). The
figure also shows that the occurrence of cumulative rainfall
exceeding 45 mm, in most cases, is only skilfully forecasted
on a relatively large spatial scale (tens of kilometres). Dur-
ing ARSTs, the minimal scale was much higher than during
MCs (not shown); however, it is important to remember that
two of these HPEs were poorly simulated.

The SAL analysis (Fig. 10) showed good performance of
the model, except for a substantial positive amplitude bias
(inter-event amplitude component median of 0.80, i.e. a bias
of 130 %, as defined in Sect. 4.2, and interquartile range
of 0.37–1.02). Two events stood out with a bias smaller
than zero; these were the above-mentioned poorly simulated
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Figure 6. Total cumulative rainfall for all 41 HPEs from (a) radar-derived QPE, (b) WRF-derived rainfall, and (d) daily rain gauges.
(c) WRF-to-radar rainfall accumulation bias (normalised difference; Sect. 4.2). The 200 % and −67 % bias region is marked in black. Total
accumulations (mm) measured at three rain gauges from regions where radar QPE is considered to be inferior are highlighted in panel (d);
corresponding radar and WRF nine-pixel averaged values (mm) centred over the same locations are shown in panels (a) and (b), respectively.

HPEs. In general, MC-type HPEs exhibited much greater
bias than ARSTs (inter-event amplitude component median
of 0.85 versus−0.07). However, it must be noted that the me-
dian of ARST-type HPEs includes the two poor simulations
and is therefore predicted to be more negative. Surprisingly,
where visual comparisons seemed better, and the structure
component was closer to zero, the amplitude component ac-
tually suffered from more positive biases; for example, the
structure component of HPE 1 (Fig. 7, Table S1) is 0.04,
while its amplitude component is 1.03. Furthermore, the me-
dian amplitude of events characterised by a structure compo-
nent larger than the median structure is 27 % higher than the
amplitude of events with a structure smaller than the median
value.

The structure component was well modelled in most cases,
showing the ability of the WRF to accurately generate pre-
cipitation objects (0.06 and −0.06 to +0.26 for the median
and interquartile range, respectively; 0.05 and 0.09 are the
medians for MC- and ARST-type events, respectively). This
is particularly important in regions and for events where rain-
fall is generated via both convective and stratiform processes,

or when intense rainfall is embedded within larger-scale low-
intensity precipitation (Wernli et al., 2009). The slight posi-
tive tendency of the structure component could either indi-
cate that the model creates rain fields that are too smooth
(lower intensity rain and objects that are too large), that radar
data are too noisy, or, most probably, a combination of both
error sources.

Relatively low values of the location component (0.25 and
0.18 to 0.31 for the median and interquartile range, respec-
tively; 0.26 and 0.22 are the medians for MC- and ARST-type
events, respectively) demonstrate the model’s high capability
to spatially distribute precipitation objects. Medially, 34 %
of this component is composed of the error in the centre of
mass location (namely L1; i.e. a median error of 30 km in
the location of the centre of mass), and the rest is from the
average location of each precipitation object (L2). Namely,
the model prediction of the centre of mass of the rain field
is quite satisfying, but the prediction of individual precipi-
tation objects is a bit poorer. The contribution from the L2
component to the location component (Sect. S2 in the Sup-
plement) indicates that modelled precipitation objects are not
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Figure 7. HPE 1 (09:00 LT, 2 November 1991 to 09:00 LT, 5 November 1991; all times in the figure are given in local winter time; see
Table S1). Cumulative rainfall from (a) radar-derived QPE, (b) WRF-derived rainfall, and their ratio (c). A pixel-based comparison between
rainfall accumulations using a histogram (d; zero rainfall is omitted) and scatter plot (e). Notice that although the rainfall distribution is quite
well represented (d), results of a single pixel might deviate substantially from the 1 : 1 line (e; dashed). The fractions skill score (FSS) for the
same event for various cumulative rainfall thresholds is presented in panel (f). Dashed lines are uniform FSSs for the same rainfall thresholds.
The minimal scale for a valuable prediction for a 100 mm rain depth (at the crossing of the FSS and the uniform FSS; see Sect. S1 in the
Supplement for details) is also shown (dashed black line).

Figure 8. Same as Fig. 7a–c but for HPE 5 (09:00 LT, 31 March 1993 to 02:00 LT, 2 April 1993; Table S1).

distributed the same as the observed ones. This is probably
due to a mismatch in the positioning of the simulated cells.
Given the good ability of the radar to represent the location of
rain cells, attenuation and range-degradation of the radar data
should only have minor effects on L2. In either case, location

values are rather small, exhibiting good spatial distribution of
precipitation objects. Nonetheless, the same two challenging
ARST-type HPEs for which the model was unable to simu-
late the rainfall in a satisfying manner stand out with high
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Figure 9. Minimal scale (see Fig. 7f and Sect. S1 in the Supple-
ment) derived for all 41 events for various rainfall thresholds.

Figure 10. Structure–amplitude–location (SAL) analysis (Wernli
et al., 2008). Each dot represents one event (classified according
to Sect. 3.4). Dashed lines are median component values, and the
grey rectangle represents the 25th–75th percentile range. The loca-
tion component median value is 0.25, and its 25th–75th range is
0.18–0.31. More details are given in Sect. S2 in the Supplement.

location values (0.46 and 0.85), yielding large spatial incon-
sistency with respect to observations (see above, e.g. Fig. 8).

The overall positive bias seen in the amplitude compo-
nent (Fig. 10) could result from an underestimation of the
radar QPE or an overestimation of the WRF simulation. Pos-
sible reasons leading to radar underestimation have been dis-
cussed above and may contribute to this bias even after the
most severely biased regions have been masked. However,
this positive bias still needs to be considered when address-
ing the actual cumulative rainfall amounts predicted by the
model. In contrast with the overall bias (Sect. 4.2) almost no
event showed a negative bias. Rostkier-Edelstein et al. (2014)
mainly attributed positive biases to deep lows over complex-
terrain regions.

The overall good representation of precipitation objects
implies that precipitation processes generated by the model

represent actual processes and rainfall characteristics (Wernli
et al., 2009).

4.4 Characterisation of rainfall patterns

4.4.1 Areal rainfall

Figure 11 shows the depth–area–duration (DAD) curves ob-
tained from all 41 HPEs for durations of 30 min, 6 h, and 24 h
from radar QPEs (Fig. 11a, c, and e, respectively) and WRF
(Fig. 11b, d, and f, respectively). When referring to DAD
analysis, the term “duration” represents the time period, over
the course of each HPE, where maximum rainfall depths
were observed. A major increase in cumulative rainfall with
increased duration is observed for both the radar and WRF
curves (Fig. 11g): for example, based on the radar, an area of
103 km2 is medially covered by 9 mm for a duration of 0.5 h,
which increases to 35 and 60 mm for 6 and 24 h, respectively
(corresponding values from the WRF-derived rainfall are 4,
25, and 50 mm). This increase could be explained by either
continuous rainfall or the frequent arrival of rain cells into
the region. The latter increases the wet area and the cumu-
lative rainfall in areas that have already experienced rainfall
and is a major characteristic of HPEs in the EM (e.g. Armon
et al., 2018, 2019; Sharon, 1972). Furthermore, over longer
durations, this causes DAD curves for different events to be
more similar to one another (e.g. Fig. 11e, f).

The inter-event spread and the difference in the DAD
curves for MC and ARST (Fig. 11a–f) illustrate the various
types of HPEs identified here. These types range between
rainstorms exhibiting only a minimal increase in rainfall area
with time, i.e. almost all of the rainfall precipitates during a
short period; rainstorms composed of many rain cells passing
through the same area; or long-lasting rainstorms. These re-
sults confirm previous findings by Armon et al. (2018) based
on a more limited number of events: HPEs classified as AR-
STs (Table S1) tend to have higher rain intensities for smaller
regions and shorter periods than HPEs classified as MCs.
MCs only exhibit higher rain intensities over larger regions
and for longer durations.

It is important to note the difference between radar QPE-
and WRF-derived rainfall DAD curves. Higher rain values
in the radar QPE over the range of smaller areas is the most
obvious difference (Fig. 11g). Although these higher values
may, at first glance, indicate that the WRF is unable to re-
produce the high-intensity rainfall of the HPEs in the EM,
it should be remembered that high-intensity radar QPEs can
be of lower accuracy due to contamination from residual
ground clutter or hail for short durations. This may affect
the QPEs of the smaller areas more selectively. For instance,
for one of the HPEs, an area of more than 100 km2 received
a rain amount of greater than or equal to 100 mm in 0.5 h
(Fig. 11a) – a value that exceeds the 200-year return period
for the area (Morin et al., 2009). Other notable differences are
some ARST-classified HPEs with WRF-derived DAD curves
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Figure 11. Depth–area–duration (DAD) curves showing the maximal amount of rainfall as a function of area, derived from the radar
QPE (a, c, e) and from the WRF model (b, d, f) for 0.5 h (a, b), 6 h (c, d), and 24 h (e, f). Green and orange lines represent HPEs clas-
sified as MCs and ARSTs, respectively. Thick lines represent the inter-event median. This median is compared between radar-QPE and WRF
rainfall in panel (g).

(Fig. 11b, d, f) consisting of the two WRF-unresolved HPEs
mentioned above, and yielding a median ARST curve that is
much lower than the radar-derived curve.

The reported differences between WRF- and radar-derived
curves result in an overall greater area-over-threshold radar
curves for the high-rainfall thresholds, especially for the
short durations. For long durations and low rainfall thresh-
olds, the WRF area is larger (Fig. 11), reflecting the positive
bias mentioned above.

4.4.2 Autocorrelation structure of convective rainfall

HPEs in the EM are commonly composed of highly localised
convective rain cells. This is well reflected in the sharp de-
crease of the 1-D autocorrelation describing the convective
rain fields (Fig. 12a, b) obtained using all of the convective
rain fields throughout the 41 HPEs (n= 11731 snapshots
for radar and n= 14323 for WRF). The median decorrela-
tion distance (defined as the distance in which the correlation
drops to r = e−1, i.e. parameter b of the 1-D exponential fit,
Eq. 1) of all convective rain snapshots from the radar data
is 9 km (7 km using the WRF-derived rainfall) and ranges
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Figure 12. A 1-D exponential fitting of the rain field spatial (a, b)
and temporal (c, d) autocorrelation values from radar-derived
QPE (a, c) and from the WRF model (b, d). These were computed
using 10 min snapshots of rain and only for periods where convec-
tive rainfall is present. Quantiles in spatial autocorrelation (a, b)
represent 11 731 snapshots of radar 10 min data (10 095 of which
come from MC-type events) and 14 323 WRF rainfall snapshots
(12 220 of which come from MC-type events). Temporal autocor-
relation plots (c, d) are composed of the 41 examined HPEs (grey)
as well as their median values for all events (purple), for MC-type
only (green) and for ARST-type only (orange).

between 3 and 23 km (for the 10 % and 90 % quantiles, re-
spectively; 2 and 20 km using WRF). The median decorrela-
tion distance during ARSTs is shorter than during MCs, as
obtained from both the radar (7 and 10 km, respectively for
ARSTs and MCs) and the WRF (5 and 7 km, respectively).
These values are comparable to previously reported obser-
vations (e.g. Ciach and Krajewski, 2006; Morin et al., 2003;
Peleg and Morin, 2012; Villarini et al., 2008) and are some-
what larger than the reported values for the south-eastern part
of the area by Marra and Morin (2018). However, it should be
noted that Marra and Morin (2018) examined 1 min rainfall
fields versus the 10 min fields examined here.

The median of the temporal decorrelation distance
(Fig. 12c, d) was roughly 4 min (approximately 14 min for
the WRF), and it ranged between less than 1 and 19 min
(10 % and 90 % quantiles, respectively; 3 and 29 min using
WRF). Despite agreeing with the results of Marra and Morin
(2018), the exact temporal decorrelation distance is some-
what dubious, as it is shorter than the time step used for its
calculation (10 min). For this reason, we do not report the
small differences that exist between the two synoptic sys-
tems. The larger temporal correlation in the WRF-derived

rainfall is expected, because radar QPE suffers from temporal
inconsistencies (e.g. when a convective cell passes through
a region with beam blockages). Nevertheless, such a short
temporal decorrelation confirms the local and spotty nature
of rainfall characterising HPEs in the region.

The declining pattern of the 1-D autocorrelation overlooks
the 2-D spatial heterogeneity of the autocorrelation field.
The ellipticity of the 2-D autocorrelation yielded a median
across all convective rain fields value of 0.56 (0.62 and 0.54
in ARST- and MC-type events, respectively), with a range
of 0.33–0.80 (10 %–90 % quantiles). WRF-derived ellipticity
values were almost the same: 0.58 (0.68 and 0.68 in ARST-
and MC-type events, respectively), with a range of 0.33–
0.79. These autocorrelation ellipses in the radar data were
oriented 13◦ anticlockwise from the east–west axis (median
value; 7 and 14◦ for ARST- and MC-types, respectively) and
22◦ for the WRF ellipses (10 and 24◦ for ARST- and MC-
types, respectively). These values are similar to the orien-
tation of radar rain cells in the eastern part of the region
(Belachsen et al., 2017), but they are somewhat different
from the orientation of autocorrelation fields from the south-
eastern part of the region (Marra and Morin, 2018). Orienta-
tions found in the present analysis cover the entire evolution
of HPEs and, thus, include both south-west (mainly at the
beginning of the storm) and north-west (mainly at the end
of the storm) alignments of rain cells. Therefore, they are
oriented more anticlockwise than the autocorrelation fields
from the south-eastern part of the region (Marra and Morin,
2018), which commonly represents rainfall at the end of a
rainstorm (Armon et al., 2019). Moreover, Marra and Morin
(2018) examined 1 min snapshots, whereas here advection
can play a role in the examined 10 min time interval. Finally,
Marra and Morin (2018) only analysed 11 events; thus, inter-
event variance may still play a large role in their results. The
high agreement between modelled and observed rain field el-
lipticity and orientation also demonstrates the high skill of
the WRF simulations in accurately representing convection
in the region and, thus, reproducing rain cell properties.

4.5 Summary of results

This work characterises rainfall patterns during 41 HPEs in
the EM and evaluates the ability of a high-resolution WRF
model to properly simulate their cumulative rain field and
spatiotemporal behaviour, with a specific emphasis on their
convective component and the prevailing synoptic system. A
successful outcome will pave the way for downscaling global
climate projections to induced changes in rainfall patterns on
a regional scale during HPEs, with an understanding of the
strengths and weaknesses of the regional results. However, it
is important to note that the identification of HPEs in global
climate models constitutes yet another challenge (see discus-
sions e.g. in Chan et al., 2018; Gómez-Navarro et al., 2019;
Meredith et al., 2018).
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To overcome the diverse climatology of the EM, we iden-
tified HPEs using pixel-based weather radar climatology.
We used a uniquely long, quality-controlled and gauge-
adjusted high-resolution weather radar archive to charac-
terise the rainfall patterns. A convection-permitting high-
resolution WRF model configuration was used to simulate
the same HPEs, and the results of this modelling effort were
compared to the radar QPEs. For most of the 41 HPEs, model
simulations gave valuable results: using the FSS we deter-
mined that (i) WRF simulations are highly accurate for cu-
mulative rainfall less than 25 mm (Fig. 9; Sect. 4.3), and
(ii) accumulation of more than 45 mm produces variable re-
sults among different cases (Figs. 7, 8, and 9; Sect. 4.3). In
other words, skilful results are gained if the model output is
averaged over at least a few tens of kilometres. SAL anal-
ysis of cumulative rainfall showed that the rainfall location
and structure were correctly reproduced by the model and
were similar to the weather radar data observations in 39 out
of the 41 HPEs. Conversely, rainfall amplitude was highly
(positively) biased, with some of the bias likely due to radar
underestimation; however, a model positive bias cannot be
excluded. Furthermore, we found that ARST-type HPEs are
not as well simulated as MC-type events, at least in terms of
the FSS and the spatial structure of rainfall.

In general, rain amounts forming HPEs are higher near
the EM coastline with the exception of (i) short (examined)
durations, for which the highest rain amounts are observed
in the desert regions, and (ii) the longer-duration HPEs, for
which rain amounts in mountainous regions are compara-
ble to those on the coast. Identified HPEs occurred dur-
ing the wet season (October–April), primarily in November–
February. Their centre of mass was close to the Mediter-
ranean coastline and shifted landward during the season. We
analysed the areal distribution of rainfall for various dura-
tions, the autocorrelation structure of the convective rainfall
fields, and DAD curves to obtain quantitative information
on the characteristics of the rainfall fields, the ability of the
WRF model to simulate them, and the processes generating
them, such as the aggregation of small and short-lived rain
cells to produce a HPE.

5 Discussion

5.1 Spatial distribution of rain-intensity thresholds
defining HPEs

High-intensity threshold-forming HPEs near the Mediter-
ranean Sea (Fig. 2) are expected, due to its warm surface
waters and high moisture fluxes; they are also apparent in
other regions of the Mediterranean (e.g. Dayan et al., 2015;
Ivatek-Šahdan et al., 2018; Khodayar et al., 2018; Pastor
et al., 2002; Peleg et al., 2018; Tarolli et al., 2012). High
rain intensities in the desert are somewhat more intriguing.
For example, Warner (2004) mentioned that there is con-

trasting evidence with respect to whether rain intensities in
the desert are higher than in non-desert regions. An opposing
trend between mean annual rainfall and short-duration rain
intensities was also described by Sharon and Kutiel (1986),
using rain gauges, and by Marra and Morin (2015), using
both rain gauges and weather radar. This trend is related to
the higher surface temperatures in desert regions, which may
enhance convective activity (e.g. Peleg et al., 2018), as well
as to a deeper boundary layer (e.g. Gamo, 1996; Marsham
et al., 2013) and the prevalence of rainfall from ARST circu-
lation patterns, which generally cause higher rain intensities
(Armon et al., 2018; Nicholson, 2011; Sharon and Kutiel,
1986; De Vries et al., 2013). Such a sharp spatial change
in the climatology of the rain intensities defining HPEs can
only be captured using high-resolution, high-spatiotemporal-
coverage data (such as the radar QPE presented here) and
reproduced by high-resolution, convection-permitting mod-
els.

5.2 Multiple-duration HPEs and their relation to flash
floods

Mediterranean-climate, and even more so desert-climate
HPEs, can produce rain amounts of the same order of mag-
nitude as the mean annual rainfall (e.g. Nicholson, 2011;
Schick, 1988; Tarolli et al., 2012). Thus, the frequent co-
occurrence of short- and long-duration HPEs is to be ex-
pected, and dividing events into short versus long duration is
not straightforward. However, our dataset comprises events
with different characteristics: local and intense as well as
widespread; the rainfall-triggering mechanisms and potential
hydrological impact can be quite different.

Comparison of the DAD curves in Fig. 11 with reported
floods in Mediterranean and desert environments in the EM
(Zoccatelli et al., 2019) shows that a portion of the HPEs
analysed here are prone to produce floods in smaller catch-
ments and in desert regions, characterised by rather short (ap-
proximately 7 h) and low total precipitation rain spells. Other
HPEs analysed here could generate floods in larger catch-
ments and in Mediterranean climate regions, characterised
by longer rain spells and higher rain depths (1 d and 52 mm,
respectively) (Zoccatelli et al., 2019). Specifically, the con-
vective part of the rainstorm is known to generate the highest-
magnitude floods, even in Mediterranean climate areas (e.g.
Rinat et al., 2018; Tarolli et al., 2012). The short spatiotem-
poral autocorrelation distances observed for the convective
rain fields once again highlight the spottiness of HPE rainfall
in the EM region (Sharon, 1972), and they were well simu-
lated by the WRF model (Fig. 12).

5.3 Identification and characterisation of HPEs using
weather radar and a high-resolution weather model

ARST synoptic circulation is often associated with flash
floods in the desert part of the region (Ashbel, 1938; Kahana
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et al., 2002; Krichak et al., 1997), and its rainfall is com-
monly caused by the mesoscale triggering of convection (Ar-
mon et al., 2018); therefore, it is less predictable (e.g. Keil
et al., 2014), as is also evident from this study (e.g., Figs. 10,
11). ARSTs are also characterised by smaller rain field au-
tocorrelation distance (Fig. 12). Thus, it is crucial for future
studies to understand the reasons for the poor modelling re-
sults observed for 2 of these 41 HPEs. This is evident in the
coarser model domains as well (Fig. S2). Possible aspects to
be inspected include the parameterisation schemes adopted
(Table 1); however, as we used convection-permitting reso-
lution, problems could arise from other issues. In particular,
as errors in the moisture field tend to propagate rapidly, the
correct amount of moisture must be entered into the model
in the correct location to properly reproduce rainfall on the
mesoscale (e.g. Rostkier-Edelstein et al., 2014; Zhang et al.,
2007). In this study, we used ERA-Interim reanalysis data
(approximately an 80 km horizontal resolution), which may
not be accurate enough to resolve some conditions, but they
are on the same scale as outputs of global climate models.
Future studies should consider using higher-resolution in-
put data, such as the newly released ERA5 data (Hersbach,
2016).

Nonetheless, the autocorrelation structure of the rain fields
was in generally well simulated for most HPEs (Sect. 4.4.2).
This suggests that even if an event is less predictable, some of
the rainfall characteristics can still be simulated. This result
is encouraging in terms of the use of convection-permitting
models, e.g. in nowcasting, because it means that wind pat-
terns (determining orientation and ellipticity) are well fore-
casted.

The use of a long record of radar QPEs enabled us to pro-
vide a high-resolution quasi-climatological characterisation
of the rainfall patterns during HPEs with a resolution and
spatial coverage that cannot be achieved using rain gauges.
However, rainfall characteristics could not be adequately re-
trieved in regions suffering from radar data-acquisition prob-
lems. Nevertheless, the resultant skill of the WRF rainfall
fields supports its use for representing HPEs in regions that
are not well covered by radars. As the analyses were per-
formed in a region exhibiting a strong climatic gradient, we
suggest that similar results be obtained in other parts of the
world, at least in areas characterised by similar climates.

The main added value of convection-permitting models is
seen in area averages, rather than over small-scale regions
(Roberts, 2008). Therefore, over large catchments (e.g. larger
than a few hundred square kilometres, as suggested by the
minimal scale presented in Fig. 9), their forecasts are ex-
pected to be relatively useful and accurate. Nonetheless, the
use of a deterministic convection-permitting model is still
unsatisfactory for pinpointing the highest observed rain accu-
mulations. Although such models are becoming more com-
mon in weather and climate forecasting and research (Prein
et al., 2015), they are still not adequate for short-term hy-
drological applications, such as flash flood predictions. The

structure of the high cumulative rainfall is predicted quite
well; however, it still suffers from a positive bias, and is not
exactly well located (e.g. Figs. 9, 10). In order to provide
better flood predictions, especially for small catchments and
for flash flood generation controlled by infiltration-excess,
there is a need for more structured approaches, such as en-
semble forecasts and data assimilation of meteorological ob-
servations (e.g. Diomede et al., 2014; Gustafsson et al., 2018;
Hamill et al., 2008; Rostkier-Edelstein et al., 2014). These
would provide probabilistic (rather than deterministic) infor-
mation, and could therefore account for the uncertainty char-
acterising the location in high-resolution models (e.g. Alfieri
et al., 2012; Vincendon et al., 2011).

Characterisation of rainfall patterns during HPEs has spe-
cial significance in the EM: on the one hand, the region suf-
fers from a severe water shortage; on the other hand, it is
prone to devastating floods. Both are predicted to worsen in
response to climate change (e.g. Alpert et al., 2002; Kelley
et al., 2015; Sowers et al., 2010). Modelling could help un-
derstand the effects of climate change on these two aspects
but, before assessing the projections for a change in rain-
fall patterns induced by climate change, we need to consider
what aspects of these patterns are still not well captured by
weather models, posing a challenge for future predictions.
For example, we showed here that rainfall during ARSTs is
less adequately forecasted. These ARST HPEs are known
to cause flash floods and, as ARSTs might occur more fre-
quently due to global warming (Hochman et al., 2018a), this
low predictability should be addressed.

The work presented herein is a step towards better un-
derstanding rainfall patterns during HPEs in the EM; we
are currently extending the research to relate specific rain-
fall patterns to atmospheric conditions at high-resolution and
to analyse how the predicted climate change will affect the
rainfall characteristics outlined in this paper. Another re-
search direction worth following would involve combining
our procedures with satellite-based climatology. However,
to date, satellite products present temporal (≥ 0.5 h, mostly
≥ 3 h) and spatial (≥ 0.04◦, mostly≥ 0.25◦) resolutions (e.g.
Ashouri et al., 2015; Gehne et al., 2016) that are insufficient
to adequately sample the fine-scale properties of convective
rainfall fields, particularly in arid areas.

6 Conclusions

This study presents the identification of HPEs using a
weather radar. These HPEs were then simulated using a high-
resolution NWP model and evaluated, focusing on the spa-
tiotemporal patterns of the rainfall fields. The main conclu-
sions of this characterisation and evaluation are as follows:

– HPEs in the EM are common between October and
April, and their occurrences are focused in the period
between November and February. The HPEs’ centre of
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mass is located near the Mediterranean coastline and
moves landward during the rainy season.

– For most examined storm durations, the rain amounts
forming HPEs (i.e. larger than 99.5 % of all rainy hours)
are higher near the Mediterranean coast. For short dura-
tions, the highest HPE rain amounts are located in the
desert, and for long durations, mountainous and coastal
regions exhibit similar values.

– HPEs consist of small convective rain cells (spatial and
temporal decorrelation of roughly 9 km and 4 min, re-
spectively) that form a highly variable rainy area over
short durations. The size of the rainy region increases
with duration and becomes more homogeneous between
events.

– A convection-permitting high-resolution WRF model
can simulate most HPEs, apart from some of the short-
est, most localised storms, associated mainly with AR-
STs.

– Rainfall structure is well simulated. Nevertheless, it is
slightly less variable than the observed structure, and is
characterised by a significant positive bias in rain vol-
ume. This can be, at least partially, attributed to radar
underestimations.

– The location of rainfall is generally predicted properly.
About a third of the location error comes from a spatial
shift of 30 km in the centre of mass, and the rest comes
from the difference in the location of specific precipita-
tion objects.

– The minimal scale for forecasting total rainfall depths
of less than 25 mm is 1 km. It raises to a few tens of
kilometres in cumulative rainfall of more than or equal
to 25 mm, and even more for rain depths of more than
45 mm. For such large cumulative rain depths the mini-
mal scale becomes highly variable between events.

Use of a high-resolution weather model that can reproduce
rainfall patterns during HPEs is of great importance in pre-
dicting the hydrometeorology of flood-producing rainstorms.
However, these must be elaborated using, e.g. ensemble runs
of the model. Convection-permitting models may also help
assess changes in precipitation induced by climate change,
although if they are composed of HPEs that are less skilfully
predicted at present, they should be examined with caution.

Israel Meteorological Service: Rain gauge data, available
at: https://ims.data.gov.il/, last accessed: May 2019.
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Homar, V., Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagou-
vardos, K., Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C.,
Mariotti, A., Richard, E., Romero, R., Rotunno, R., Roussot,
O., Ruin, I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlen-
hoet, R., and Wernli, H.: HyMeX: A 10-Year Multidisciplinary
Program on the Mediterranean Water Cycle, B. Am. Meteo-
rol. Soc., 95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-
00242.1, 2014.

Durrans, S. R., Julian, L. T., and Yekta, M.: Estimation of
Depth-Area Relationships using Radar-Rainfall Data, J. Hy-
drol. Eng., 7, 356–367, https://doi.org/10.1061/(ASCE)1084-
0699(2002)7:5(356), 2002.

Easterling, D. R., Evans, J. L., Groisman, P. Y., Karl, T. R.,
Kunkel, K. E., and Ambenje, P.: Observed variability and
trends in extreme climate events: A brief review, B. Am.

Meteorol. Soc., 81, 417–425, https://doi.org/10.1175/1520-
0477(2000)081<0417:OVATIE>2.3.CO;2, 2000.

El-Samra, R., Bou-Zeid, E., and El-Fadel, M.: To what ex-
tent does high-resolution dynamical downscaling improve
the representation of climatic extremes over an orographi-
cally complex terrain?, Theor. Appl. Climatol., 134, 265–282,
https://doi.org/10.1007/s00704-017-2273-8, 2018.

EMS Mekorot Projects Ltd: Rainfall data from a C-band
weather radar, http://www.emsmekorotprojects.com/, last access:
May 2019.

Enzel, Y., Amit, R., Dayan, U., Crouvi, O., Kahana, R., Ziv, B., and
Sharon, D.: The climatic and physiographic controls of the east-
ern Mediterranean over the late Pleistocene climates in the south-
ern Levant and its neighboring deserts, Global Planet. Change,
60, 165–192, https://doi.org/10.1016/j.gloplacha.2007.02.003,
2008.

European Centre for Medium-Range Weather Forecasts: ERA-
Interim Project, Single Parameter 6-Hourly Surface Anal-
ysis and Surface Forecast Time Series, updated monthly,
https://doi.org/10.5065/D64747WN, 2012.

Farhan, Y. and Anbar, A.: Fragile Landscape : Impact and Conse-
quences of May 2014 Flash-flood Disaster in the Aqaba Area,
Southern Jordan, Research Journal of Environmental and Earth
Sciences, 6, 451–465, 2014.

Flaounas, E., Kotroni, V., Lagouvardos, K., Gray, S. L., Rysman,
J. F., and Claud, C.: Heavy rainfall in Mediterranean cyclones.
Part I: contribution of deep convection and warm conveyor belt,
Clim. Dynam., 50, 2935–2949, https://doi.org/10.1007/s00382-
017-3783-x, 2018.

Flaounas, E., Fita, L., Lagouvardos, K., and Kotroni, V.: Heavy rain-
fall in Mediterranean cyclones, Part II: Water budget, precipi-
tation efficiency and remote water sources, Clim. Dynam., 53,
2539–2555, https://doi.org/10.1007/s00382-019-04639-x, 2019.

Fosser, G., Khodayar, S., and Berg, P.: Benefit of convec-
tion permitting climate model simulations in the representa-
tion of convective precipitation, Clim. Dynam., 44, 45–60,
https://doi.org/10.1007/s00382-014-2242-1, 2014.

Gamo, M.: Thickness of the dry convection and large-scale sub-
sidence above deserts, Bound.-Lay. Meteorol., 79, 265–278,
https://doi.org/10.1007/BF00119441, 1996.

Gehne, M., Hamill, T. M., Kiladis, G. N., and Trenberth, K. E.:
Comparison of global precipitation estimates across a range
of temporal and spatial scales, J. Climate, 29, 7773–7795,
https://doi.org/10.1175/JCLI-D-15-0618.1, 2016.

Gilleland, E., Ahijevych, D., Brown, B. G., Casati, B., and
Ebert, E. E.: Intercomparison of Spatial Forecast Ver-
ification Methods, Weather Forecast., 24, 1416–1430,
https://doi.org/10.1175/2009WAF2222269.1, 2009.

Giorgi, F. and Lionello, P.: Climate change projections for the
Mediterranean region, Global Planet. Change, 63, 90–104,
https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.

Goldreich, Y.: The spatial distribution of annual rainfall in
Israel - a review, Theor. Appl. Climatol., 50, 45–59,
https://doi.org/10.1007/BF00864902, 1994.

Goldreich, Y.: The climate of Israel: observation, research
and application, Springer Science & Business Media,
https://doi.org/10.1007/978-1-4615-0697-3, 2012.

Goldreich, Y., Mozes, H., and Rosenfeld, D.: Radar analysis of
cloud systems and their rainfall yield in Israel, Israel J. Earth Sci.,

www.hydrol-earth-syst-sci.net/24/1227/2020/ Hydrol. Earth Syst. Sci., 24, 1227–1249, 2020

https://doi.org/10.1130/2006.2401(04)
https://doi.org/10.1007/s007040170038
https://doi.org/10.5194/nhess-15-2525-2015
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JHM-D-14-0126.1
https://doi.org/10.1002/jgrd.50569
https://doi.org/10.1175/MWR-D-13-00071.1
https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
https://doi.org/10.1175/BAMS-D-12-00242.1
https://doi.org/10.1175/BAMS-D-12-00242.1
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(356)
https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(356)
https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2
https://doi.org/10.1007/s00704-017-2273-8
http://www.emsmekorotprojects.com/
https://doi.org/10.1016/j.gloplacha.2007.02.003
https://doi.org/10.5065/D64747WN
https://doi.org/10.1007/s00382-017-3783-x
https://doi.org/10.1007/s00382-017-3783-x
https://doi.org/10.1007/s00382-019-04639-x
https://doi.org/10.1007/s00382-014-2242-1
https://doi.org/10.1007/BF00119441
https://doi.org/10.1175/JCLI-D-15-0618.1
https://doi.org/10.1175/2009WAF2222269.1
https://doi.org/10.1016/j.gloplacha.2007.09.005
https://doi.org/10.1007/BF00864902
https://doi.org/10.1007/978-1-4615-0697-3


1246 M. Armon et al.: Radar-based characterisation of heavy precipitation

53, 63–76, https://doi.org/10.1560/G68K-30MN-D5V0-KUHU,
2004.

Gómez-Navarro, J. J., Raible, C. C., García-Valero, J. A., Mess-
mer, M., Montávez, J. P., and Martius, O.: Event selec-
tion for dynamical downscaling: a neural network approach
for physically-constrained precipitation events, Clim. Dynam.,
https://doi.org/10.1007/s00382-019-04818-w, 2019.
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