Articles | Volume 23, issue 11
https://doi.org/10.5194/hess-23-4825-2019
https://doi.org/10.5194/hess-23-4825-2019
Research article
 | 
27 Nov 2019
Research article |  | 27 Nov 2019

Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution

H. J. Ilja van Meerveld, James W. Kirchner, Marc J. P. Vis, Rick S. Assendelft, and Jan Seibert

Related authors

HESS Opinions: Towards a common vision for the future of hydrological observatories
Paolo Nasta, Günter Blöschl, Heye R. Bogena, Steffen Zacharias, Roland Baatz, Gabriëlle De Lannoy, Karsten H. Jensen, Salvatore Manfreda, Laurent Pfister, Ana M. Tarquis, Ilja van Meerveld, Marc Voltz, Yijian Zeng, William Kustas, Xin Li, Harry Vereecken, and Nunzio Romano
EGUsphere, https://doi.org/10.5194/egusphere-2024-1678,https://doi.org/10.5194/egusphere-2024-1678, 2024
Short summary
Changes in flowing drainage network and stream chemistry during rainfall events for two pre-Alpine catchments
Izabela Bujak-Ozga, Jana von Freyberg, Margaret Zimmer, Andrea Rinaldo, Paolo Benettin, and Ilja van Meerveld
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-67,https://doi.org/10.5194/hess-2024-67, 2024
Revised manuscript under review for HESS
Short summary
HESS Opinions: A few camels or a whole caravan?
Franziska Maria Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
EGUsphere, https://doi.org/10.5194/egusphere-2024-864,https://doi.org/10.5194/egusphere-2024-864, 2024
Short summary
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 27, 4609–4635, https://doi.org/10.5194/hess-27-4609-2023,https://doi.org/10.5194/hess-27-4609-2023, 2023
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024,https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024,https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
To what extent do flood-inducing storm events change future flood hazards?
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024,https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024,https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024,https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary

Cited articles

Ågren, A., Lidberg, W., and Ring, E.: Mapping Temporal Dynamics in a Forest Stream Network – Implications for Riparian Forest Management, Forests, 6, 2982, https://doi.org/10.3390/f6092982, 2015. 
Assendelft, R. S. and van Meerveld, H. J.: Studibach stream networks, Data set, Zenodo, https://doi.org/10.5281/zenodo.3543674, 2019. 
Baker, M. E., Weller, D. E., and Jordan, T. E.: Effects of stream map resolution on measures of riparian buffer distribution and nutrient retention potential, Landscape Ecol., 22, 973–992, https://doi.org/10.1007/s10980-007-9080-z, 2007. 
Benettin, P., Bailey, S. W., Campbell, J. L., Green, M. B., Rinaldo, A., Likens, G. E., McGuire, K. J., and Botter, G.: Linking water age and solute dynamics in streamflow at the Hubbard Brook Experimental Forest, NH, USA, Water Resour. Res., 51, 9256–9272, https://doi.org/10.1002/2015wr017552, 2015a. 
Benettin, P., Kirchner, J. W., Rinaldo, A., and Botter, G.: Modeling chloride transport using travel time distributions at Plynlimon, Wales, Water Resour. Res., 51, 3259–3276, https://doi.org/10.1002/2014wr016600, 2015b. 
Download
Short summary
Flowing stream networks extend and retract seasonally and in response to precipitation. This affects the distances and thus the time that it takes a water molecule to reach the flowing stream and the stream outlet. When the network is fully extended, the travel times are short, but when the network retracts, the travel times become longer and more uniform. These dynamics should be included when modeling solute or pollutant transport.