Articles | Volume 23, issue 1
https://doi.org/10.5194/hess-23-371-2019
https://doi.org/10.5194/hess-23-371-2019
Research article
 | 
22 Jan 2019
Research article |  | 22 Jan 2019

Seasonal streamflow forecasts for Europe – Part 2: Sources of skill

Wouter Greuell, Wietse H. P. Franssen, and Ronald W. A. Hutjes

Related authors

Seasonal streamflow forecasts for Europe – Part I: Hindcast verification with pseudo- and real observations
Wouter Greuell, Wietse H. P. Franssen, Hester Biemans, and Ronald W. A. Hutjes
Hydrol. Earth Syst. Sci., 22, 3453–3472, https://doi.org/10.5194/hess-22-3453-2018,https://doi.org/10.5194/hess-22-3453-2018, 2018
Short summary
Evaluation of five hydrological models across Europe and their suitability for making projections under climate change
W. Greuell, J. C. M. Andersson, C. Donnelly, L. Feyen, D. Gerten, F. Ludwig, G. Pisacane, P. Roudier, and S. Schaphoff
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-10289-2015,https://doi.org/10.5194/hessd-12-10289-2015, 2015
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024,https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Divergent future drought projections in UK river flows and groundwater levels
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024,https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024,https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024,https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Accounting for hydroclimatic properties in flood frequency analysis procedures
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024,https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary

Cited articles

Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., Krzeminski, B., and Pappenberger, F.: Skilful seasonal forecasts of streamflow over Europe?, Hydrol. Earth Syst. Sci., 22, 2057–2072, https://doi.org/10.5194/hess-22-2057-2018, 2018. 
Baehr, J., Fröhlich, K., Botzet, M., Domeisen, D. I., Kornblueh, L., Notz, D., Piontek, R., Pohlmann, H., Tietsche, S., and Müller, W. A.: The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model, Clim. Dynam., 44, 2723–2735, 2015. 
Bazile, R., Boucher, M.-A., Perreault, L., and Leconte, R.: Verification of ECMWF System 4 for seasonal hydrological forecasting in a northern climate, Hydrol. Earth Syst. Sci., 21, 5747–5762, https://doi.org/10.5194/hess-21-5747-2017, 2017. 
Bierkens, M. F. P. and van Beek, L. P. H.: Seasonal predictability of European discharge: NAO and hydrological response time, J. Hydrometerol., 10, 953–968, 2009. 
Crochemore, L., Ramos, M. H., Pappenberger, F., Andel, S. J. V., and Wood, A. W.: An experiment on risk-based decision-making in water management using monthly probabilistic forecasts, B. Am. Meterol. Soc., 97, 541–551, 2016. 
Short summary
This paper explains why forecasts of river flow in Europe for a time between 1 and 7 months have skill. The forecasts were produced with a water model. The model reacts to forecasts of weather variables like precipitation, which tend to have little skill and hence hardly contribute to the skill in the forecasts of river flow. The paper shows when and where these forecasts have skill; this is mostly due to knowledge of the amount of water in the soil at the time the forecasts are made.