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Abstract. This paper uses hindcasts (1981–2010) to inves-
tigate the sources of skill in seasonal hydrological forecasts
for Europe. The hindcasts were produced with WUSHP (Wa-
geningen University Seamless Hydrological Prediction sys-
tem). Skill was identified in a companion paper. In WUSHP,
hydrological processes are simulated by running the Vari-
able Infiltration Capacity (VIC) hydrological model forced
with an ensemble of bias-corrected output from the seasonal
forecast system 4 (S4) of the European Centre for Medium-
Range Weather Forecasts (ECMWF). We first analysed the
meteorological forcing. The precipitation forecasts contain
considerable skill for the first lead month but hardly any sig-
nificant skill at longer lead times. Seasonal forecasts of tem-
perature have more skill. Skill in summer temperature is re-
lated to climate change and is more or less independent of
lead time. Skill in February and March is unrelated to climate
change. Different sources of skill in hydro-meteorological
variables were isolated with a suite of specific hydrologi-
cal hindcasts akin to ensemble streamflow prediction (ESP).
These hindcasts show that in Europe, initial conditions of soil
moisture (SM) form the dominant source of skill in run-off.
From April to July, initial conditions of snow contribute sig-
nificantly to the skill. Some remarkable skill features are due
to indirect effects, i.e. skill due to forcing or initial condi-
tions of snow and soil moisture at an earlier stage is stored in
the hydrological state (snow and/or soil moisture) of a later
stage, which then contributes to persistence of skill. Skill in
evapotranspiration (ET) originates mostly in the meteorolog-
ical forcing. For run-off we also compared the full hindcasts
(with S4 forcing) with two types of ESP (or ESP-like) hind-
casts (with identical forcing for all years). Beyond the second
lead month, the full hindcasts are less skilful than the ESP (or

ESP-like) hindcasts, because inter-annual variations in the S4
forcing consist mainly of noise which enhances degradation
of the skill.

1 Introduction

Society may benefit from seasonal hydrological forecasts
(Viel et al., 2016; Soares and Dessai, 2016; Crochemore et
al., 2016), i.e. hydrological forecasts for future time periods
from more than 2 weeks up to about a year (Doblas-Reyes
et al., 2013). Such predictions can be exploited to optimise,
for example, hydropower energy generation (Hamlet et al.,
2002), navigability of rivers in low flow conditions (Li et al.,
2008) and irrigation management (Ghile and Schulze, 2008;
Mushtaq et al., 2012) to decrease crop yield losses.

This is the second paper about seasonal hydrological fore-
casts for Europe produced with WUSHP (Wageningen Uni-
versity Seamless Hydrological Prediction system), a dynam-
ical (i.e. model-based) system. In summary, the forecasts of
WUSHP are made with the Variable Infiltration Capacity
(VIC) hydrological model, which uses bias-corrected output
of forecasts from the seasonal forecasting system 4 (S4) of
the European Centre for Medium-Range Weather Forecasts
(ECMWF) as meteorological forcing. The system is proba-
bilistic.

In the present and in the companion paper (Greuell et
al., 2018), WUSHP is used as a research tool for purposes
of academic interest. In the companion paper, the set-up of
WUSHP has been described, and spatial and temporal vari-
ations of skill, or the lack thereof, in run-off and discharge
in Europe have been established by means of hindcasts. Sig-
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nificant skill was found for many regions, varying by initial-
isation and target months. For lead month 2, hotspots of sig-
nificant skill in run-off are situated in Fennoscandia (for tar-
get months from January to October), the southern part of
the Mediterranean (from June to August), Poland, northern
Germany, Romania and Bulgaria (mainly from November to
January) and western France (from December to May). In
general, the spatial pattern of significant skill in run-off was
found to be fixed in space, while the skill decreased in mag-
nitude with increasing lead time. Some significant skill re-
mained even at the end of the hindcasts (7 months).

To extend the evaluation of the system, its reliability was
analysed. The main finding is that during the 2 first lead
months the system is not far from being perfectly reliable
but that with progressing lead time reliability is reduced. We
also found that discrimination skill and reliability have simi-
lar characteristics, e.g. for longer lead times the highest val-
ues of reliability are found in some regions with considerable
amounts of discrimination skill. Details of this analysis are
provided in Appendix A.

The current paper aims to identify the sources of the skill
in WUSHP and is structured in two main parts. In the first
part, an analysis of the skill in the most important meteoro-
logical forcing variables (precipitation, 2 m temperature and
incoming short-wave radiation from S4) is presented. For S4,
this was done earlier by Kim et al. (2012) for the boreal win-
ter months (DJF), with initialisation on the first of November.
For that case, they found that in Europe, S4 has no skill in
the precipitation forecasts and some skill in the temperature
forecasts for southern Sweden, southern Finland, the region
southeast of Saint Petersburg and northern Germany. Scaife
et al. (2014) analysed the skill for the same target months
and starting date but with another prediction system, namely
the Met Office Global Seasonal Forecast System version 5
(GloSea5). They found that, while the GloSea5 tempera-
ture forecasts for Europe contain hardly any significant skill,
the GloSea5 forecasts of the North Atlantic Oscillation are
correlated significantly with observed temperatures in north-
ern and southern Europe. This means that there is untapped
predictability in the GloSea5 temperature forecasts. We will
analyse predictability of the mentioned output variables of S4
for the whole continent and will consider all combinations of
lead and target months.

The second line of analysis aims to investigate the reasons
for the presence or absence of skill in hydro-meteorological
variables by means of a series of specific hindcasts that iso-
late potential sources of skill, namely meteorological forc-
ing, the initial conditions of soil moisture (SM) and the ini-
tial conditions of snow. Such an approach was explored ear-
lier by Wood et al. (2005), Bierkens and van Beek (2009)
and Koster et al. (2010). Each specific hindcast is basically
identical to the standard hindcasts that we analysed in the
companion paper, named full streamflow hindcasts (Full-
SHs; climate-model-based hindcasts” according to Yuan et
al., 2015). However, in the specific hindcasts, one or two

of the sources of predictability are isolated by eliminating
the effect of all of the other sources through the removal of
their inter-annual variation. In the ensuing analysis the skills
in hydro-meteorological variables found in the different spe-
cific hindcasts will then be compared among themselves and
with the skill from the FullSHs.

These specific hindcasts are similar in structure to and in-
spired by the conventional ensemble streamflow prediction
(ESP) technique (e.g. Wood and Lettenmaier, 2008; Shukla
and Lettenmaier, 2011; Singla et al., 2012), which can, like
our specific hindcasts, be used to isolate sources of skill.
The main difference between the specific hindcasts of this
study and the ESP technique is that in ESP and its variant
reverse ESP, the meteorological forcing is taken from data
based on observations, while in the present study the forcing
is taken from meteorological hindcasts. In fact, we also pro-
duced ESP. In Sect. 4.3 we will compare these with one of
the other specific hindcasts and discuss the relation between
our specific hindcasts and the ESP suite more generally.

Though this paper focusses on run-off, the analysis is com-
plemented with an analysis of the skill in evapotranspiration
(ET), since this variable has a large effect on run-off (see
Willmott et al., 1985). Predictions of evapotranspiration also
have independent value, because they are useful for planning
of water level control in polders and for planning of water
use for irrigation and fertiliser application. As for run-off,
we will exploit the specific hindcasts to isolate the different
sources of predictability in evapotranspiration forecasts.

The version of VIC that we used was only crudely cali-
brated (Nijssen et al., 2001). Hence, discharge computed by
the present version of the system may be expected to deviate
substantially from observations, both in terms of the mean
and in terms of the spread of the ensemble of forecasts. Also,
within WUSHP no post-processing of discharge is carried
out to correct for such deficiencies. This makes the system
unsuitable for issuing forecasts of absolute amounts of dis-
charge, but the system can be used to provide information
on how likely it is that the future discharge will be above or
below normal. Consequently, the most important criteria for
the selection of skill metrics (see Sect. 2.2) are their ability
of discrimination and their insensitivity to biases and to the
spread of the forecasts.

The objective of the present paper is to analyse, at a pan-
European and regional scale, the sources of probabilistic skill
of seasonal hydrological forecasts produced by WUSHP. The
next section (Sect. 2) will describe the seasonal prediction
system itself and the analysis approach as well as details
of the various specific hindcast performed. We will present
the skill in the meteorological forcing (Sect. 3.1), isolate the
skill in run-off due to either forcing or different types of ini-
tial conditions (Sect. 3.2), and finally analyse the skill in
evapotranspiration (Sect. 3.3). We conclude with a discus-
sion (Sect. 4) and conclusions (Sect. 5).
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2 System and methods

2.1 The forecast system

The forecasts of WUSHP combine three elements, namely
meteorological forcing from ECMWF’s Seasonal Forecast
System 4 (Molteni et al., 2011), bias correction of the mete-
orological forcing with the quantile mapping method of The-
meßl et al. (2011) and simulations with the VIC hydrologi-
cal model (Liang at al., 1994). The skill of the system was
assessed with hindcasts. These cover the period 1981–2010,
were initialised on the first day of each month and extend to a
lead time of 7 months. The system is probabilistic (15 mem-
bers), so each set of hindcasts consists of a total of 5400 runs
(30 years× 12 months× 15 members). In addition a single
reference simulation was performed in which VIC was run
with a gridded data set of model-assimilated meteorological
observations, namely the WATCH Forcing Data Era-Interim
(WFDEI; Weedon et al., 2014). The reference simulation has
a dual aim. The first aim is to create initialisation states for
the hindcasts. Secondly, the output of the reference simula-
tion, e.g. run-off, is used for verification of the hindcasts.
This output will be named “pseudo-observations” here.

Due to the set-up of the routing module of VIC, the state
of discharge could not be saved and loaded. Hence for spin-
up discharge, each 7-month hindcast was preceded by a 1-
month simulation with WFDEI forcing, which in turn was
initialised with the model states generated in the reference
simulation and zero discharge. All hindcasts and simulations
were performed on a 0.5◦× 0.5◦ grid in natural flow mode,
i.e. river regulation, irrigation and other anthropogenic influ-
ences were not considered. VIC is run with a time step of 3 h.
More details about the set-up of the system and the hindcasts
can be found in the companion paper (Greuell et al., 2018).

2.2 Methods of analysis and observations

In this paper we analyse hindcasts of run-off, discharge and
evapotranspiration. Run-off is defined as the amount of water
leaving the model soil either, along the surface or at the bot-
tom, while we define discharge as the flow of water through
the largest river in each grid cell.

Discrimination skill (briefly skill from now on) is mea-
sured in terms of the correlation coefficient between the
median of the hindcasts and the observations (or pseudo-
observations; R). We will designate R values as significant
for p values less than 0.05. We also considered metrics de-
signed for the evaluation of categorical forecasts (terciles),
namely the relative operating characteristics (ROC) area and
the ranked probability skill score (RPSS). The thresholds
used for assigning individual (pseudo-)observations to ter-
ciles were determined from the (pseudo-)observations them-
selves. Similarly hindcasts were assigned to terciles by ref-
erence to themselves. Due to this strategy metrics are unaf-
fected by biases, a desired property (see Sect. 1). In the com-

panion paper skills in terms of the considered metrics were
compared, and it was found that for all combinations of target
and lead months the skill patterns in the maps were similar to
a high degree. For that reason, we selected only one of them
(R) for this paper.

Unless mentioned otherwise, prediction skill of the hy-
drological variables is determined against the pseudo-
observations (see Sect. 2.1). These have the advantages of
being complete in the spatial and the temporal domain and
of being available for all model variables. We will refer to
this type of skill as “theoretical skill”. In the companion pa-
per theoretical skill for discharge was compared to “actual
skill”, which is the skill assessed with real observations. For
the determination of the skill of the meteorological forcing
we used the WFDEI data.

To investigate the possible contribution of trends to skill,
skill in the meteorological forcing and in run-off was deter-
mined both before and after removing the trend from both
the (pseudo-) observations and the hindcasts. Data were de-
trended by first constructing time series (1981–2010) for
each variable, target month, lead month and grid cell (30 val-
ues). We then removed the trend from each time series by
first fitting a least-squares regression line to the time series
and then subtracting the time series corresponding to the line
from the original data. For the hindcasts, time series were
constructed for the mean of the ensembles, and the resulting
best fit was subtracted from each member individually.

Like in the companion paper, skill was analysed on a
monthly and not on a seasonal basis with the aim of achiev-
ing a relatively high temporal resolution in the skill analysis.
Attention was confined to consistent skill, which we define
as skill that persists during at least two consecutive target
or lead months. In accordance with Hagedorn et al. (2005),
we designated the first month of the hindcasts as lead month
zero.

In most result sections, we will first analyse and explain
skill at the level of the entire domain. We will then take out
the most noteworthy details of the summary plots and seek
an explanation for them.

2.3 Isolation of sources of skill and surface water
initialisation

As already pointed out in the introduction, a number of spe-
cific hindcasts were carried out with the aim of isolating
the contributions of different sources to skill. The FullSHs,
in which skill is due to both meteorological forcing and
initial conditions, constitute the starting point. The specific
hindcasts can be seen as restricted, in the sense of limiting
the types of sources of skill, versions of the FullSHs. The
following five sets of specific hindcasts, each consisting of
5400 computer runs, were produced:

1. The InitSHs isolate the skill due to both types of initial
conditions considered here (soil moisture and snow).
Like in the FullSHs, the annually varying initial con-
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ditions are taken from the reference simulation, while
for each year the meteorological forcing is identical and
consists of an ensemble of 15 S4 hindcasts. More specif-
ically, we selected member 1 from the 1981 hindcasts,
member 2 from the 1983 hindcasts, etc. By using iden-
tical meteorological forcing for all of the years of the
hindcasts, skill in hydro-meteorological variables due to
skill in the forcing is eliminated.

2. The SMInitSHs isolate the skill due to the initial con-
ditions of soil moisture only. The SMInitSHs are iden-
tical to the InitSHs, but in all SMInitSHs snow initial
conditions are taken as the 30-year average of the snow
conditions in the reference simulation.

3. The SnInitSHs isolate the skill due to the initial condi-
tions of snow contained in the snow cover. The SnInit-
SHs are identical to the InitSHs, but in all SnInitSHs
soil moisture initial conditions are taken as the 30-year
average of the soil moisture conditions in the reference
simulation.

4. The MeteoSHs isolate the skill due the meteorological
forcing and as such are the full complement of the Init-
SHs. Like in the FullSHs, the annually varying forcing
is taken from the probabilistic S4 hindcasts, while for
each year the initial soil moisture and snow conditions
are identical and equal to the 30-year average of the soil
moisture and snow conditions in the reference simula-
tion. By taking identical initial conditions for all of the
years of the hindcasts, skill due to the initial conditions
of soil moisture and snow is eliminated.

5. The ESP are identical to the InitSHs, both in terms of
their construction and in terms of their purpose. How-
ever, in the ESP the forcing is not taken from the S4
hindcasts but from the WFDEI data by selecting the 15
odd years from 1981 to 2009.

Forcings and initial conditions of all of these hindcasts dif-
fer among the calendar months so that the annual cycle is
conserved. Hence, in the list above, the following apply:

– “Identical for all years” means that the forcings (or the
initial conditions) for all hindcasts starting in, for exam-
ple, May are identical.

– “30-year average” means that the initial conditions for
all hindcasts starting in, for example, May are averaged
over all of the 1 May model states in the reference sim-
ulation.

– “Annually varying” means that the forcings (or the ini-
tial conditions) for all hindcasts starting in, for example,
May vary from year to year.

These statements also hold for the other calendar months.

Thus, like the FullSHs, all specific hindcasts for a sin-
gle starting date consist of 15 members, which is important,
since ensemble size affects skill metrics (Richardson, 2001).
Also, in all hindcasts the probabilistic character is exclu-
sively due to the 15 members of the meteorological forcing,
while initial conditions are deterministic. This consistency is
important, since the main aim of the various specific hind-
casts is to compare them with each other. A disadvantage
of the small ensemble size is the sampling uncertainty (see
Sect. 4.2 of the companion paper).

Discharge initialisation, a potential source of skill, is not
considered. This has no effect on most of the analyses of the
paper, since these are made in terms of run-off. Where dis-
charge is analysed the effect of discharge initialisation is, due
to the limited residence time of water in the rivers, restricted
to the first lead month of the hindcasts (see Yuan, 2016).

3 Explanations of skill in hydrological variables

3.1 Skill in the meteorological forcing after bias
correction

In this sub-section, the skill of the meteorological forcing
will be analysed. Attention will be limited to the three in-
put variables of VIC that have the largest effect on run-off
and evapotranspiration, namely precipitation, 2 m tempera-
ture and incoming short-wave radiation. The WFDEI data
are used as a reference. Here the data after bias correction
are considered. In Appendix B we will discuss the skill of the
raw S4 data, which is the meteorological forcing before bias
correction. Differences in skill between the bias-corrected
and the uncorrected data are negligible for temperature and
short-wave radiation and small for precipitation.

Figure 1 shows results of the skill analysis of the precipi-
tation forcing. Figure 1a provides an example of the skill for
a single target and lead month (January as lead month 0). A
summary of the skill in the precipitation hindcasts is given in
Fig. 1b, which plots the fraction of all cells within the domain
with statistically significant R values, so Fig. 1a condenses
into a single point in Fig. 1b. During the entire year, there is
considerable skill for lead month 0 (on average in 61 % of
the domain), but skill declines very rapidly to 6 % for lead
months 1 and 2, just 1 % more than the percentage of cells
in the case of no true skill at all. Hence, from lead month 1
on, skill is almost negligible. Regarding lead month 0, there
is more skill in January, February and March than during the
other months. For the lead month 0, hotspots of consistent
skill, i.e. with a duration of significant skill of at least 3 target
months, are situated on the Iberian Peninsula from Novem-
ber to March, in western Norway from January to April, in
Greece and western Turkey from December to February, and
in Scotland from December to March. All these occurrences
of consistent skill are restricted to the winter half of the year
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Figure 1. Skill of the precipitation hindcasts after bias correction. Figure 1a shows a map of the correlation coefficient between the observa-
tions and the median of the hindcasts (R), for target month January as lead month 0. The threshold of significant skill lies at 0.31, so cells with
the lightest yellow colour have insignificant skill, and grid cells with other colours have significant skill. The legend provides the percentage
of cells with significant values of R and the domain-averaged value of R. Figure 1b depicts the percentage of cells with significant skill in
terms of R as a function of the target and lead month. Each coloured curve represents the hindcasts starting in a single month of the year
and has a length of 7 (lead) months. For better visualisation the parts of the curves that end in the next year are shown twice, namely at the
left-hand and the right-hand side of the graph. Black lines connect the results for identical lead times, which are specified in the legend (lead
m= lead month). The horizontal line gives the expected fraction of cells with significant skill due to chance in the case that the hindcasts
have no skill at all (5 %).

and mostly to coastal regions (see Fig. 1a), suggesting them
to be linked to the initial state of the sea surface temperature.

Figure 2 shows important aspects of skill in the 2 m tem-
perature hindcasts. One aspect is the possible contribution of
a 30-year trend, which could be related to greenhouse warm-
ing, to the skill. Figure 2a and b provide summaries of the
skill of the un-detrended and the detrended data, respectively,
whereas Fig. 2c compares these two types of data. For lead
month 0, the hindcasts have significant skill in the largest part
of the domain (Fig. 2a and b), and detrending has a small ef-
fect (Fig. 2c). At longer lead times, the percentage of cells
with significant skill quickly drops towards the theoretical
no-skill limit (5 %), but there are a few exceptions, namely
the following:

– For lead month 1, February and March temperatures are
predicted with significant skill in a considerable part of
the domain (44 % in February; 53 % in March). In both
months the region with skill is more or less contigu-
ous and comprises the Russian part of the domain, the
Ukraine and the regions bordering the southern part of
the Baltic Sea (Fig. 2d and e). In February the region of
skill extends towards central Europe. In March it also
comprises northern Fennoscandia. This skill hardly di-
minishes by detrending the data (Fig. 2b and c), sug-
gesting that the skill is not related to climate change.
Indeed, in February and March the observed trend (in
the WFDEI data set) is insignificant across most of
the domain (11 % of the domain in February and 18 %
in March), and, more importantly here, it is insignifi-
cant in the regions with significant skill in the temper-
ature hindcasts (Fig. 2g demonstrates this for March).

We conclude that the temperature skill in February and
March as lead month 1 must be due to initial conditions
of the climate model (see also the discussion on Fig. 10).

– The 3 summer months (JJA) exhibit significant skill
at all lead times in much more than 5 % of the do-
main (a range from 22 % to 56 % for all combinations
of the 3 summer months and all lead months beyond
lead month 0; see Fig. 2a). In this case the fraction of
cells with significant skill is not a function of lead time,
which is the type of behaviour that Yuan (2016) also
found for the Yellow River basin. Since Fig. 2b and c
demonstrate that the skill for JJA more or less vanishes
when the temperature hindcasts and observations are
detrended, we conclude that the skill for these months
is due to trends in the data and is hence probably related
to greenhouse warming. Another conclusion is that skill
that hardly varies with lead time may be related to cli-
mate change.

It should be noted here that trends can only cause cor-
relation between hindcasts and observations, and hence
skill in the hindcasts, if they are present in both time se-
ries. A random time series of hindcasts is not correlated
with a time series of observations with a trend and vice
versa. Indeed, time series of both hindcasts and observa-
tions have a maximum in significant trends in summer,
when trends form the prime source of skill according to
our analyses. In the hindcasts and on average over all
lead times beyond the first month, the summer months
exhibit significant trends in almost the entire domain
(95 %), versus 79 % of the domain in the other months
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Figure 2. Skill of the 2 m temperature hindcasts after bias correction. (a) and (b) give the percentage of cells with significant values of R for
the un-detrended (a) and the detrended (b) temperature hindcasts (see Fig. 1b for further explanation). (c) compares annual cycles of skill
of un-detrended and detrended data for the first 3 lead months. The three panels in the middle row show maps of R for the un-detrended
temperature hindcasts for target months February (d) and March (e) as lead month 1 and July as lead month 5 (f). The bottom three panels
depict the correlation coefficient of the trend (not the trend itself) of the observed monthly mean temperature, for March (g) and July (i), and
mean of the hindcasted temperature for July as lead month 5 (h).

of the year, on average. Similarly, observed trends are
significant during the 3 summer months in 67 % of the
domain, versus only 24 % of the domain in the other
months of the year, on average. These percentages also
show that significant trends occur in a larger part of the
domain in the hindcasts than in the observations. So the
observations, and not the hindcasts, are mostly limiting
the occurrence of trend-related skill in the temperature
hindcasts. This point is illustrated by the example of
July as lead month 5 in Fig. 2f, h and i, but a simi-
lar illustration could have been provided for the other
summer months and different lead months. Figure 2h
shows that the trends of the hindcasts for July are sig-
nificant across almost the entire domain (99 % of the do-
main). However, according to Fig. 2i only 69 % of the
domain has a significant trend in the observed July tem-
peratures. Indeed, the patterns of significance of Fig. 2f
(skill in the temperature hindcasts) and Fig. 2i (signifi-
cance of observed trends) agree to a large extent.

– April, May and September combine the behaviour of
February and March, which have skill due to initial con-
ditions of the climate model, with the skill of the sum-
mer months, which show skill related to trends (Fig. 2c).

– January has a considerable amount of significant skill
but only for lead month 2 (42 % across the domain).
This skill occurs in a piece of land reaching from Eng-
land to Russia, which vaguely coincides with the region
in which Kim et al. (2012) found skill in the S4 tem-
perature hindcasts for the 3 winter months. However, as
this skill is not found in adjacent lead and target months
and is thus not consistent, we speculate that this skill is
spurious.

Since short-wave incoming radiation is important for evap-
otranspiration, we finalise this sub-section with a short analy-
sis of its predictability (Fig. 3). In terms of R, skill is consid-
erable during the first lead month, with 58 % of the cells hav-
ing significant skill, on average over the year. Months from
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Figure 3. Skill of the incoming short-wave radiation hindcasts after bias correction. (a) gives the percentage of cells with significant values
of R (see Fig. 1b for further explanation). (b) compares annual cycles of skill of un-detrended and detrended data for the first 3 lead months
(see c for further explanation).

March to September tend to have more skill than the other
months of the year. Beyond lead month 0, skill settles around
the no-skill line, except from April to July, but the fraction
of cells with significant skill never exceeds 21 % (in May as
lead month 1). Trends in the data hardly affect skill (Fig. 3b).

3.2 Sources of skill in run-off and discharge

In these sub-section analyses the effects of the meteorologi-
cal forcing and the initial conditions on the predictability of
run-off and discharge (discharge is only considered in Fig. 4)
are isolated. We first address the question of how much of the
skill in the run-off hindcasts is linked to trends. To examine
this question, the pseudo-observations and the hindcasts of
run-off were detrended, and the skill was compared to that of
the un-detrended data sets. We found that for lead month 2
and averaged over all months of the year, the fraction of cells
with a significant R decreased from 58.7 % to 57.4 % due
to detrending, a difference of 1.3 %. This difference is much
smaller than the decrease for temperature (11.8 %). We con-
clude that trends contribute very little to skill in run-off. All
analyses of this sub-section hereafter pertain to un-detrended
data.

3.2.1 The relative importance of initial hydrological
conditions

Figure 4 compares the InitSHs with the FullSHs in terms of
the fraction of cells with a significant R for run-off (Fig. 4a)
and discharge (Fig. 4b). While the lumped results hardly
differ between run-off and discharge (the companion paper
discusses small differences in skill between these two vari-
ables), systematic differences in skill between the FullSHs
and InitSHs are revealed. For lead month 0, skill is higher
in the FullSHs than in the InitSHs for all target months of
the year, though the difference becomes very small when
the fraction of the domain with significant skill approaches

100 % and hence becomes unsuitable to discriminate be-
tween the two cases. Beyond lead month 1, the reverse occurs
for most target months. Lead month 1 is transitional, with the
order of skill depending on the time of the year. We produced
figures similar to Fig. 4, all shown in the Supplement, for the
skill evaluation of the following:

1. discharge with real, instead of pseudo-, observations,
both for large basins (Fig. S1a in the Supplement) and
small catchments (Fig. S1b) and for a subset of the large
catchments with relatively little human impact (Fig. S2),

2. run-off in terms of the fraction of the domain with sig-
nificant skill for the other metrics considered (RPSS,
ROC above normal – AN – and ROC below normal
(BN); Figs. S3–S5) and in terms of the domain-mean
value of R (Fig. S6).

In all of these cases, the reversal of skill around lead month 1
was found. So the reversal is a robust feature and is neither
an artefact due to the type of observations nor due to human
impacts on river flow, nor is it an artefact of the metric used
in the verification procedure.

The explanation of the reversal deals with the ranking of
the run-off in different years, since our metrics largely mea-
sure ranking. We will argue that while the InitSH forcing
has a neutral effect on the ranking of the run-off forecasts
and hence on their skill, FullSH forcing without skill has a
negative effect on the ranking of the run-off forecasts and
hence on their skill. The InitSH forcing is, by construction,
identical for all years. Using this forcing, inter-annual dif-
ferences in forecasted run-off diminish with increasing lead
time and approach zero when the effect of the initial condi-
tions vanishes. However, to a good approximation, rankings
of forecasted run-off for different years remains the same as
at t = 0. So the forcing has a neutral effect on the ranking
and hence on skill. Contrary to the InitSHs, the FullSH forc-
ing differs from year to year. This changes the ranking of
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Figure 4. Comparison of the annual cycles of skill of the InitSHs (blue) and the FullSHs (red). The two panels show theoretical skill obtained
with the pseudo-observations for run-off (a) and discharge (b) at four different lead times.

Figure 5. Comparison of the annual cycles of the skill in the run-off
hindcasts of four specific hindcasts for lead months 0 and 2. Differ-
ent colours correspond to different specific hindcasts, and different
line types to different lead months.

different years of the run-off forecasts. If the FullSH forc-
ings contain skill, these changes in ranking tend to bring,
statistically, the forecasts towards the observations, so skill is
added to the run-off forecasts. This is what happens at short
lead times. At longer leads, the FullSHs can be considered as
having no skill. This tends to randomly shuffle the ranking
of the run-off forecasts and hence diminishes their skill. Of
course, the ranking of the (pseudo-)observations of different
years also changes during the course of the forecasts, which
generally has a negative effect on run-off skill unless forc-
ing is perfect. This “observation argument” complicates the
whole argument but it has no consequences for the argument
above, since it affects the skill of the FullSHs and the InitSHs
in the same way.

3.2.2 The relative contributions of soil moisture and
snow initial conditions and of meteorological
forcing

Figure 5 compares the skill in run-off of the specific hind-
casts (except ESP) for 2 lead months (0 and 2). At both lead
times and for all target months, initialisation of soil mois-
ture is the dominant source of skill in Europe. Initialisation
of snow and meteorological forcing are less important. This
is true for all lead times (not shown here).

Meteorological forcing does not only have a relatively
small contribution to the domain-averaged skill of Fig. 5 but
also to regional skill. We searched for combinations of a re-
gion and target months where the MeteoSHs produce con-
sistently equal or more skill than the SMInitSHs, but we did
not find any combination where this was clearly the case.
On average across the domain and for all target months, dur-
ing the first lead month there is more skill due to the forcing
(MeteoSHs) than due to snow initial conditions (SnInitSHs).
For later lead months this order depends on the target month,
mainly because skill due to snow initial conditions varies
strongly during the year. Although skill in run-off due to me-
teorological forcing (in the MeteoSHs) is relatively small, it
does exceed the skill in the forcing variable to which run-off
is most sensitive, precipitation (compare Fig. 5 with Fig. 1).
Whereas predictability of precipitation is almost limited to
the first lead month, significant skill in run-off due to forc-
ing is more widespread for lead months 1 and 2 (on average
over the year, in 23 % and 15 % of the domain, respectively).
We explain the enhanced skill in run-off mainly by an indi-
rect effect. Skill in the precipitation forcing of the first lead
month leads to skill in the states of soil moisture and snow at
the end of that month. These model states then serve as the
source of skill during the next lead months, when the precip-
itation forcing has no skill at all. In addition to this indirect
effect of precipitation, the skill in the hindcasts of tempera-
ture (Fig. 2) contributes to skill in run-off in the MeteoSHs.
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From April to July, a considerable part of Europe has sig-
nificant skill derived from snow initialisation, provided that
initialisation does not occur earlier than in February, prob-
ably because in all parts of Europe with significant snow-
fall, this process does not stop before 1 February. Skill due
to snow initialisation reaches a maximum in May and June,
resulting in a maximum in skill in the InitSH hindcasts for
these months and for most lead times. When snow con-
tributes considerably to predictability (from April to July),
the skill in the InitSHs exceeds the skill in the SMInitSHs.
Because for target months from August to March snow con-
tributes little to predictability, the percentages of cells with
significant skill in InitSHs and SMInitSHs are almost iden-
tical for these months. The rapid rise in skill due to snow
initialisation at the transition from April to May explains a
remarkable feature that we noticed in the companion paper,
namely an increase in run-off skill with lead time at this time
of year. Another noticeable feature is that the skill due to
snow initialisation for lead month 2 exceeds skill due to snow
initialisation for lead month 0. This occurs for target months
from May to August and will be explained in the text corre-
sponding to Fig. 8.

Figures similar to Fig. 5, but for all metrics of the present
study, are included in the Supplement (Fig. S7). The graphs
for the ROC areas for the AN and BN terciles are quali-
tatively similar to the graph for R. This also holds for the
RPSS though fractions of the domain with significant RPSS
are almost always lower than for the other metrics, probably
because the RPSS is a summary metric for all three terciles
including the middle one, which generally has much lower
ROC areas than the other two terciles.

Figure 6 compares skill maps for the three specific hind-
casts that isolate skill due to initial conditions (InitSHs,
SMInitSHs and SnInitSHs). It illustrates that skill due to
snow and soil moisture initialisation is not only more or less
additive at the scale of the entire domain (Fig. 5) but also
at the regional scale. The patterns of skill due to soil mois-
ture initialisation, e.g. in Africa, on the Iberian Peninsula
and in western France (Fig. 5a), are also found in the map
of skill due to both components of initialisation (Fig. 5c).
Small regions with considerable skill due to snow initial-
isation (Fig. 5b), like those near Stockholm, in southeast-
ern Czechia and southeastern Austria also stick out as foci
of skill on the map of skill due to both soil moisture and
snow initialisation (Fig. 5c). Where both soil moisture and
snow initialisation cause moderate skill, e.g. in southern Fin-
land, the combined specific hindcast exhibits more signifi-
cant skill.

Figure 7 zooms in on the specific hindcast that isolates
skill due to snow initialisation (SnInitSHs), giving the exam-
ple of a time series of skill as a function of lead time, after
initialisation on 1 March. One observation is that skill does
not gradually decrease with time but has a maximum dur-
ing the snowmelt season. We like to note that locally skill
is hardly generated during the part of the melt season when

a snow pack covers the surface in each year. The reason
is that in VIC the rate of snowmelt is almost insensitive to
snow pack thickness (Sun et al., 1999). Hence, as long as the
surface is covered by snow in each year, inter-annual vari-
ation in snowmelt is absent or negligible. Skill is only gen-
erated towards the end of the melt season, when snowmelt
differs from year to year, because snow stops being avail-
able for melt at different dates due to different initial amounts
of snow. So, the initial snow conditions cause skill because
of inter-annual variation in the duration of the period that it
takes to melt the snow present at the time of initialisation
and not because of inter-annual variation in the melt rate. Of
course, the timing of the end of the melt season differs re-
gionally and with elevation, which largely explains the pat-
terns of skill visible in the maps of Fig. 7. A good example
is Scandinavia, where the earliest skill (in April; lead month
1) occurs at low elevations near the coasts of southern Nor-
way and Sweden, at the end of the local snow season. The
latest skill (in July; lead month 4) occurs in the Norwegian
mountains, again at the end of the local snow season (we
ascribe the skill in southeastern Sweden in July and August
to chance). It is also relevant to note that the skill patterns
in the maps of Fig. 7 are influenced by the fact that VIC
has higher vertical resolution than its horizontal resolution
may suggest by performing calculations in multiple elevation
bands within each grid cell. This way sub-grid variations in
topography are accounted for. Therefore, sub-grid topogra-
phy leads to spreading of the snow skill signal of individual
cells over longer periods of time.

To finish the analysis of the SnInitSHs, Fig. 8 analyses a
noticeable feature. In SnInitSHs, hindcasts for May have less
skill when the hindcasts are initialised on 1 May (Fig. 8a)
compared to initialisation during preceding months (Febru-
ary, March or April; Fig. 8b is for initialisation on 1 April).
Similar results are found for June and July as target months.
This result is noteworthy, because in hindcasts with initialisa-
tion on 1 May, there is, due to the use of pseudo-observations
for verification, perfect knowledge about snow conditions on
that date. With initialisation on 1 April, snow conditions on
1 May differ from those of the pseudo-observations, which
by itself must lead to less skill in May run-off. The simple ex-
planation is that on 1 April more grid cells have a snow cover
than a month later on 1 May, but then the question arises of
why those grid cells that lose their snow cover in April still
exhibit significant skill in run-off during the month of May.
The answer lies in an indirect effect. Inter-annual variations
in the amount of snow at 1 April lead to predictable inter-
annual variations in soil moisture on 1 May (Fig. 8c), when
the snow cover has melted, which then acts by itself as an
additional source of skill in run-off in May.

To finalise this section, the specific hindcasts were ex-
ploited to attribute the hotspots of significant skill in run-off
for lead month 2, listed in the companion paper, to the dif-
ferent potential sources of skill. This was done for each of
the hotspots by inspection of the maps of skill (like those of
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Figure 6. Example that compares the skill in run-off of three specific hindcasts (SMInitSHs – a, SnInitSHs – b and InitSHs – c), for target
month May as lead month 2. For more explanation, see Fig. 1a. White, terrestrial cells correspond to cells where observations or hindcasts
consist for more than one-third of zeros or one-sixth of ties.

Figure 7. Example showing the variation of skill in run-off as a function of lead time in the SnInitSHs, for initialisation on 1 March. For
more explanation, see Figs. 1a and 6.

Fig. 6, for example) for three specific hindcasts that isolate
the different sources of skill (SMInitSHs, SnInitSHs and Me-
teoSHs). If the hotspot was present in, for example, SMInit-
SHs, soil moisture initialisation is one of the sources of skill.
Results are summarised in Table 1. Almost all of the signifi-
cant skill in the hotspot regions is due to the initial conditions
of soil moisture. Exceptions are formed by the target months
from April to July, when skill is caused by a mix of the initial
conditions of snow and soil moisture in regions with signif-
icant snowmelt. In these cases the relative contributions of
the two sources varies in time and space, but soil moisture
is more important than snow, except in Fennoscandia, where
snow dominates in June, and in July both sources are of about
equal importance. Meteorological forcing contributed signif-
icantly to this in none of the hotspots of skill.

3.3 Skill and source of skill in evapotranspiration

This section analyses skill in the hindcasts of evapotran-
spiration, because hindcasts of evapotranspiration are use-
ful in themselves and evapotranspiration affects run-off (see
Sect. 1), and in order to demonstrate the rich possibilities
of the pseudo-observations, the specific hindcasts and the
detrending to unravel the various sources of skill. In VIC,
evapotranspiration is computed with the Penman–Monteith
method (see Shuttleworth, 1993).

Figure 9a summarises skill in evapotranspiration in the
FullSHs. Levels of predictability are higher than for pre-
cipitation (Fig. 1), similar to those for temperature (Fig. 2)
and lower than those for run-off (Fig. 4a). Figure 9b isolates
the diverse contributions to skill for lead months 0 and 2 by
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Figure 8. Example illustrating that skill in run-off for a target month may increase with lead time, namely for run-off in May as target months
0 (a) and 1 (b) in the SnInitSHs. Skill in soil moisture in the SnInitSHs, for May as lead month 1, is shown (c), because it provides part of
the explanation for the mechanism causing the increase in skill with lead time. For more explanation, see Figs. 1a and 6.

Figure 9. Summary plots of the skill of the hindcasts of evapotranspiration. (a) summarises the FullSHs (for more explanation, see Fig. 1b),
(b) depicts the annual cycles of skill for the FullSHs and three specific hindcasts (SnInitSHs, SMInitSHs and MeteoSHs), for lead months 0
and 2, and (c) compares the annual cycles of skill of the un-detrended and the detrended FullSHs for the first 3 lead months.

Table 1. Sources of skill for hotspot regions and periods of skill.
SM is soil moisture.

Region Period Source of skill

Fennoscandia Jan–Mar SM
Apr–Jul SM and snow
Aug–Oct SM

Poland and northern Germany Oct–Mar SM
Apr–May SM and snow

Western France Dec–May SM

Romania and Bulgaria Oct–Mar SM
Apr–May SM and snow

Southern Mediterranean Jun–Aug SM

showing the skill for the FullSHs and three specific hindcasts.
Averaged over the year, meteorological forcing (MeteoSHs)
contributes more to predictability in evapotranspiration than
the initial conditions, among which soil moisture (SMInit-
SHs) causes more skill than snow (SnInitSHs). Hence, com-
paring skill in run-off with skill in evapotranspiration, the

most important source of skill shifts from the initial condi-
tions of soil moisture to meteorological forcing.

In the FullSHs (Fig. 9b) and focusing on lead month 2,
there is hardly any skill in the evaporation hindcasts from
November to March (9 % of the domain, on average over
these months), with the exception of January (18 %), when
the region of skill (Germany and Benelux) is part of a larger
region of skill in the temperature hindcasts for the same tar-
get and lead month. We blame the winter minimum of skill
in evapotranspiration to the low levels of evapotranspiration
and the low levels of skill in the temperature forecasts for
the same period. The next month (April) exhibits the highest
level of skill of all months (44 % of the domain), which is
mainly due to meteorological forcing and has smaller contri-
butions by the initial conditions of soil moisture and snow.
From May to September there is some significant skill (23 %
of the domain, on average over these months). Whereas in
May forcing is still the most important contributor to skill,
initial conditions of soil moisture form the main contributor
from June to October. We speculate that this shift in the or-
der of importance between forcing and soil moisture is due to
the amount of variability in soil moisture. In Europe in spring
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(April and May), soil moisture variations are relatively small
and hence hardly contribute to variations in evapotranspira-
tion. Later in the year (June to September), soil moisture is
often available in limited amounts, so variations are larger
and hence contribute more to variations in evapotranspira-
tion. Snow initial conditions contribute to skill only during
the snowmelt season from April to July.

The contribution of trends to predictability of evapotran-
spiration is summarised in Fig. 9c for lead months 0, 1 and 2.
For lead month 2 and averaged over all target months of the
year, detrending leads to a decrease in the fraction of cells
with a significant R, from 17.6 % to 13.8 %, a difference of
3.8 %. The contribution of trends to skill in evapotranspi-
ration is less than its contribution to skill in temperature (a
difference of 11.8 %) but larger than its contribution to skill
in run-off (a difference of 1.3 %). Trends contribute to skill
in evapotranspiration during the part of the year when they
also contribute to skill in atmospheric temperature (Fig. 2c),
namely from April to September and in November (for lead
month 0). However, whereas during the 3 summer months
the skill in the temperature hindcasts is almost exclusively
linked to climate change, a considerable part of the domain
still exhibits skill in evapotranspiration after detrending.

To provide a deeper understanding of the skill in evapo-
transpiration, the skill in April and July is analysed in some
detail. Figure 10 deals with April as lead month 2, showing
the skill in evapotranspiration from the FullSHs in Fig. 10a
and from the MeteoSHs in Fig. 10b. Regions of skill, mainly
a piece of land from southern Fennoscandia to the Black Sea,
are the same in the FullSHs and in the MeteoSHs, though
skill is somewhat degraded in the MeteoSHs. This indicates
that meteorological forcing causes most, though not all, of
the skill. Indeed, Figs. 2e (March) and 10c (April) show that
the temperature forecasts for these two months after initial-
isation on 1 February contain skill in the mentioned region.
We conclude that much of the skill in evapotranspiration is
due to skill in the temperature hindcasts. The remaining part
of the skill is due to initial hydrological conditions. While
Fig. 9b shows this for the entire domain, we also found lim-
ited amounts of skill in the SnInitSHs and the SMInitSHs for
April in the stroke of land from southern Fennoscandia to
the Black Sea (not shown here). This means that in that re-
gion, initial conditions of the hydrological model on 1 Febru-
ary provide some skill to the hindcasts of evapotranspiration
for April. We like to note that this could be consistent with
the conclusion in Sect. 3.1 that the skill in the temperature
hindcasts of February and March in this same region are due
to the initial conditions of the climate model. These initial
conditions could be, for example, sea surface temperatures
or also the local state of snow and/or soil conditions. In the
latter case, the two types of predictability in the mentioned
regions would have the same or a similar source. Initial con-
ditions of snow and/or soil conditions in S4 would lead to
skill in the temperature hindcasts of S4, while initial condi-

tions of snow and soil moisture in VIC lead to skill in the
evapotranspiration hindcasts of VIC.

During the summer months and for all lead times, skill in
evapotranspiration occurs in two regions, namely the south-
ern part of the Mediterranean and western and northern Nor-
way. Figure 11 shows target month July for lead month 5 as
an example. Whereas Fig. 11a is for the FullSHs, Fig. 11b–
d depict the maps for three specific hindcasts (SnInitSHs,
SMInitSHs and MeteoSHs), and Fig. 11e shows skill for the
FullSHs after detrending. Since the SnInitSHs and the Me-
teoSHs exhibit hardly any skill, while the SMInitSHs have
considerable skill in the Mediterranean (Fig. 11b–d), it can
be concluded that the skill in this region is due to soil mois-
ture initial conditions. So, in this particular case, knowledge
of soil moisture conditions on 1 February still yields skill in
evapotranspiration in July. This skill in the Mediterranean is
not affected by detrending (compare Fig. 11a and e), so it
does not have a climate-change component.

The skill in Norway has a more complicated origin. The
three specific hindcasts show that it is due to a mix of ini-
tial snow conditions (Fig. 11c) and meteorological forcing
(Fig. 11d). The effect of the initial snow conditions (on
1 February) can be understood with the help of the analy-
sis of run-off skill in the SnInitSHs (Fig. 7), which led to
the conclusion that run-off skill caused by snow initialisation
occurs at the end of the melt season, which is July in much
of Norway. Therefore, in this country and in July the tim-
ing of the disappearance of snow cover varies from year to
year. This then has a considerable effect on evapotranspira-
tion, since bare soil has, compared to snow, higher surface
temperatures and hence more evapotranspiration in summer.
The contribution to skill by forcing (Fig. 11d) fades with, but
is not removed by, detrending (not shown here), so it has a
part that is related to climate change and a part that is unre-
lated to climate change. The climate-change-related skill due
to forcing resides in the temperature hindcasts, which have
significant skill in this region at all lead times (Fig. 2f). The
non-climate-change-related skill in the MeteoSHs for July is
likely an indirect effect of the skill in the forcing (especially
precipitation) during the first lead month (February). This
leads to skill in snow water that is equivalent towards the end
of February, which fades but has not disappeared completely
on 1 July (Fig. 11f) and then causes skill in evapotranspira-
tion at the end of the melt season.

4 Discussion

4.1 Comparison of skill with previous studies

A remarkable result of our work is the reduction of the skill
in run-off beyond lead month 1, when annually varying S4
forcing is used (FullSHs) instead of meteorological forcing
that is identical for all years (InitSHs; see Fig. 4). This re-
sult is counter-intuitive but is, as we discussed, a logical
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Figure 10. Explanation of the skill in the hindcasts of evapotranspiration, for target month April as lead month 2. The panels map the skill
in evapotranspiration of the FullSHs (a), of the MeteoSHs (b) and of the hindcasts of temperature (c). For more explanation, see Fig. 1a.

Figure 11. Explanation of the skill in the hindcasts of evapotranspiration (ET) for July by taking lead month 5 as an example. The panels
map the skill in evapotranspiration of the FullSHs (a), SMInitSHs (b), SnInitSHs (c), MeteoSHs (d) and the FullSHs after detrending (e).
(f) depicts skill of the hindcasts of snow-water equivalent (SWE) in the MeteoSHs. For more explanation, see Fig. 1a. Note that statistics in
the legends of the panels refer only to that part of the domain for which R was computed, which consists of all coloured cells.

consequence of forcing with inter-annual variation that has
no or insufficient skill, such as the S4 forcing. Other stud-
ies compared the FullSHs (also called climate-model-based
hindcasts) with ESP hindcasts, which are slightly different
from our InitSHs (see Sect. 4.3) but like the InitSHs have
uninformative meteorological forcing for each year. Some of
these studies (e.g. Singla et al., 2012; Mackay et al., 2015)
found little overall difference in skill between the FullSHs
and ESP hindcasts. However, in a study of Canadian catch-
ments, Bazile et al. (2017) broadly confirm our finding that
beyond the first lead month, ESP is superior to the FullSHs,
while the reverse holds for the first lead month. Arnal et
al. (2018) compared FullSHs with ESP hindcasts and found
that, in Europe, ESP has more discrimination skill (“poten-

tial usefulness”) than FullSHs, although there are exceptions
both spatially and seasonally. These authors, however, do not
mention any trend with lead time in the difference between
FullSHs and ESP. In contrast with our results, in the stud-
ies of Yuan et al. (2013), Thober et al. (2015), Yuan (2016)
and Meißner et al. (2017), skill is enhanced when using me-
teorological hindcasts. In those studies this also happens at
longer leads. This contrast might be explained by more skill
in the meteorological hindcasts of the mentioned studies than
in the present study, which could be due to the type of me-
teorological hindcasts (only Meißner et al., 2017, used S4)
or the investigated region (in the mentioned studies of the
US, Europe, China and Germany, respectively). Europe is a
region with relatively little skill in meteorological hindcasts
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(Kim et al., 2012; Scaife et al., 2014; Baehr et al., 2015). Ef-
fects of regional differences in the skill of the forcing on the
relative skill of FullSHs and ESP are mentioned by Wood et
al. (2005), who reported that FullSHs for the western United
States have practically no skill improvement over the ESP,
except for some regions and seasons with predictability of
the forcing originating in El Niño–Southern Oscillation tele-
connections.

The specific hindcasts of this study show that in Europe
initial conditions of soil moisture are the largest source of
skill in the seasonal run-off forecasts produced with WUSHP.
Contributions to skill by the initial conditions of snow and by
the meteorological forcing are mostly much smaller. To our
knowledge, two other studies analysed sources of skill of hy-
drological seasonal forecasts for Europe with dynamical sys-
tems similar to those of the present study, namely Bierkens
and van Beek (2009) and Singla et al. (2012). Comparing
our results with those of Bierkens and van Beek (2009), both
studies agree that initial conditions form the dominant source
of skill. However, compared to the present study, Bierkens
and van Beek (2009) find a larger contribution to skill by
the meteorological forcing, at least in summer. This differ-
ence might be due to the quality of the forcing. Bierkens and
van Beek (2009) developed an analogue events method to
select, on the basis of annual sea surface temperature (SST)
anomalies in the North Atlantic, annual ERA40 meteorolog-
ical forcings, which they used as forcing for their hydrolog-
ical model. One might speculate that in Europe their semi-
statistical forcing is more skilful than the S4 forcing used
in WUSHP. This suggests that there is room for improve-
ment of climate-model seasonal forecasts, so if and when this
improvement is realised, the relative contribution of the me-
teorological forcing to skill in hydrological variables would
increase. As for the second study of the sources of skill, con-
clusions of Singla et al. (2012) are not directly comparable
with those of the present study, as they used ESP and reverse
ESP (see Sect. 4.3).

4.2 Understanding the skill due to initial soil moisture

The dominance of soil moisture initial conditions in terms
of domain-lumped skill also extends to the hotspot regions
and periods of skill (Table 1). The understanding of the skill
linked to soil moisture can be deepened by another level, as
in Shukla and Lettenmaier (2011). The underlying idea is
that this type of skill increases with the inter-annual variabil-
ity of soil moisture at the date of initialisation and that this
skill is gradually eliminated during the course of the hind-
casts by inter-annual variability in processes like rainfall and
snowmelt. The question is the following: to what extent are
the hotspots of skill (see Table 1) linked to soil moisture ini-
tialisation due to the cause of the skill, and to what extent
they are due to a lack of inter-annual variability in the pro-
cesses that eliminate the skill? Figure 12 helps answer this
question for the skill found in the run-off hindcasts of August

as lead month 2 with a simple method of analysis. Figure 12a
shows the standard deviation of total modelled soil moisture
(σSM) on the day of initialisation (1 June), taken from the
reference simulation. Figure 12b depicts the standard devi-
ation of total rainfall (σRF) during the course of the hind-
cast (June–August), taken from the WFDEI data set, which
is the investigated skill-eliminating factor. These two quanti-
ties were combined into an estimate of the skill (Sest):

Sest = exp

(
−
σ 2

RF

σ 2
SM

)
. (1)

This estimate (Fig. 12c) needs to be compared with the skill
of the hindcasts, mapped in Fig. 12d in terms of R. The two
maps are not expected to be exactly equal, not only because
of the simplicity of the estimation method but also because
Sest is not a correlation coefficient. However, in the limits,
Sest has the desired properties. It is equal to zero for the
cases of constant initial amounts of soil moisture or infinite
variability in rainfall. It is equal to 1 for the cases of infi-
nite variability in soil moisture or constant rainfall. The cor-
relation coefficient between the patterns in Fig. 12c and d
is highly significant (0.67), and the hotspot regions of skill
are the same in both panels, namely the northern part of
Fennoscandia and the southern part of the Mediterranean. So,
in the case of August as lead month 2 the estimation method
is reasonably successful in computing the pattern of skill in
the hindcasts with the simple means of the WFDEI data set
and model calculations from the reference simulation. The
merit of the estimation method is the deeper understanding
of the cause of the skill in the two hotspot regions. North-
ern Fennoscandia is a hotspot, because the amount of inter-
annual variability in initial soil moisture is larger than else-
where (Fig. 12a). The southern part of the Mediterranean is
a hotspot, because the amount of inter-annual variability in
rainfall is lower than elsewhere (Fig. 12b).

This simple method of analysis helped to bring the under-
standing of the skill in northern Fennoscandia and the south-
ern Mediterranean to a deeper level, but it was less successful
for the other hotspots. A more thorough analysis along these
lines and a deeper understanding of skill in the hindcasts is
left for future work.

4.3 Relation of the present specific hindcasts with
conventional ESP

The specific hindcasts of this study are related to the well-
known ESP (e.g. Wood and Lettenmaier, 2008; Shukla and
Lettenmaier, 2011; Singla et al., 2012; Van Dijk et al., 2013;
Harrigan et al., 2018). ESP is not only used as an experimen-
tal tool in science but is also widely used to produce forecasts
in operational mode (Day, 1985). ESP used for scientific pur-
poses can be subdivided into proper ESP (called ESP from
now on) and reverse ESP.

ESP (hindcasts) is similar to the InitSHs of this study. In
both types of hindcasts the initial conditions vary from year
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Figure 12. Illustration of a simple method that partly explains skill in run-off due to initial soil moisture, exemplified for target month August
as lead month 2. (a) is a map of the standard deviation in soil moisture at the date of initialisation (1 June). Similarly, (b) maps the standard
deviation of observed rainfall during the course of the hindcasts (June–August). These two standard deviations are combined into an estimate
of the skill (Eq. 1) in (c), which is compared with the skill of the FullSHs (d). Note that the colour scales of (c) and (d) differ from each other
and differ from scales of other figures (e.g. Fig. 1a).

to year and are quasi-perfect, i.e. they are taken from a simu-
lation like our reference simulation, while the meteorological
forcing is uninformative, e.g. by being the same for all years
(in the InitSHs and, for example, in the ESP of Shukla and
Lettenmaier, 2011) or by varying randomly from year to year
(e.g. in the ESP of Singla et al., 2012). This eliminates skill
due to the meteorological forcing, so skill can only be due to
the initial conditions. However, while in ESP the forcing is
selected from historic observations, it is selected from the S4
hindcasts in InitSHs in order to retain an inter-member vari-
ability and other statistical characteristics of the time series
similar to that in the FullSHs. An advantage of ESP is that
its production is relatively cheap, because no climate-model
forecasts are needed.

Similarly, reverse ESP (see Wood and Lettenmaier, 2008)
resemble the MeteoSHs of this study. In both types of hind-
casts the meteorological forcing varies from year to year,
while the initial conditions are identical for each year. This
eliminates skill due to the initial conditions, so skill can only
be due to the forcing. However, while in reverse ESP the forc-
ing of each year is made up of the observations of that year,
it is made up of the S4 hindcasts in the MeteoSHs. More-
over, in reverse ESP, ensembles are built by using differing
initial conditions, whereas they are built by using differing
meteorological forcings in the MeteoSHs.

In ESP and in the InitSHs, if all skill due to the meteoro-
logical forcing is indeed removed, the remaining skill, which
is due to the annually varying initial conditions, should logi-
cally be the same in both types of hindcasts, since the initial
conditions are the same. To test this expectation we produced
ESP and compared its skill with that of the InitSHs. Indeed,
skill from these two types of hindcasts is almost identical, as
demonstrated in the Supplement (Fig. S8). We conclude that
skill produced with specific hindcasts with a forcing that does
not vary from year to year is not sensitive to the choice of that
forcing, perhaps with the exception of forcings that deviate
strongly from being realistic. We like to note here that, in odd
years, one of the ESP ensemble members is identical to the
pseudo-observation used for verification. This is a concern,
but we deemed this less important than the requirement of
identical forcing for all years, which is crucial for the expla-
nation of the skill reversal (Sect. 3.2.1).

This similarity of the InitSHs and ESP is in sharp con-
trast with the skill resulting from reverse ESP and MeteoSHs,
which are expected to be totally different. Keeping in mind
that in both types of hindcasts, skill is caused only by skill of
the meteorological forcing, this is the skill of the S4 hindcasts
in the MeteoSHs. The present study showed that in Europe
there is a small contribution to skill in the run-off hindcasts
by the forcing and that this contribution tends to decrease
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with time. This differs from reverse ESP, in which skill is
small at the beginning and then increases with lead time to
reach perfect skill at very long leads (see Wood and Letten-
maier, 2008), because the meteorological forcing is quasi-
perfect (i.e. identical to the forcing in the reference simula-
tion), while the influence of the initial conditions, which are
non-informative in reverse ESP, decreases with time.

4.4 Towards an operational system

We plan to launch an operational version of WUSHP. That
version might include a post-processing procedure with the
aims of removing biases in discharge and making the system
more reliable. This could perhaps be done with statistical cal-
ibration (e.g. Gneiting et al., 2005; Schepen et al., 2014), a
technique that, contrary to quantile mapping, considers infor-
mation that is available from correlations between hindcasts
and observations (see Wood and Schaake, 2008; Madadgar
et al., 2014).

The superiority of the InitSHs (and the ESP) with respect
to the FullSHs for hindcasts beyond the first 2 lead months
raises the question of whether one should, in an operational
version of WUSHP and for these lead months, issue forecasts
like the InitSHs (or ESP) and not forecasts like the FullSHs.
The logical answer is “yes”, but such a strategy should then
be reconsidered when the meteorological forcing is taken
from a new, possibly improved version of the climate model
or from another, possibly better type of climate model.

The applied methods of analysis are not suitable for giving
quantitative advice on what would be the best investment for
increasing the amount of skill of WUSHP. However, since
initial soil moisture is the dominant source of predictability,
a large gain of skill could possibly be made by assimilation
of soil moisture observations into the modelled state of soil
moisture (see e.g. Draper and Reichle, 2015). In addition, ob-
servations of a snow-water equivalent could be assimilated
into the modelled state of snow (see e.g. Griessinger et al.,
2016). Improving the calibration of VIC would be another
obvious road towards improvement of the seasonal predic-
tions discussed in this paper. This should lead to higher ac-
tual skill but not necessarily to more theoretical skill (see the
discussion section of the companion paper).

5 Conclusions

The present paper explains skill in the hindcasts of WUSHP,
a seasonal hydrological forecast system, applied to Europe.
We first analysed the meteorological forcing, which con-
sists of bias-corrected output from a climate model (S4), and
found considerable skill in the precipitation forecasts of the
first lead month but negligible skill for later lead times. Sea-
sonal forecasts for temperature have more skill. Skill in sum-
mer temperatures was found to be related to climate change
occurring in both the observations and the hindcasts, and it

was found to be more or less independent of lead time. Skill
in northeastern Europe in February and March is unrelated to
climate change and must hence be due to initial conditions of
the climate model.

Sources of skill in run-off were isolated with specific
hindcasts, namely SMInitSHs (soil moisture initialisation),
SnInitSHs (snow initialisation), InitSHs (a combination of
soil moisture and snow initialisation) and MeteoSHs (meteo-
rological forcing). These hindcasts revealed that, beyond the
second lead month, hindcasts with forcing that is identical for
all years but with “perfect” initial conditions (InitSHs) pro-
duce, averaged across the model domain, more skill in run-
off than the hindcasts forced with S4 output (FullSHs). This
occurs because inter-annual variability of the S4 forcing adds
noise, while it has hardly any skill. The other specific hind-
casts showed that in Europe initial conditions of soil mois-
ture form the dominant source of skill in run-off. For target
months from April to July, initial conditions of snow con-
tribute significantly, with a domain-mean maximum in May
and June. The timing of that maximum varies spatially and
coincides with the end of the melt season, when snowmelt
differs from year to year, because snow stops being available
for melt at different dates. All regional and temporal hotspots
of skill in run-off found in the companion paper are due to
initial conditions of soil moisture, with smaller or larger con-
tributions by the initial conditions of snow for target months
from April to July in hotspot regions with snowfall in earlier
months. We further showed that skill due to snow and soil
moisture initialisation is more or less additive.

Some remarkable skill features are due to indirect effects,
i.e. skill due to forcing or initial conditions of snow and/or
soil moisture is, during the course of the model simulation,
stored in the hydrological state (snow and/or soil moisture),
which then by itself acts as a source of skill.

Predictability of evapotranspiration was analysed in some
detail. Levels of predictability and the annual cycle of skill
are similar to those for temperature. For most combinations
of target and lead months, forcing forms the most important
contributor to skill, but for lead month 2, initial conditions of
soil moisture dominate from June to October.

Data availability. The data from WUSHP are available to
researchers upon request. Please visit https://www.wur.nl/
en/Research-Results/Chair-groups/Environmental-Sciences/
Water-Systems-and-Global-Change-Group.htm (last access:
18 January 2019) for more details.
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Appendix A: Reliability of the hindcasts

To complement the analysis of discrimination skill of
WUSHP published in the companion paper, this appendix
presents a short evaluation of the reliability of the system.
Per definition, forecasts are considered “reliable” when the
forecast probability is an accurate estimation of the relative
frequency of the predicted outcome (Mason and Stephenson,
2008). We assessed the reliability of the discharge hindcasts
of the FullSHs by means of so-called reliability diagrams
(see Mason and Stephenson, 2008), which we produced and
evaluated as follows.

– For each grid cell and combination of a category (or ter-
cile; AN, NN and BN), lead month and target month we
proceeded as follows:

– Divide the 30 (number of years) observations into
terciles and give them a binary number (1 if the
event falls in the considered category and otherwise
0).

– Divide the 450 (number of years× number of en-
semble members) forecasts into terciles.

– Determine, for each of the 30 years, the forecast
probability of the event occurring (forecast falling
in the considered tercile).

– Pair the binary observations with the forecast prob-
abilities.

– Sort the paired data into eight bins stratified by the
forecast probabilities of the event.

– Compute bin averages of the forecast probability
and of the binary observations.

– Pool the results for two consecutive lead months and the
3 target months of the same season.

– The results were further processed as follows:

– They were aggregated for the entire domain and
then plotted. Examples for the BN tercile and the
spring months (MAM) as a target are shown in
Fig. A1a–c, with the lead month number increas-
ing from left to right. In each diagram a linear re-
gression is applied to the data points, weighing in-
dividual points by the number of data pairs in the
bins. Because tercile thresholds are set indepen-
dently for observations and forecasts, the resulting
line always goes through the climatological inter-
section (one-third in our case; see Weisheimer and
Palmer, 2014), and results are insensitive to biases.
As in Weisheimer and Palmer (2014) we use the
slope of the line as a measure of reliability. A slope
equal to 1 corresponds to perfect reliability, and a
slope equal to 0 indicates no reliability at all.

– Reliability diagrams similar to those in Fig. A1a–
c were produced for each terrestrial grid cell, and
best-fit lines and their slopes were computed. The
slopes were plotted in maps, of which examples for
the BN tercile and the spring months (MAM) as a
target are shown in Fig. A1d–f.

For the analysis it is helpful to first consider the value of
the slope in two extreme cases. If pseudo-observations are
used for verification and lead time approaches zero, all mem-
bers of the hindcasts for a specific year approach the pseudo-
observation of that year. Hence, all hindcasts fall in the same
category as the observation, so the reliability diagram con-
denses to two points at the coordinates [0,0] and [1,1],
which represent, respectively, two-thirds and one-third of all
contributing data. In this case the hindcasts are utterly reli-
able and utterly sharp. The second case is when the hindcasts
have no discrimination skill at all, i.e. forecast probabilities
of an event are randomly paired with the outcome (whether
the event occurs or not). In this case, the slope of the fitted
line is equal to zero, so the hindcasts are not reliable at all,
and sharpness is minimal, i.e. forecast probabilities tend to
approach one-third for each of the terciles.

In Fig. A1 reliability is evaluated for the case of verifica-
tion with pseudo-observations. For the first 2 lead months,
the slope of the line in the diagram of the aggregated data
(Fig. A1a) is 0.916. Hence, during these 2 lead months the
system is not far from being perfectly reliable, and it is rather
sharp with relative maxima in forecast probability in the low-
est and the highest bin. Then, with progressing lead time,
reliability is reduced, i.e. the slope of the aggregated data
decreases to 0.767 (for lead months 2 and 3; Fig. A1b) and
0.469 (for lead months 4 and 5; Fig. A1c). Moreover, with in-
creasing lead time, sharpness is reduced, with gradually more
ensemble forecasts approaching the climatological forecast,
i.e. a probability of one-third for each of the terciles.

The maps of Fig. A1d–f show the geographical distribu-
tion of the slope from the reliability diagrams. For the first
2 lead months most values of the slope for individual grid
cells lie between 0.7 and 1.1 (Fig. A1d), and the domain-
averaged slope is 0.910. At longer leads, the highest val-
ues are found in some regions with considerable amounts of
discrimination skill, such as Poland and northern Germany,
western France, and Romania and Bulgaria (see Table 1). Re-
liability also tends to increase towards the northeast of the
continent. Domain mean values of the grid-level slope are
generally somewhat lower than the slope of the aggregated
data. This can, at least partly, be ascribed to more scatter of
individual points around the best-fit line because of the much
smaller sample size for individual grid cells.

Reliability for the AN tercile is almost equal to that for the
BN tercile, while slopes are much closer to zero for the NN
tercile (not shown here). Also, levels of reliability show little
variation during the year, except for the autumn (SON), when
slopes are smaller (not shown here). Finally, Fig. S9 shows
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Figure A1. Reliability of the FullSH discharge hindcasts for the BN tercile in spring (target months MAM). Pseudo-observations were
used for verification. Lead time increases from left to right. Aggregated reliability diagrams for the full domain are depicted in (a–c). The
forecasted probabilities of BN discharge (horizontal axis) are collected in eight bins. The vertical co-ordinate is the relative frequency of BN
discharge observations for all of the forecasts in a specific bin. The solid line is the 1 : 1 line. The dashed line shows the best fit to the eight
data points, each weighted by the number of observations contributing to the bin (Nbin). The area of the symbols is proportional to Nbin.
The dotted lines are the averages of the variables along the two axes (one-third). Similar reliability diagrams were made for all grid cells
individually, and the slopes of the best-fit lines are plotted in (d)–(f).

that for verification with real instead of pseudo-observations,
slopes are closer to zero, so forecasts seem to be less reliable
and more overconfident. Strikingly, discrimination skill and
reliability have similar characteristics. Both decrease with in-
creasing lead time, and differences between the AN and BN
terciles are relatively small, while scores for the NN tercile
are clearly inferior to those for the two outer terciles. Also,
regional maxima in discrimination skill and reliability tend
to coincide, and scores of discrimination skill and reliability
are smallest in autumn.

Appendix B: Skill in the meteorological forcing before
bias correction

Section 3.1 contains an analysis of the skill of the meteo-
rological forcing after bias correction. Because predictabil-
ity of the meteorological forcing is an interesting topic by
itself, we present here an analysis of the skill of the mete-
orological forcing before bias correction, i.e. of the raw S4
output, again limiting attention to the three variables consid-
ered in Sect. 3.1. Figure B1a summarises the skill of the raw
precipitation hindcasts, which should be compared with the
summary for the bias-corrected hindcasts of precipitation in
Fig. 1b. Such a comparison is made for lead months 0, 1 and
2 in Fig. B1b. Similar comparisons are made for the 2 m tem-

perature and incoming short-wave radiation in Fig. B1c and
d, respectively. At this level of summarising the differences
in skill between the two types of data, differences are small
for precipitation and negligible for temperature and short-
wave radiation. Also, patterns of skill for all three variables,
such as those shown in the maps of Figs. 1 and 2, are al-
most identical for the bias-corrected and raw data. The fact
that differences are small is not surprising, because the bias
corrections hardly change the ranking of the values, while
the value of the correlation coefficient largely depends on the
ranking of the hindcasts relative to the ranking of the obser-
vations. Results, in terms of differences in skill between raw
and bias-corrected meteorological forcing, are essentially the
same for the other metrics used (ROC area and RPSS).
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Figure B1. Skill, in terms of the percentage of cells with significant values of R, for three components of the raw S4 forcing. (a) shows
precipitation skill as a function of target and lead month. The other three panels compare the skill of the raw S4 output (noBC), with its
bias-corrected version (BC) as a function of the target month for the first 3 lead months. Precipitation is plotted in (b), temperature in (c) and
incoming short-wave radiation in (d).
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