Articles | Volume 23, issue 9
https://doi.org/10.5194/hess-23-3593-2019
https://doi.org/10.5194/hess-23-3593-2019
Research article
 | 
04 Sep 2019
Research article |  | 04 Sep 2019

A soil non-aqueous phase liquid (NAPL) flushing laboratory experiment based on measuring the dielectric properties of soil–organic mixtures via time domain reflectometry (TDR)

Alessandro Comegna, Antonio Coppola, Giovanna Dragonetti, and Angelo Sommella

Related authors

Time domain reflectometry (TDR) for dielectric characterization of olive mill wastewater (OMW) contaminated soils
Alessandro Comegna, Antonio Coppola, and Giovanna Dragonetti
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-69,https://doi.org/10.5194/hess-2020-69, 2020
Preprint withdrawn
Short summary
Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements
Giovanna Dragonetti, Alessandro Comegna, Ali Ajeel, Gian Piero Deidda, Nicola Lamaddalena, Giuseppe Rodriguez, Giulio Vignoli, and Antonio Coppola
Hydrol. Earth Syst. Sci., 22, 1509–1523, https://doi.org/10.5194/hess-22-1509-2018,https://doi.org/10.5194/hess-22-1509-2018, 2018
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
High-resolution operational soil moisture monitoring for forests in central Germany
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024,https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Technical Note: Revisiting the general calibration of cosmic-ray neutron sensors to estimate soil water content
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024,https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023,https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
A change in perspective: downhole cosmic-ray neutron sensing for the estimation of soil moisture
Daniel Rasche, Jannis Weimar, Martin Schrön, Markus Köhli, Markus Morgner, Andreas Güntner, and Theresa Blume
Hydrol. Earth Syst. Sci., 27, 3059–3082, https://doi.org/10.5194/hess-27-3059-2023,https://doi.org/10.5194/hess-27-3059-2023, 2023
Short summary

Cited articles

Allison, L. E.: Organic carbon, in: Methods of Soil Analysis, Part 1, Agron. Monograph, vol. 9, edited by: Klute, A., ASA and SSSA, Madison, 1367–1378, 1965. 
Birchack, J. R., Gardner, C. Z. G., Hipp, J. E., and Victor, J. M.: High dielectric constant microwave probes for sensing soil moisture, Proc. IEEEE, 62, 93–98, 1974. 
Brost, E. J. and DeVaull, G. E.: Non-Aqueous phase liquid (NAPL) mobility limits in soils, Soil Groundw. Res. Bull., 9, 1–9, 2000. 
Comegna, A., Coppola, A., Dragonetti, G., and Sommella, A.: Dielectric response of a variable saturated soil contaminated by Non-Aqueous Phase Liquids (NAPLs), Proced. Environ. Sci., 19, 701–710, 2013a. 
Comegna, A., Coppola, A., Dragonetti, G., Severino, G., Sommella, A., and Basile, A.: Dielectric properties of a tilled sandy volcanic-vesuvian soil with moderate andic features, Soil Till. Res., 133, 93–100, 2013b. 
Download
Short summary
We carried out a series of laboratory-controlled experiments in order to simulate different scenarios of practical interest aiming to analyze, from a dielectric point of view, the influence of different washing solutions on non-aqueous phase liquid (NAPL) removal. Furthermore, on the basis of the results obtained, we validated a dielectric mixing model for predicting the volumetric amounts of NAPL (θNAPL) within the contaminated soil as the decontamination process progressed.