Articles | Volume 23, issue 6
https://doi.org/10.5194/hess-23-2779-2019
https://doi.org/10.5194/hess-23-2779-2019
Research article
 | 
01 Jul 2019
Research article |  | 01 Jul 2019

Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping

Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang

Related authors

Extension of the general unit hydrograph theory for the spread of salinity in estuaries
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023,https://doi.org/10.5194/os-19-603-2023, 2023
Short summary
Quantifying the impacts of the Three Gorges Dam on the spatial–temporal water level dynamics in the upper Yangtze River estuary
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022,https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022,https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Dynamics of fortnightly water level variations along a tide-dominated estuary with negligible river discharge
Erwan Garel, Ping Zhang, and Huayang Cai
Ocean Sci., 17, 1605–1621, https://doi.org/10.5194/os-17-1605-2021,https://doi.org/10.5194/os-17-1605-2021, 2021
Short summary
River-enhanced non-linear overtide variations in river estuaries
Leicheng Guo, Chunyan Zhu, Huayang Cai, Zheng Bing Wang, Ian Townend, and Qing He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-75,https://doi.org/10.5194/hess-2021-75, 2021
Revised manuscript not accepted
Short summary

Related subject area

Subject: Coasts and Estuaries | Techniques and Approaches: Modelling approaches
Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 28, 2531–2553, https://doi.org/10.5194/hess-28-2531-2024,https://doi.org/10.5194/hess-28-2531-2024, 2024
Short summary
Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a large river delta
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024,https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Bas J. M. Wullems, Claudia C. Brauer, Fedor Baart, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 27, 3823–3850, https://doi.org/10.5194/hess-27-3823-2023,https://doi.org/10.5194/hess-27-3823-2023, 2023
Short summary
Coastal topography and hydrogeology control critical groundwater gradients and potential beach surface instability during storm surges
Anner Paldor, Nina Stark, Matthew Florence, Britt Raubenheimer, Steve Elgar, Rachel Housego, Ryan S. Frederiks, and Holly A. Michael
Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022,https://doi.org/10.5194/hess-26-5987-2022, 2022
Short summary
Effect of tides on river water behavior over the eastern shelf seas of China
Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo
Hydrol. Earth Syst. Sci., 26, 5207–5225, https://doi.org/10.5194/hess-26-5207-2022,https://doi.org/10.5194/hess-26-5207-2022, 2022
Short summary

Cited articles

Alebregtse, N. C. and de Swart, H. E.: Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze Estuary, Cont. Shelf. Res., 123, 29–49, https://doi.org/10.1016/j.csr.2016.003.028, 2016. a, b, c, d, e
Buschman, F. A., Hoitink, A. J. F., van der Vegt, M., and Hoekstra, P.: Subtidal water level variation controlled by river flow and tides, Water Resour. Res., 45, W10420, https://doi.org/10.1029/2009WR008167, 2009. a, b, c
Cai, H., Savenije, H. H. G., and Toffolon, M.: A new analytical framework for assessing the effect of sea-level rise and dredging on tidal damping in estuaries, J. Geophys. Res., 117, C09023, https://doi.org/10.1029/2012JC008000, 2012a. a
Cai, H., Savenije, H. H. G., Yang, Q., Ou, S., and Lei, Y.: Influence of river discharge and dredging on tidal wave propagation: Modaomen Estuary case, J. Hydraul. Eng., 138, 885–896, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000594, 2012b. a, b
Cai, H., Savenije, H. H. G., and Jiang, C.: Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations, Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, 2014a. a, b, c, d
Download
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.