Articles | Volume 22, issue 12
https://doi.org/10.5194/hess-22-6209-2018
https://doi.org/10.5194/hess-22-6209-2018
Research article
 | 
03 Dec 2018
Research article |  | 03 Dec 2018

An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times

Jost Hellwig and Kerstin Stahl

Related authors

An investigation of anthropogenic influences on hydrologic connectivity using stress tests
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-243,https://doi.org/10.5194/hess-2023-243, 2023
Preprint under review for HESS
Short summary
Groundwater and baseflow drought responses to synthetic recharge stress tests
Jost Hellwig, Michael Stoelzle, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 25, 1053–1068, https://doi.org/10.5194/hess-25-1053-2021,https://doi.org/10.5194/hess-25-1053-2021, 2021
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
Towards a conceptualization of the hydrological processes behind changes of young water fraction with elevation: a focus on mountainous alpine catchments
Alessio Gentile, Davide Canone, Natalie Ceperley, Davide Gisolo, Maurizio Previati, Giulia Zuecco, Bettina Schaefli, and Stefano Ferraris
Hydrol. Earth Syst. Sci., 27, 2301–2323, https://doi.org/10.5194/hess-27-2301-2023,https://doi.org/10.5194/hess-27-2301-2023, 2023
Short summary
A mixed distribution approach for low-flow frequency analysis – Part 2: Comparative assessment of a mixed probability vs. copula-based dependence framework
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 2019–2034, https://doi.org/10.5194/hess-27-2019-2023,https://doi.org/10.5194/hess-27-2019-2023, 2023
Short summary
A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701, https://doi.org/10.5194/hess-27-689-2023,https://doi.org/10.5194/hess-27-689-2023, 2023
Short summary
Significant regime shifts in historical water yield in the Upper Brahmaputra River basin
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022,https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410, https://doi.org/10.5194/hess-26-5391-2022,https://doi.org/10.5194/hess-26-5391-2022, 2022
Short summary

Cited articles

Apurv, T., Sivapalan, M., and Cai, X: Understanding the Role of Climate Characteristics in Drought Propagation, Water Resour. Res., 53, 9304–9329, https://doi.org/10.1002/2017WR021445, 2017. 
Asarian, J. E. and Walker, J. D.: Long term trends in streamflow and precipitation in northwest California and southwest Oregon, 1953–2012, J. Am. Water. Resour. As., 52, 241–261, https://doi.org/10.1111/1752-1688.12381, 2016. 
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016. 
Bayazit, M. and Önöz, B.: To prewhiten or not to prewhiten in trend analysis? Hydrolog. Sci. J., 52, 611–624, https://doi.org/10.1623/hysj.52.4.611, 2007. 
BGR and SGD: Bundesanstalt für Geowissenschaften und Rohstoffe and Staatliche Geologische Dienste: Hydrogeologische Übersichtskarte von Deutschland 1:200.000, Oberer Grundwasserleiter (HÜK200 OGWL), Digitaler Datenbestand, Version 3.0. – Hannover, 2016. 
Download
Short summary
Due to the lack of long-term observations, insights into changes of groundwater resources are obscured. In this paper we assess past and potential future changes in groundwater drought in headwater catchments using a baseflow approach. There are a few past trends which are highly dependent on the period of analysis. Catchments with short response times are found to have a higher sensitivity to projected seasonal precipitation shifts, urging for a local management based on response times.