Articles | Volume 22, issue 11
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.5194/hess-22-6005-2018
Research article
 | 
22 Nov 2018
Research article |  | 22 Nov 2018

Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks

Frederik Kratzert, Daniel Klotz, Claire Brenner, Karsten Schulz, and Mathew Herrnegger

Related authors

How to deal w___ missing input data
Martin Gauch, Frederik Kratzert, Daniel Klotz, Grey Nearing, Deborah Cohen, and Oren Gilon
EGUsphere, https://doi.org/10.5194/egusphere-2025-1224,https://doi.org/10.5194/egusphere-2025-1224, 2025
Short summary
Technical note: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell
Eduardo Acuña Espinoza, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, Ralf Loritz, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1749–1758, https://doi.org/10.5194/hess-29-1749-2025,https://doi.org/10.5194/hess-29-1749-2025, 2025
Short summary
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025,https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
GRDC-Caravan: extending Caravan with data from the Global Runoff Data Centre
Claudia Färber, Henning Plessow, Simon Mischel, Frederik Kratzert, Nans Addor, Guy Shalev, and Ulrich Looser
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-427,https://doi.org/10.5194/essd-2024-427, 2024
Revised manuscript accepted for ESSD
Short summary
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024,https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Predicting snow cover and frozen ground impacts on large basin runoff: developing appropriate model complexity
Nan Wu, Ke Zhang, Amir Naghibi, Hossein Hashemi, Zhongrui Ning, Qinuo Zhang, Xuejun Yi, Haijun Wang, Wei Liu, Wei Gao, and Jerker Jarsjö
Hydrol. Earth Syst. Sci., 29, 3703–3725, https://doi.org/10.5194/hess-29-3703-2025,https://doi.org/10.5194/hess-29-3703-2025, 2025
Short summary
A distributed hybrid physics–AI framework for learning corrections of internal hydrological fluxes and enhancing high-resolution regionalized flood modeling
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
Hydrol. Earth Syst. Sci., 29, 3589–3613, https://doi.org/10.5194/hess-29-3589-2025,https://doi.org/10.5194/hess-29-3589-2025, 2025
Short summary
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025,https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025,https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary

Cited articles

Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby, R. L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Prog. Phys. Geog., 36, 480–513, 2012. a
Adams, T. E. and Pagaon, T. C. (Eds.): Flood Forecasting: A Global Perspective, Academic Press, Boston, MA, USA, 2016. a
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017a. a, b, c
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: Catchment attributes for large-sample studies, UCAR/NCAR, Boulder, CO, USA, https://doi.org/10.5065/D6G73C3Q, 2017b. a, b
Download
Short summary
In this paper, we propose a novel data-driven approach for rainfall–runoff modelling, using the long short-term memory (LSTM) network, a special type of recurrent neural network. We show in three different experiments that this network is able to learn to predict the discharge purely from meteorological input parameters (such as precipitation or temperature) as accurately as (or better than) the well-established Sacramento Soil Moisture Accounting model, coupled with the Snow-17 snow model.
Share