Articles | Volume 22, issue 1
https://doi.org/10.5194/hess-22-547-2018
https://doi.org/10.5194/hess-22-547-2018
Research article
 | 
23 Jan 2018
Research article |  | 23 Jan 2018

Quantifying human impacts on hydrological drought using a combined modelling approach in a tropical river basin in central Vietnam

A. B. M. Firoz, Alexandra Nauditt, Manfred Fink, and Lars Ribbe

Related authors

Differentiating between crop and soil effects on soil moisture dynamics
Helen Scholz, Gunnar Lischeid, Lars Ribbe, and Kathrin Grahmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-1115,https://doi.org/10.5194/egusphere-2023-1115, 2023
Short summary
On the selection of precipitation products for the regionalisation of hydrological model parameters
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021,https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Space–time variability in soil moisture droughts in the Himalayan region
Santosh Nepal, Saurav Pradhananga, Narayan Kumar Shrestha, Sven Kralisch, Jayandra P. Shrestha, and Manfred Fink
Hydrol. Earth Syst. Sci., 25, 1761–1783, https://doi.org/10.5194/hess-25-1761-2021,https://doi.org/10.5194/hess-25-1761-2021, 2021
Short summary
Tropical drought risk: estimates combining gridded vulnerability and hazard data
Alexandra Nauditt, Kerstin Stahl, Erasmo Rodríguez, Christian Birkel, Rosa Maria Formiga-Johnsson, Kallio Marko, Hamish Hann, Lars Ribbe, Oscar M. Baez-Villanueva, and Joschka Thurner
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-360,https://doi.org/10.5194/nhess-2020-360, 2020
Manuscript not accepted for further review
Short summary
Distributive rainfall–runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, west coast, South Africa
Andrew Watson, Jodie Miller, Manfred Fink, Sven Kralisch, Melanie Fleischer, and Willem de Clercq
Hydrol. Earth Syst. Sci., 23, 2679–2697, https://doi.org/10.5194/hess-23-2679-2019,https://doi.org/10.5194/hess-23-2679-2019, 2019
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024,https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024,https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024,https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
How to account for irrigation withdrawals in a watershed model
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024,https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023,https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary

Cited articles

Adam, J. C., Haddeland, I., Su, F., and Lettenmaier, D. P.: Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob' rivers, J. Geophys. Res.-Atmos., 112, D24114, https://doi.org/10.1029/2007JD008525, 2007.
Adam, J. C. and Lettenmaier, D. P.: Application of New Precipitation and Reconstructed Streamflow Products to Streamflow Trend Attribution in Northern Eurasia, J. Climate, 21, 1807–1828, https://doi.org/10.1175/2007JCLI1535.1, 2008.
AghaKouchak, A., Feldman, D., Hoerling, M., Huxman, T., and Lund, J.: Water and climate: Recognize anthropogenic drought, Nature, 524, 409–411, https://doi.org/10.1038/524409a, 2015.
Ahn, K.-H. and Merwade, V.: Quantifying the relative impact of climate and human activities on streamflow, J. Hydrology, 515, 257–266, https://doi.org/10.1016/j.jhydrol.2014.04.062, 2014.
Arrigoni, A. S., Greenwood, M. C., and Moore, J. N.: Relative impact of anthropogenic modifications versus climate change on the natural flow regimes of rivers in the Northern Rocky Mountains, United States, Water Resour. Res., 46, W12542, https://doi.org/10.1029/2010WR009162, 2010.
Download
Short summary
There are very few studies found globally where the impact of hydropower on drought issues has been addressed. Furthermore, recent development of hydropower and its impact on streamflow on the downstream is still not explored. This study tries to address the associated impact of hydropower on streamflow drought which may directly affect the irrigation, water, and energy production. The developed method helps the decision makers to identify the potential impact of hydropower on downstream users.