Articles | Volume 22, issue 8
Hydrol. Earth Syst. Sci., 22, 4547–4564, 2018
https://doi.org/10.5194/hess-22-4547-2018
Hydrol. Earth Syst. Sci., 22, 4547–4564, 2018
https://doi.org/10.5194/hess-22-4547-2018
Research article
28 Aug 2018
Research article | 28 Aug 2018

Evaluation of multiple climate data sources for managing environmental resources in East Africa

Solomon Hailu Gebrechorkos et al.

Related authors

Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022,https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Repeatable high-resolution statistical downscaling through deep learning
Dánnell Quesada-Chacón, Klemens Barfus, and Christian Bernhofer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-14,https://doi.org/10.5194/gmd-2022-14, 2022
Preprint under review for GMD
Short summary
An analysis of temporal scaling behaviour of extreme rainfall in Germany based on radar precipitation QPE data
Judith Marie Pöschmann, Dongkyun Kim, Rico Kronenberg, and Christian Bernhofer
Nat. Hazards Earth Syst. Sci., 21, 1195–1207, https://doi.org/10.5194/nhess-21-1195-2021,https://doi.org/10.5194/nhess-21-1195-2021, 2021
Short summary
Evapotranspiration at four sites representing land-use and height gradient in the Eastern Ore Mountains (Germany)
Uta Moderow, Stefanie Fischer, Thomas Grünwald, Ronald Queck, and Christian Bernhofer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-202,https://doi.org/10.5194/hess-2020-202, 2020
Preprint withdrawn
Short summary
Estimation of joint return periods of compound precipitation-discharge extremes for small catchments
Ivan Vorobevskii, Rico Kronenberg, and Christian Bernhofer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-27,https://doi.org/10.5194/hess-2020-27, 2020
Preprint withdrawn
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Remote Sensing and GIS
The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon
Ashwini Petchiappan, Susan C. Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, Wolfgang Wagner, and Rafael Oliveira
Hydrol. Earth Syst. Sci., 26, 2997–3019, https://doi.org/10.5194/hess-26-2997-2022,https://doi.org/10.5194/hess-26-2997-2022, 2022
Short summary
Extrapolating continuous vegetation water content to understand sub-daily backscatter variations
Paul C. Vermunt, Susan C. Steele-Dunne, Saeed Khabbazan, Jasmeet Judge, and Nick C. van de Giesen
Hydrol. Earth Syst. Sci., 26, 1223–1241, https://doi.org/10.5194/hess-26-1223-2022,https://doi.org/10.5194/hess-26-1223-2022, 2022
Short summary
Attributing of global evapotranspiration trends based on the Budyko framework
Shijie Li, Guojie Wang, Chenxia Zhu, Jiao Lu, Waheed Ullah, Daniel Fiifi Tawia Hagan, Giri Kattel, and Jian Peng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-616,https://doi.org/10.5194/hess-2021-616, 2022
Preprint under review for HESS
Short summary
Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China
Xiaolu Ling, Ying Huang, Weidong Guo, Yixin Wang, Chaorong Chen, Bo Qiu, Jun Ge, Kai Qin, Yong Xue, and Jian Peng
Hydrol. Earth Syst. Sci., 25, 4209–4229, https://doi.org/10.5194/hess-25-4209-2021,https://doi.org/10.5194/hess-25-4209-2021, 2021
Short summary
Variations in surface roughness of heterogeneous surfaces in the Nagqu area of the Tibetan Plateau
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021,https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary

Cited articles

Abiodun, B. J., Abba Omar, S., Lennard, C., and Jack, C.: Using regional climate models to simulate extreme rainfall events in the Western Cape, South Africa: Simulating Extreme Rainfall Events in Western Cape, Int. J. Climatol., 36, 689–705, https://doi.org/10.1002/joc.4376, 2016. 
Anyah, R. O. and Semazzi, F. H. M.: Climate variability over the Greater Horn of Africa based on NCAR AGCM ensemble, Theor. Appl. Climatol., 86, 39–62, https://doi.org/10.1007/s00704-005-0203-7, 2006. 
Anyah, R. O. and Semazzi, F. H. M.: Variability of East African rainfall based on multiyear Regcm3 simulations, Int. J. Climatol., 27, 357–371, https://doi.org/10.1002/joc.1401, 2007. 
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities, Mon. Weather Rev., 139, 3887–3905, https://doi.org/10.1175/MWR-D-10-05013.1, 2011. 
Bayissa, Y., Tadesse, T., Demisse, G., and Shiferaw, A.: Evaluation of Satellite-Based Rainfall Estimates and Application to Monitor Meteorological Drought for the Upper Blue Nile Basin, Ethiopia, Remote Sens., 9, 669, https://doi.org/10.3390/rs9070669, 2017. 
Download
Short summary
In Africa field-based meteorological data are scarce; therefore global data sources based on remote sensing and climate models are often used as alternatives. To assess their suitability for a large and topographically complex area in East Africa, we evaluated multiple climate data products with available ground station data at multiple timescales over 21 regions. The comprehensive evaluation resulted in identification of preferential data sources to be used for climate and hydrological studies.