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Abstract. Managing environmental resources under condi-
tions of climate change and extreme climate events remains
among the most challenging research tasks in the field of
sustainable development. A particular challenge in many re-
gions such as East Africa is often the lack of sufficiently
long-term and spatially representative observed climate data.
To overcome this data challenge we used a combination
of accessible data sources based on station data, earth ob-
servations by remote sensing, and regional climate mod-
els. The accuracy of the Africa Rainfall Climatology ver-
sion 2.0 (ARC2), Climate Hazards Group InfraRed Pre-
cipitation (CHIRP), CHIRP with Station data (CHIRPS),
Observational-Reanalysis Hybrid (ORH), and regional cli-
mate models (RCMs) are evaluated against station data ob-
tained from the respective national weather services and in-
ternational databases. We did so by performing a comparison
in three ways: point to pixel, point to area grid cell average,
and stations’ average to area grid cell average over 21 regions
of East Africa: 17 in Ethiopia, 2 in Kenya, and 2 in Tanza-
nia. We found that the latter method provides better correla-
tion and significantly reduces biases and errors. The correla-
tions were analysed at daily, dekadal (10 days), and monthly
resolution for rainfall and maximum and minimum tempera-
ture (Tmax and Tmin) covering the period of 1983–2005. At a
daily timescale, CHIRPS, followed by ARC2 and CHIRP, is
the best performing rainfall product compared to ORH, indi-
vidual RCMs (I-RCM), and RCMs’ mean (RCMs). CHIRPS
captures the daily rainfall characteristics well, such as av-
erage daily rainfall, amount of wet periods, and total rain-

fall. Compared to CHIRPS, ARC2 showed higher underes-
timation of the total (−30 %) and daily (−14 %) rainfall.
CHIRP, on the other hand, showed higher underestimation
of the average daily rainfall (−53 %) and duration of dry pe-
riods (−29 %). Overall, the evaluation revealed that in terms
of multiple statistical measures used on daily, dekadal, and
monthly timescales, CHIRPS, CHIRP, and ARC2 are the best
performing rainfall products, while ORH, I-RCM, and RCMs
are the worst performing products.

For Tmax and Tmin, ORH was identified as the most suitable
product compared to I-RCM and RCMs. Our results indicate
that CHIRPS (rainfall) and ORH (Tmax and Tmin), with higher
spatial resolution, should be the preferential data sources to
be used for climate change and hydrological studies in areas
of East Africa where station data are not accessible.

1 Introduction

In Sub-Saharan Africa (SSA) about 80 % of people living in
poverty will continue to depend on the agriculture sector as
their major income sources under continuing global change
(Dixon et al., 2001; IFPRI, 2009). Unlike in other regions
of the world, agricultural activities in SSA are marked by
low production, mainly due to poor natural resource man-
agement, rainfall amount and variability, economy, and tech-
nologies. According to IFPRI (2009), reducing poverty in
SSA is becoming more challenging due to rapid population
growth and associated decline in the quality and availability
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of environmental resources (e.g. water and soil). Addition-
ally, food security and livelihoods of people are threatened by
the direct impacts of change in climate such as the increas-
ing frequency of extreme events and weather variability im-
pacts on the production and productivity of agricultural lands
(Malo et al., 2012). In general, the impact of climate change
in Africa ranges from social and economic to health, water,
and food security, which is a threat to the lives of Africans
(Urama and Ozor, 2010; Gan et al., 2016).

These challenges outlined hold in particular for the eastern
parts of SSA, including Ethiopia, Kenya, and Tanzania. The
population (> 80 %) mainly depends on agriculture for their
livelihood in this region and agriculture-based income con-
tributes 40 % to the country’s gross domestic product (GDP)
(FAO, 2014). Observed changes in extreme climate events
such as recurring droughts and floods have a tremendous im-
pact on the socio-economy of the region (Gebrechorkos et
al., 2018). Devastating droughts in SSA linked to the high
variability (seasonal and inter-annual) of rainfall (Sheffield
et al., 2013) are projected to increase in frequency (IPCC,
2007, 2014; Niang et al., 2014). In addition to the projected
impact, the region is already facing significant food secu-
rity issues and natural-resource-based clashes (UNEP, 2011;
World Bank, 2012).

The impacts of future climate change in East Africa vary
from region to region. In order to understand the impacts of
future climate at the regional and local scale, ground station
data with high spatial and temporal resolution are crucial.
Regions with poor ground observations are highly vulner-
able to climate threats (Wilby and Yu, 2013), which holds
particularly for developing countries. In Africa, high-quality
climate data from meteorological field stations are scarce
(Dinku et al., 2013) and inconsistencies exist between other
data products, largely due to a limited number of ground sta-
tions, merging and interpolation methods (Huffman et al.,
2009; Nikulin et al., 2012; Sylla et al., 2013), limited time
resolution, and limited documentation quality. In addition,
climate data with high temporal and spatial resolution, even
if collected by the national meteorological agencies, are of-
ten not available due to data sharing policies. With advance-
ments of technologies and research activities, a number of
climate data products from different sources (remote sensing,
climate model, and reanalysis) have been produced over the
last decades that can fill the data gap particularly for drought-
prone regions (Gan et al., 2016) and can be used for hydro-
logical and climate change studies.

Several satellite-based rainfall estimates have been de-
veloped over the last decades (Sapiano and Arkin, 2009;
Zambrano-Bigiarini et al., 2017). In Africa, a list of rainfall
and temperature products are available that can be used for
climate change studies, such as the African Rainfall Clima-
tology version 2.0 (ARC2) from the Climate Prediction Cen-
ter (CPC) of the National Oceanic and Atmospheric Admin-
istration (NOAA) with a spatial resolution of 0.1◦ (Novella
et al., 2013) and Climate Hazards Group InfraRed Precipita-

tion (CHIRP), and CHIRP with Station data (CHIRPS) from
the Climate Hazard Group (CHG) with a spatial resolution
of 0.05◦ (Funk et al., 2015). In addition, the Multi-Source
Weighted-Ensemble Precipitation (MSWEP) (Beck et al.,
2017), Tropical Applications of Meteorology using Satellite
and ground-based observations (TAMSAT) (Tarnavsky et al.,
2014), TAMSAT African Rainfall Climatology And Time se-
ries (TARCAT) (Maidment et al., 2014), and data from the
Enhancing National Climate Services (ENACTS) initiative
(Dinku et al., 2014) are available at varying spatial and tem-
poral resolutions and for longer periods.

As another source of climate information, climate model-
derived data are suitable tools for assessing climate variabil-
ity and change. Globally, reanalysis-based climate products,
such as the Observational Reanalysis Hybrid (Sheffield et al.,
2006), Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) (Gelaro et al., 2017),
and Climate Forecast System Reanalysis (CFSR) (Saha et
al., 2010), are widely used for climate and hydrological stud-
ies. Moreover, dynamically downscaled data from global cli-
mate models (GCMs) are widely used in regional- and local-
scale climate studies. Regional climate models (RCMs) pro-
duced from dynamically downscaled GCMs provide spatial
resolutions that suit end users (Sun et al., 2006). However,
downscaling of climate information from GCMs to assess the
impact of climate change on environmental resources at re-
gional or smaller scale has only recently been performed, e.g.
as dynamical downscaling within the CORDEX community
(CORDEX-Africa; see e.g. Abiodun et al., 2016). In Africa
(CORDEX-Africa domain) the spatial resolution of RCMs
is available at about 0.44◦ (∼ 50 km) and at varying tem-
poral resolutions. In East Africa, a number of studies have
been done with the applications of RCMs for climate studies
(Anyah and Semazzi, 2006, 2007; Diro et al., 2011; Endris et
al., 2013; Segele et al., 2009).

Before being used as input to different climate or hydro-
logical models, climate data products need to be evaluated
against field-based meteorological stations. For studying cli-
mate change and climate extremes, data with high accuracy
and from long periods (> 30 years) are required. In addition,
current hydrological (e.g. Soil and Water Assessment Tool,
SWAT; Neitsch et al., 2002) and climate models (e.g. Statisti-
cal DownScaling Model, SDSM; Wilby and Dawson, 2004)
require daily time series of rainfall and temperature cover-
ing long periods. Considering these requirements, concern-
ing lengths of time series and temporal resolution on the one
hand and the limited availability of station data on the other
hand, it is not surprising that comprehensive evaluations of
climate data products, particularly on a daily timescale, are
not available for East Africa to the best of our knowledge.
However, a few studies are available based on monthly grid-
ded data (e.g. Cattani et al., 2016; Kimani et al., 2017), for
limited time periods. Moreover, Kimani et al. (2017) only
considered CHIRPS, while a more comprehensive evaluation
and comparison of different data sources would be highly de-
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sirable. Based on the data requirements of impact models,
the climate data products to be included in such an evalua-
tion should be selected or excluded based on high spatial and
temporal (i.e. daily) resolution, quality (missing values), and
temporal coverage (length of time series), while also taking
the results from previous studies (e.g. Cattani et al., 2016;
Bayissa et al., 2017; Kimani et al., 2017) in to account.

Therefore, this study aims at comparing and evaluating
the available climate data products for Ethiopia, Kenya, and
Tanzania at the highest possible spatial and temporal (i.e.
daily, for reasons of comparability extended also to dekadal
and monthly) resolution against station data using the most
widely applied and accepted statistical and graphical evalu-
ation methods. Results of our study will help overcome the
data scarcity in the study area, in terms of spatial coverage
and temporal resolution gaps of daily, dekadal, and monthly
climate data products that can be used for hydrological and
climate change and impact studies at a watershed or regional
scale. In addition, the data sets can be used for local and re-
gional climate projections using climate models, such as the
Statistical DownScaling Model (SDSM) (Wilby and Daw-
son, 2004).

2 Study area and data

2.1 Study region

The study focuses on the evaluation of daily, dekadal, and
monthly climate data sources for regions of East Africa, par-
ticularly Ethiopia, Kenya, and Tanzania (Fig. 1). The region
is divided by the Great Rift Valley and is topographically one
of the most diverse and complex parts of Africa, character-
ized by multiple rainfall regimes. Generally, the rainfall cy-
cle (climatological annual cycle) in East Africa is linked to
the position changes of the intertropical convergence zone
(ITCZ) (Endris et al., 2013). Variability in the rainfall pat-
terns in this region is partly induced by local factors such as
the heterogeneity of the land surface and complex topogra-
phy and their interaction with global climate forcing systems.
Countries of the region face similar weather and climate vari-
abilities (spatial and temporal variabilities) and increasing
temperature and decreasing precipitation trends (Pricope et
al., 2013). In addition, all East African countries face similar
issues, such as frequent droughts, floods, poverty, and a lack
of clean and adequate water supply. The conditions could
worsen in the near future due to climate change; therefore,
sustainable adaptation and mitigation strategies are required,
which rely on advanced climate and hydrological models and
the respective data inputs.

2.2 Data sets

The reference data sets used for the evaluation of multi-
ple data products in this study are based on daily rain-
fall, maximum temperature (Tmax), and minimum temper-

ature (Tmin) derived from 332 rain gauges and synoptic
stations. Station data for Ethiopia were provided by the
National Meteorological Agency (NMA) of Ethiopia for
the period 1954–2016. The daily data provided by NMA
were carefully and extensively checked for their quality and
some missing data were filled in from hard copies. For
Kenya and Tanzania, the global summary of the day avail-
able at the National Climate Data Center (NCDC) (https:
//www.ncdc.noaa.gov/, last access: 14 March 2017) is used.
For evaluation, based on the criteria outlined above, we
considered satellite-based rainfall estimates, Observational-
Reanalysis Hybrid (ORH), and a historical period of RCMs
driven by GCMs to be compared against field-based me-
teorological stations. The three satellite-based rainfall esti-
mates fulfilling all criteria are the African Rainfall Clima-
tology Version 2.0 (ARC2) (Novella et al., 2013), the Cli-
mate Hazards Group InfraRed Precipitation (CHIRP) and
CHIRP with Station data version 2 (CHIRPS) (Funk et al.,
2015). Not included was, for example, TAMSAT, which is
available at higher spatial and temporal resolution and for
a longer time period but contains considerable data gaps
(Maidment et al., 2017, https://icdc.cen.uni-hamburg.de/1/
daten/atmosphere/tamsat-rainfall-africa/, last access: 7 Jan-
uary 2017) during the evaluation period. ENACTS and TAR-
CAT are available only on dekadal (10 days) timescales. In
addition, MERRA-2 and CFS-R are not included in this study
due to their coarse spatial resolution compared to the other
reanalysis products (i.e. ORH).

ARC2 is the second version of the ARC and is compatible
with the algorithm of the Rainfall Estimation Version 2 (RFE
2.0) (Novella et al., 2013). The product is a composite of 3-
hourly geostationary infrared data, which makes it different
from RFE, centred over Africa provided by the European Or-
ganization for the Exploitation of Meteorological Satellites
(EUMETSAT) and quality-controlled daily rainfall records
acquired from the Global Telecommunication System (GTS)
gauges. ARC2 is consistent with the historical data sets of the
Climate Prediction Center Merged Analysis of Precipitation
(CMAP) (Xie and Arkin, 1997) and Global Precipitation Cli-
matology Project (GPCP) (Novella et al., 2013). The data set
is updated regularly and it is available at a spatial resolution
of 0.1◦ covering the period from 1983 to present. ARC2 is
available at the International Research Institute climate data
library (IRI/LDEO, 2016).

CHIRPS is a semi-global rainfall product designed for
drought monitoring and global environmental changes (Funk
et al., 2015). The product provides daily, pentadal, dekadal,
and monthly data at a 0.05◦ spatial resolution available at
the Climate Hazards Group (CHG; ftp://ftp.chg.ucsb.edu/
pub/org/chg/products) and the International Research Insti-
tute climate data library (IRI/LDE, 2016). CHIRPS combines
a 0.05◦ resolution of satellite images and data from ground
stations to form a gridded rainfall time series. Station data
(see also below) are used to produce a preliminary 2-day
rainfall product by blending data from sparsely located GTS

www.hydrol-earth-syst-sci.net/22/4547/2018/ Hydrol. Earth Syst. Sci., 22, 4547–4564, 2018

https://www.ncdc.noaa.gov/
https://www.ncdc.noaa.gov/
https://icdc.cen.uni-hamburg.de/1/daten/atmosphere/tamsat-rainfall-africa/
https://icdc.cen.uni-hamburg.de/1/daten/atmosphere/tamsat-rainfall-africa/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products
ftp://ftp.chg.ucsb.edu/pub/org/chg/products


4550 S. H. Gebrechorkos et al.: Evaluation of multiple climate data sources

Figure 1. Map of Africa and study regions (Ethiopia, Kenya, and Tanzania) with data validation areas (EthioShed1–17, KenShed1 and 2, and
TanzShed1&2). The basins are retrieved from the WaterBase global data portal (http://www.waterbase.org/, last access: 18 January 2017).

gauges with rainfall estimates retrieved from the cold cloud
duration (CCD) at every pentad. In addition, the final prod-
uct is developed by blending the best available monthly and
pentadal station data with the monthly and pentadal rainfall
estimates retrieved from the CCD, respectively, to produce a
gridded rainfall product (Funk et al., 2015). The development
process of CHIRPS includes the 0.05◦ monthly precipita-
tion climatology (CHPclim), satellite-only Climate Hazards
Group InfraRed Precipitation (CHIRP), and station blending
techniques. CHIRP is available at the Climate Hazards Group
(CHG, 2017). The second version of CHIRPS, which is up-
dated regularly, provides an improved daily rainfall time se-
ries (1981–present) with a spatial resolution of 0.05◦ ranging
from 50◦ S to 50◦ N (and all longitudes) (Funk et al., 2015).
The development process of CHIRPS and its application in
drought monitoring in Africa (e.g. Ethiopia) is explained in
detail by Funk et al. (2015). CHIRPS is not only used for
drought monitoring, but also for other global environmen-
tal applications (Zambrano-Bigiarini et al., 2017), water re-
source management, and climate dynamics (Ceccherini et al.,
2015; Deblauwe et al., 2016). ORH is a global (Sheffield et
al., 2006) and regional (Northern/West/East Africa) (Chaney
et al., 2014) 3-hourly, daily, and monthly meteorological data
set covering the period between 1901 and 2012. ORH is de-
veloped by a spatial downscaling of the NCEP–NCAR re-
analysis (Kalnay et al., 1996) up to a spatial resolution of 0.1◦

using a bilinear interpolation. ORH merges multiple data
products such as the NASA Langley Surface Radiation Bud-
get (SRB), the monthly temperature data from the University
of East Anglia Climate Research Unit (CRU), Tropical Rain-

fall Measuring Mission Multi-satellite Precipitation Analy-
sis (TMPA) (Huffman et al., 2007), and other observational-
based rainfall products (Chaney et al., 2014). The spatial
downscaling of ORH is done with the inclusion of changes in
elevation and it is evaluated against ground stations (global
summary of the day) available at the US National Climatic
Data Center (NCDC). ORH is corrected for temporal inho-
mogeneity and biases, and random errors are omitted through
assimilation with quality-controlled and gap-filled ground
station data available at NCDC (https://www.ncdc.noaa.gov/,
last access: 28 March 2017) as a global summary of the day
(Chaney et al., 2014). These data are freely available from the
Terrestrial Hydrology Research Group, Princeton University
(http://hydrology.princeton.edu, last access: 12 May 2016;
Terrestrial Hydrology Research Group Princeton University,
2016). Even though ORH is not updated regularly, it has been
widely used in climate and hydrological studies (e.g. Troy et
al., 2011; Wang et al., 2011; Demaria et al., 2012; Sheffield
et al., 2014)

Compared to the other rainfall products, monthly ground
station data from Ethiopia, Kenya, and Tanzania are in-
cluded in CHIRPS. Evaluating CHIRPS based on ground
station data might thus raise concerns about the indepen-
dence of data. However, not all stations used in this study
are included in CHIRPS and in general the stations are not
consistently used in the development process of CHIRPS.
In addition, the station data used in CHIRPS are mainly a
monthly total from a limited number of stations. For exam-
ple, in Ethiopia, where all station data originate from NMA,
during January 1983–February 1983 and August 2005–
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December 2005, the monthly stations used in CHIRPS de-
clined from 139 to 132 and from 175 to 169, respectively. In
2015, the number of stations included in CHIRPS even de-
clined to below 10. Moreover, in Kenya and Tanzania, during
the period of January 1983–December 2005 the number of
stations used in CHIRPS declined from 142 to 62 and from
171 to 55, respectively (ftp://chg-ftpout.geog.ucsb.edu/pub/
org/chg/products/CHIRPS-2.0/diagnostics/). Besides the dif-
ference in temporal resolution (monthly vs. daily) and the
number of stations between station data included in CHIRPS
and the validation data set, the latter deviated from the for-
mer since we used original data provided by NMA (Ethiopia)
which were quality-controlled and extended by adding data
from hard copies. Overall, while not fully independent, the
relation between CHIRPS and the validation data set should
be weak, besides the fact that there is no other (fully inde-
pendent) validation data set available.

Historical data (control model runs) of the CORDEX
RCMs are also used as a potential source for rainfall, Tmax,
and Tmin data. RCMs are climate models with a higher spatial
resolution compared to GCMs. The driving data of RCMs
are derived from GCMs or reanalysis data and can include
greenhouse gases (GHGs) and aerosol forcing. Compared to
GCMs, RCMs consider local factors such as complex topog-
raphy and land cover inhomogeneity in a physically based
manner (IPCC, 2007). In Africa, dynamical downscaling was
performed in a large effort within the CORDEX commu-
nity (CORDEX-Africa). Within CORDEX-Africa the con-
tinent’s climate was dynamically modelled by an interna-
tional consortium, providing a spatial resolution of about
50 km. According to the IPCC report (2007), RCMs can
be used for a wide range of applications such as climate
change studies. Following the recommendation of Endris et
al. (2015), the historical data derived from two CORDEX
RCMs, RCA (Samuelsson et al., 2011), and COSMO-CLM
or CCLM (Baldauf et al., 2011), driven by HadGEM2-ES
(MOHC, United Kingdom), MPI-ESM-LR (MPI, Germany),
and GFDL-ESM2M (NOAA/GFDL, United States) are used.
Rainfall, Tmax, and Tmin products of both RCMs are retrieved
from the Earth System Grid Federation (ESGF, 2016) data
portal.

3 Methodology

3.1 Selection of validation areas and ground stations

The evaluation of multiple daily, dekadal (10 days), and
monthly rainfall, Tmax, and Tmin products were conducted
for selected basins of Ethiopia (EthioShed1–EthioShed17),
Kenya (KenShed1 and KenShed2), and Tanzania (TanzShed1
and TanzShed2) (Fig. 1). The polygons in Fig. 1 are river
basins retrieved from the global river basins available in the
WaterBase data portal hosted by the United Nations Uni-
versity (UNU-INWEH: http://www.waterbase.org/, last ac-

cess: 18 January 2017). In most regions of Africa not only
are the density and availability of field-based meteorologi-
cal stations limited, but their accessibility is very restricted
for many reasons. For this study, it was only possible to get
daily station data from the National Meteorological Agency
(NMA) of Ethiopia with a reasonable spatial and temporal
coverage. Therefore, the selection of validation areas is based
on the availability, quality, and density of field-based meteo-
rological stations during the period of 1983–2005. It was al-
most impossible to find multiple stations in one satellite grid
cell. For Kenya and Tanzania, therefore, stations with more
than 10 years (> 50 % of the study period) were included for
evaluation (Table 1).

The quality of selected stations was checked and ex-
tremely high rainfall records during dry seasons, such as
daily rainfall of > 480 mm preceding and following dry days,
were excluded. Finally, a total of 132 stations were found
suitable for comparison, 2 to 12 stations located in the val-
idation areas. In addition to these stations in the validation
areas, 78 stations, randomly distributed over the region, are
used to compare on an individual basis with the rainfall and
temperature products. Compared to Kenya and Tanzania, the
quality, continuity, and spatial and temporal coverage of sta-
tions were better in Ethiopia and only stations with missing
values of less than 20 % were considered. The availability
of multiple stations in a validation area helps to check the
quality of individual stations by using methods such as the
double mass curve (Vernimmen et al., 2012) and allows for
replacement of missing values of one station from a nearby
station.

3.2 Comparing ground data with satellite,
observational reanalysis, and climate model-based
data

The most commonly used method to compare ground obser-
vations with other data products such as satellite-based rain-
fall estimates and climate model outputs is point (station) to
pixel comparison. When comparing daily rainfall, particu-
larly in very complex topography, on a point to pixel basis it
can be challenging to acquire reasonable agreement. There-
fore, in this study we used point to pixel, point to area grid
cell average, and stations’ average to area grid cell average
comparison to evaluate the accuracy of each product. The
area grid cell average is the average number of pixels cov-
ering the basin or the validation area. Similarly, the station
average is used to indicate the average value of the stations
inside the validation area. Therefore, during the comparison
process, the individual or the stations’ average is compared to
the area grid cell average of the product. The most commonly
used statistical methods such as the Pearson correlation co-
efficient (CC), bias, relative bias (Rbias), mean absolute error
(MAE), root mean square error (RMSE), and index of agree-
ment (IA) (Cohen Liechti et al., 2012; Daren Harmel and
Smith, 2007; Moazami et al., 2013) are used. CC (Eq. 1) is
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Table 1. General characteristics of selected validation areas and meteorological stations covering the time period 1983–2005.

Validation Basin area Average area Number of Average station Average annual Average
areas/basins (km2) elevation (m) stations elevation (m) rainfall (mm) Tmax/Tmin

EthioShed1 8980 1516 9 1881 1758 26.3/13.6
EthioShed2 12 828 2279 12 2009 968.6 25.9/11.4
EthioShed3 15 123 2192 9 2104 1202.6 25.3/11.7
EthioShed4 8323 2180 7 1954 994.42 31.8/16.5
EthioShed5 5625 1720 10 1800 1039.1 26.4/13.4
EthioShed6 11 204 2830 8 2510 1168.7 22.1/8.0
EthioShed7 12 445 1830 8 1973 1524.53 25.7/12.4
EthioShed8 6522 1930 5 2022 1628.35 26.0/14.0
EthioShed9 4666 1526 4 1738 578.4 28.0/14.4
EthioShed10 5986 2520 8 2580 1133.1 21.2/9.3
EthioShed11 11 496 1256 7 1468 945 27.4/15.2
EthioShed12 3868 520 2 400 343.8 34.1/22.3
EthioShed13 4934 1301 4 2413 588 26.2/13.1
EthioShed14 2835 1360 4 1239 706 31.8/16.5
EthioShed15 1121 2307 4 2183 495 24.3/11.1
EthioShed16 3012 2102 5 2148 1110 26.0/11.8
EthioShed17 9909 1998 12 2056 2075 23.8/10.2
KenShed1 11 712 1980 4 1024 1156.1 25/13.5
KenShed2 7861 2328 3 1602 1418.6 24/13.2
TanzShed1 8092 1244 3 1137 1137.8 28.7/17.5
TanzShed2 2154 1097 3 1428 1136.2 28.2/17.8

applied to evaluate the agreement of individual products (P )
to station data (O). A value of CC close to 1 shows a perfect
positive fit between the products and station data.

CC=

∑N
i=1

(
Pi −P

)
· (Oi −O)√∑N

i=1
(
Pi −P

)2
·

√∑N
i=1(Oi −O)

2
(1)

The average differences and systematic bias of each product
are given as bias (Eq. 2) and Rbias (Eq. 3). Bias can be pos-
itive (overestimation) or negative (underestimation) accord-
ing to the accuracy of each product.

Bias=
∑
(Pi −Oi)

N
(2)

Rbias =

∑N
i=1(Pi −Oi)∑N

i=1Oi
× 100 (3)

The MAE and RMSE (Eqs. 4 and 5) are well known and ac-
cepted indicators of goodness of fit, which shows the differ-
ences between ground observations and model or other prod-
uct outputs (Legates and McCabe, 1999).

MAE=
∑N
i=1 |Oi −Pi |

N
(4)

RMSE=

√∑N
i=1(Oi −Pi)

2

N
(5)

The IA (Willmott, 1981) is another widely used indicator
of goodness of fit between observed and model output. IA

(Eq. 6) describes how much of the model or product output
(rainfall, Tmax, and Tmin products) are error-free compared to
the ground observations.

IA=
∑
(Pi −Oi)

2∑
(|P −O| + |O −O|)

(6)

In addition to the above statistical methods, the Taylor dia-
gram (Taylor, 2001) is used to summarize the statistical re-
lationship between ground station data and the products for
rainfall, Tmax, and Tmin. In this diagram, the relationships be-
tween the two fields are explained by the correlation coef-
ficient (R), centred mean square (rms) difference (E′), and
standard deviation (σ ). The diagram is useful for evaluat-
ing the accuracy of multiple data sources or model output
against a reference or observational data (IPCC, 2001). A
single point on the diagram displays three statistical values
(R, E′, and σ ) and their relationship is given by Eq. (7).

E′2 = σ 2
f + σ

2
r − 2σfσrR, (7)

where σ 2
f and σ 2

r are the variance of the model and obser-
vation fields and R is the correlation coefficient between the
two fields (Eq. 8).

R =

1
N

∑N
n=1(fn− f )(rn− r)

σfσr
(8)

In the diagram, the distance from the reference point (ob-
served data) is given as the centred rms difference of the two
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fields (Eq. 9). A model with no error would show a perfect
correlation to the observations.

E′2 =
1
N

∑N

n=1
[
(
fn− f

)
− (rn− r)]

2, (9)

where f is the test (e.g. model or satellite) field and r is the
reference (observed) field, whereas σf and σr are the standard
deviations of the model and reference fields (Eqs. 10a and b).

σf =

√
1
N

∑N

n=1
(fn− f )

2 (10)

σr =

√
1
N

∑N

n=1
(rn− r)

2 (11)

Additionally, rainfall characteristics such as the number of
wet days, duration and amount of wet periods, duration of
dry periods, and daily and total rainfall are used to evalu-
ate the accuracy of individual rainfall products by compar-
ing to the observed data. Rainfall characteristics are widely
used indicators in rainfall modelling (Wilby and Dawson,
2007; Jebari et al., 2012) and include the number of wet days
(days yr−1), which is the count of days with rainfall per year;
duration (days) of wet and dry periods, indicating the aver-
age number of consecutive wet and dry days during the study
period; and the amount of wet periods (mm), indicating the
amount of rainfall observed during the identified wet period.

4 Results

4.1 Validation of satellite, observational reanalysis, and
climate model-based products

The correlation of each rainfall product with station data is
summarized in Fig. 2 for the 21 validation areas, and details
(scatter plots) are provided in the Supplement (Fig. S1). The
results show that in most of the validation areas, CHIRPS,
followed by CHIRP and ARC2, is more strongly correlated
with station data compared to ORH and the individual RCMs
(I-RCM). In addition to the lower correlation, ORH and I-
RCM showed large biases in all the validation areas (Fig. S1).

Based on the results in Fig. 2 and the scatter plots provided
in the Supplement (Fig. S1), CHIRPS and CHIRP are the
most accurate rainfall products, with higher correlation and
lower biases, and ARC2 and ORH are the second best prod-
ucts. I-RCM and RCMs’ mean (RCMs) correlate weakly in
most of the validation areas. In addition, I-RCM (not shown
in Fig. 2 but provided in the Supplement Table S1) and RCMs
show a strong over- and underestimation of monthly rainfall
compared to the other products. In EthioShed1, for exam-
ple, CHIRPS and CHIRP are shown to be the most accurate
products, while ARC2 and ORH showed higher dispersion
above and below the regression line (see Fig. S1). Similarly,
in EthioShed4 both CHIRP and CHIRPS have an equal R2,
but in terms of biases (points below and above the regres-
sion line) CHIRPS performed better. The observed biases in

CHIRP and higher correlations in CHIRPS in all the val-
idation areas highlight the role of the station-satellite data
blending techniques. Compared to other validation areas, the
agreement of products in EthioShed16 is comparably weak,
and CHIRPS and CHIRP showed the higher correlation (0.7)
compared to ARC2, ORH, and RCMs.

As for the daily, dekadal, and monthly resolution, the com-
parison is performed in three ways: point to pixel, point to
area grid cell average, and stations’ average to area grid
cell average using the methods described in Sect. 3.2. An
explanatory example is given in Table 2, using stations of
EthioShde1, displaying the difference in comparing prod-
ucts through point (station) to pixel, point to area grid cell
average, and stations’ average to area grid cell average.
The agreement of each product with station data on a daily
timescale and in the point to pixel comparison is weak, with
significantly higher biases and errors. For rainfall, in gen-
eral, the latter method, stations’ average to area grid cell av-
erage, provides better correlation, higher index of agreement,
and lower biases and errors. Compared to the point to pixel
method, the stations’ average to area grid cell average im-
proves the correlations of ARC2, CHIRP, and CHIRPS by
81.3 %, 65.7 %, and 8 %, respectively. In addition to the cor-
relation, the method reduces the RMSE by more than 66 %.
Compared to ARC2 and CHIRP (Table 2), CHIRPS gives a
significantly higher correlation and IA and lower biases and
RMSE. During area averaging, extremely high rainfall events
obtained for a location from the various data products are
levelled off by averaging, and this makes the product more
representative of the area. In most of the rainfall products,
there are occasionally higher daily rainfall values recorded
and the averaging removes these extremes, which are much
higher than the observed station data in the area. Compared
to the point to pixel method, the second method, the point to
area grid cell average, provides a reasonable correlation.

For Tmax and Tmin, only ORH, I-RCM, and RCMs are
compared with station data. For 21 validation areas, ORH
proved to be the most accurate product for both Tmax (Fig. 4)
and Tmin (Fig. 5). In comparison to I-RCM and RCMs, ORH
showed a significantly higher correlation and lower biases
and errors in most of the validation areas. In 7 of the 21
validation areas, RCMs showed a higher correlation in Tmax
than ORH and I-RCM. However, for Tmin, ORH in 20 of
the 21 validation areas showed a higher correlation. In gen-
eral, I-RCM and RCMs showed higher RMSE and biases
in most of the validation areas compared to ORH. Next to
ORH and compared to I-RCM, RCMs appeared to be the best
data source, particularly for Tmax. RCMs showed a relatively
higher correlation and lower biases and errors compared to
I-RCM in most of the validation areas.

The agreement of each product increases with decreasing
temporal resolution, from daily to dekadal and monthly reso-
lutions. Including the historical data of each individual RCM,
all RCMs, and ORH, the overall comparison using some of
the statistical methods is summarized in Figs. 3, 4, and 5
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Figure 2. The correlation coefficient (CC) values between the observed monthly rainfall and data from ARC2, CHIRP, CHIRPS, ORH, and
RCMs for the 21 validation areas (1–17 for EthioShed1–17, 18–19 for KenShed1 and 2, and 20–21 for TanShed1–2; see Table 1) covering
the period of 1983–2005.

Figure 3. Statistical evaluation of daily rainfall retrieved from
ARC2, CHIRP, CHIRPS, ORH, and RCMs against ground observa-
tions: CC (a), RMSE (b), and Rbias (c) during the period of 1983–
2005 for 21 validation areas of East Africa (see Table 1).

for rainfall, Tmax, and Tmin, respectively. The evaluation of
each rainfall product (ARC2, CHIRP, CHIRPS, ORH, and
RCMs) showed a different degree of agreement with station
data (Fig. 3). The performance of the individual RCMs (I-
RCM) for all the validation areas is provided in the Sup-
plement (Table S1). At a daily timescale, CHIRPS, followed
by ARC2 and CHIRP, proved to be the most accurate rain-
fall product compared to ORH, I-RCM, and RCMs in all the
validation areas. In general, out of the 21 validation areas,
CHIRPS, ARC2, and CHIRP showed a higher correlation in
17, 3, and 1 validation areas, respectively. In addition to the
higher correlation, CHIRPS, CHIRP, and ARC showed lower
RMSE than ORH, I-RCM, and RCMs. Similarly, CHIRPS
and CHIRP showed lower biases than observed in ARC2,
ORH, I-RCM, and RCMs in most of the validation areas.

Moreover, the observed daily rainfall characteristics are
well represented by CHIRPS and ARC2 in most of the val-

Figure 4. Statistical evaluation of daily Tmax retrieved from GFDL,
HadGEM2, MPI, ORH, and RCMs against ground observations:
CC (a), RMSE (b), and Rbias (c) over the period of 1983–2005 for
21 validation areas of East Africa.

idation areas (Table S2). On average, over the 21 validation
areas, CHIRPS captures the number of wet days (−0.17 %
deviation), average duration of wet (−13.4 % deviation) and
dry periods (−17.6 % deviation), total rainfall (−4.5 % de-
viation), average amount of wet periods (−17 % deviation),
and average daily rainfall (−7.7 % deviation) well (Table 3).
Next to CHIRPS, ARC2 showed higher agreement in produc-
ing the average duration of wet (−20 % deviation) and dry
periods (11.3 % deviation) and average amount of wet peri-
ods (−38 % deviation). CHIRP, on the other hand, showed a
higher agreement in the total amount of rainfall with a 2.75 %
deviation, which is higher than CHIRPS, ARC2, ORH, I-
RCM, and RCMs. In contrast, ARC2 and GFDL showed
higher underestimation (−34.7 % deviation) and overestima-
tion (27.2 % deviation), respectively, of the total amount of
rainfall compared to the other products. In addition, ARC2
showed a higher underestimation of the number of wet days
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Figure 5. Statistical evaluation of daily Tmin retrieved from GFDL,
HadGEM2, MPI, ORH, and RCMs against ground observations:
CC (a), RMSE (b), and Rbias (c) over the period of 1983–2005 for
21 validation areas of East Africa (see Table 1).

(−15.1 % deviation) and average daily rainfall (−23.8 % de-
viation) compared to CHIRPS and ORH. CHIRP, on the
other hand, showed higher overestimation of the number of
wet days and duration and amount of wet periods (> 59.7 %
deviation) and underestimation of the duration of dry periods
and average daily rainfall (−62 % deviation) compared to the
other products. Moreover, RCMs, next to CHIRP, showed
higher overestimation of the number of wet days and dura-
tion and amount of wet periods (> 44.9 % deviation) and to-
tal rainfall amount (11.4 % deviation) and underestimation
of the average duration of dry periods and daily rainfall by
about 41 %. In general, the observed rainfall characteristics
are captured well by CHIRPS, with a percentage difference
from the observations of−0.17 % to−17.6 % for the number
of wet days and duration of dry periods, respectively, com-
pared to CHIRP, ARC2, ORH, I-RCM, and RCMs (Table 3).

The average daily rainfall of the study region retrieved
from CHIRPS is displayed in Fig. 6 for the study period
1983–2005. Using CHIRPS as reference rainfall data, the ab-
solute difference is presented in Fig. 6 for ARC2, CHIRP,
ORH, and individual RCMs (HadGEM2, GFDL, and MPI).
The average daily rainfall from the individual RCMs (I-
RCM) shows large discrepancies from CHIRPS compared
to CHIRP, ARC2 and ORH. The comparison at a daily
timescale, particularly of rainfall, is challenging and more
emphasis is given to this evaluation compared to dekadal
and monthly resolutions. RCMs (RCA4 and CCLM) driven
by HadGEM2-ES (HadGEM2), MPI-ESM-LR (MPI), and
GFDL-ESM2M (GFDL) are used in this study. For RCMs
driven by all GCMs, the average is used. The daily rainfall,
Tmax, and Tmin maps of GFDL display the result of a sin-
gle RCM (RCA4) driven by GFDL-ESM2M for the period
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of 1983–2005. Higher and lower average daily rainfall val-
ues are displayed by GFDL and ORH, respectively (Fig. 6).
However, all the products showed a similar tendency in cap-
turing the daily rainfall distribution: higher in the western
and lower in the eastern part of the region. In addition, the
average daily Tmax and Tmin (Fig. 7) of the region show rela-
tively higher disagreement between ORH and I-RCM, which
is given as an absolute difference from ORH. Even though
I-RCM shows high deviation from ORH, it showed higher
agreement in Ethiopia, Kenya, and Tanzania for Tmax and
Tmin.

4.2 Validation of satellite, observational reanalysis, and
climate model-based products at dekadal and
monthly resolutions

To understand the role of higher spatial resolution in improv-
ing the agreement with station data, a similar statistical eval-
uation was performed using the coarse resolution of CHIRPS
(0.25◦). Compared to the coarse resolution of CHIRPS, the
daily improved version (0.05◦) used in this study showed an
increased correlation of up to 3.2 % in all the validation ar-
eas. In line with the daily evaluation, the comparison was ex-
tended to dekadal and monthly resolutions for rainfall, Tmax,
and Tmin using the same statistical methods. For this anal-
ysis the observed daily ground observations and data from
ARC2, CHIRP, CHIRPS, ORH, I-RCM, and RCMs were ag-
gregated to dekadal and monthly resolutions. With decreas-
ing temporal resolution (daily to monthly), the agreement of
each product showed a marked improvement in all the vali-
dation areas. In addition to the increase in correlation, biases
(bias and Rbias) and errors (MAE and RMSE) in rainfall are
decreased at dekadal and monthly resolutions.

At dekadal and monthly resolution, the agreement of all
rainfall products with station data increased compared to
daily resolutions and the results for eight validation areas
of Ethiopia, Kenya, and Tanzania are given in Fig. 8. The
same plots – with similar results – for another 13 areas are
provided in the Supplement (Fig. S2). Similar to the daily
evaluation, CHIRPS appeared to be the most accurate rain-
fall product both at dekadal and monthly resolutions in most
of the validation areas compared to the other products. In
addition to the higher correlation of CHIRPS with station
data at monthly and dekadal timescales, the centred mean
square (rms) difference and the standard deviation are close
to the observations in most of the validation areas. Following
CHIRPS, CHIRP appeared to be the second best data source
for dekadal and monthly rainfall and in three validation areas
(EthioShed3, 15, and 16) showed a slightly higher correla-
tion than CHIRPS. In two validation areas (KenShed1 and 2),
ARC2 showed a slightly higher correlation than CHIRP and
CHIRPS. However, in KenShed2, ARC2 showed a higher
deviation from the observed value compared to CHIRP and
CHIRPS. CHIRPS has, for example, almost identical stan-
dard deviation to the station data in all the validation ar-
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Figure 6. Average daily rainfall (mm day−1) map of East Africa retrieved from CHIRPS (a) for the study period 1983–2005. For rainfall
data from ARC2, CHIRP, ORH, and RCMs (b), the absolute difference (mm day−1) from CHIRPS is displayed. All the maps are given in a
0.05◦ spatial resolution.

eas except in areas with a lower number of ground sta-
tions (EthioShed12–15 and TanzShed1). Overall, CHIRPS,
CHIRP, and ARC2 were found to be the best performing
rainfall products, while ORH, I-RCM, and RCMs are the
worst performing products.

Moreover, for Tmax and Tmin, the correlation of ORH,
I-RCM, and RCMs increased from daily to dekadal and
monthly resolutions. The agreement of each product with
station data, for eight validation areas of Ethiopia, Kenya,
and Tanzania, is given in Figs. 9 and 10 for Tmax and Tmin,
respectively. The same plots – with similar results – for an-
other 13 areas are provided in the Supplement (Figs. S3 and
S4 for Tmax and Tmin, respectively). Compared to I-RCM
and RCMs, the correlation between ORH and station data
is higher in most of the validation areas. In addition, ORH
showed lower centred mean square (rms) difference and bi-
ases (bias andRbias). In addition, compared to the I-RCM and
RCMs, the standard deviation of ORH is close to the respec-
tive observations in most of the validation areas. Compared
to I-RCM, the standard deviation and centred mean square
(rms) difference of RCMs are lower in most of the validation
areas.

5 Discussion

Detection of rainfall characteristics by satellite observations
or climate model simulations’ output (GCMs and RCMs) is
very challenging as compared to temperature. This is espe-
cially evident in East Africa, where the topography is com-
plex and characterized by multiple rainfall regimes. In par-
ticular, it is difficult to estimate rainfall with satellite im-
ageries in the mountainous region of East Africa (Cattani
et al., 2016) because these products inevitably do not rep-
resent the regional rainfall patterns and complexity of the re-

gion’s topography (Romilly and Gebremichael, 2011). Here,
for an improved understanding of the climatic conditions of
this complex region and their impact on environmental re-
sources, daily rainfall, Tmax, and Tmin products from high-
resolution satellite imageries, observational reanalysis, and
climate models outputs are compared against ground ob-
servations. Such an evaluation was not available until now
for the considered region. Therefore, an in-depth evaluation
was performed, more specifically, on a daily timescale, of
the satellite-based rainfall products (ARC2, CHIRPS, and
CHIRP), ORH, and RCMs (CCLM and RCA) driven by three
GCMs. ARC2, CHIRP, and CHIRPS are rainfall products,
whereas ORH and RCMs provide rainfall, Tmax, and Tmin.

From the comparison (using point to pixel, point to area
grid cell average, and stations’ average to area grid cell av-
erage methods), the stations’ average to area grid cell aver-
age showed the best correlation and least biases and errors
in all the validation areas. A study by Duan et al. (2016) in
the Adige basin (Italy) found that comparing rainfall prod-
ucts such as CHIRPS on a watershed scale showed a marked
improvement in overall agreement compared to the point to
pixel method on daily and monthly timescales. Comparing
the coarse resolution of satellite products and of RCMs us-
ing the point to pixel method cannot be expected to result in
a high agreement with station data. Ground stations provide
point data measured over continuous time periods, whereas
satellite products provide area averages based on discontinu-
ous (rain) estimates. Field-based stations (as point measure-
ments) cannot be considered as reference data for the eval-
uation of area-based rainfall estimates (Cohen Liechti et al.,
2012; Wang and Wolff, 2010), if not compared at a monthly
or annual timescale. This is similar to our finding that the
point to pixel comparison for all products inside and out-
side the validation areas show weak statistical relations with
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Figure 7. Map of average daily Tmax and Tmin (◦C) for East Africa generated from ORH (a) for the study period 1983–2005. For temperature
data from HadGEM2, GFDL, and MPI (b), the absolute difference (◦C) from ORH is displayed. All the maps are given in a 0.1◦ spatial
resolution.

ground stations (see e.g. Table 2). The correspondence of all
products at a daily timescale and in all the validation areas
was found to be comparably weak, and the findings are in
agreement with earlier studies (Cohen Liechti et al., 2012;
Dembélé and Zwart, 2016).

At a daily timescale, CHIRPS, followed by ARC2 and
CHIRP, showed higher correlation and lower errors and bi-
ases in all the validation areas compared to ORH, I-RCM,
and RCMs. In addition, CHIRPS captured the daily rainfall
characteristics well, while ARC2 showed higher underesti-
mation of the average daily and total rainfall. The agreement
of all the rainfall products increases from daily to dekadal
and monthly timescales (Fig. 8), and this is consistent with
other studies (Cohen Liechti et al., 2012; Dembélé and
Zwart, 2016; Kimani et al., 2017). Generally, CHIRPS, with
a high spatial resolution, followed by CHIRP and ARC2, was
the best performing rainfall product in terms of correlation,
biases, and errors and in characterizing regional rainfall char-
acteristics. By contrast, ORH, I-RCM, and RCMs appeared
to be less precise rainfall products at all timescales and in
all validation areas. When looking at the performance of dif-
ferent data products in the selected validation areas (Fig. S1),
dispersion is comparably higher in areas with a lower number
of ground stations. An additional confounding factor could
be the very complex topography of the region. This might
explain why products with coarser spatial resolution (ORH,
I-RCM, and RCMs) showed higher dispersion compared to
products with higher spatial resolution (CHIRPS, CHIRP,
and ARC2).

The daily rainfall data (global summary of the day) avail-
able at the National Climate Data Center (NCDC) needed to
be controlled for quality before application. In East Africa,
particularly Ethiopia, the data available at NCDC are very

poor and only few stations are available. Therefore, products
developed based on the global summary of the day such as
ORH cannot be expected to provide as accurate results, par-
ticularly for the most complex climate variable, rainfall, as
CHIRPS and ARC2. CHIRPS incorporates monthly station
data obtained from different regional meteorological organi-
zations, e.g. from Ethiopia, Kenya, and Tanzania. In all the
validation areas one to seven stations were included in the
development of CHIRPS in different months during 1981–
2005. In EthioShed1 (Table 2), for example, six of the nine
stations we considered in this study are included in CHIRPS.
The inclusion of monthly station data can be assumed to
improve CHIRPS’ performance compared to other rainfall
products. This particular feature of CHIRPS (compared to
CHIRP and other data products) is somewhat problematic
for our analysis, since the correlated data are not fully in-
dependent. However, since only monthly data from a lim-
ited number of stations were included in CHIRPS, the depen-
dency is rather weak and indirect. In fact, the improved per-
formance of CHIRPS was even shown in areas where station
data are not included (e.g. Arijo, Bedele, and Hurma stations
in EthioShed1) and on a daily timescale.

Even though ORH was one of the worst performing rain-
fall products, it appeared to be the most accurate data source
for Tmax and Tmin at daily, dekadal, and monthly resolutions
compared to I-RCM and RCMs. Nikulin et al. (2012) pre-
sented a detailed comparison of daily gridded observations
with multiple RCMs, including RCA and CCLM, and they
found large discrepancies over the whole region of Africa.
However, in this region, RCMs appeared to be the second
best data source for both Tmax and Tmin, and I-RCM is less
precise, with slightly higher biases and errors. In this region,
other studies (Endris et al., 2013; Kim et al., 2014) concluded
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Figure 8. Taylor diagram displaying the agreement between ground
observations and synthesized dekadal and monthly rainfall over
eight validation areas of Ethiopia, Kenya, and Tanzania covering
the period of 1983–2005.

Figure 9. Taylor diagram displaying the agreement between ground
observations and synthesized dekadal and monthly Tmax over eight
validation areas of Ethiopia, Kenya, and Tanzania covering the pe-
riod of 1983–2005.
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Figure 10. Taylor diagram displaying the agreement between
ground observations and synthesized dekadal and monthly Tmin
over eight validation areas of Ethiopia, Kenya, and Tanzania cov-
ering the period of 1983–2005.

that the multi-model or ensemble mean of CORDEX RCMs
provides reasonable results compared to individual RCMs (I-
RCM). The systematic bias of I-RCM and RCMs is higher
in most of the validation areas compared to the other prod-
ucts, particularly for rainfall, that can be improved by ap-
plying different bias correction techniques such as empirical
quantile mapping (Lafon et al., 2013; Maraun, 2013; Teng
et al., 2015) before application to different hydrological and
climate models (e.g. SDSM). In general, in topographically
complex regions such as East Africa, RCMs require further
improvements in terms of spatial resolution and accuracy by
adding more local information to the modelling process, par-
ticularly for precipitation.

6 Summary and conclusion

The evaluation of rainfall, Tmax, and Tmin from different
sources against station data was performed for large parts
of East Africa (Ethiopia, Kenya, and Tanzania) using three
methods: point to pixel, point to area grid cell average, and
stations’ average to area grid cell averages. Compared to the
other two methods, the last-mentioned method (stations’ av-
erage to area grid cell average) provides a better correla-
tion and index of agreement (IA) and lower errors (MAE
and RMSE) and biases (bias and Rbias). Using this method,
individual rainfall, Tmax, and Tmin products were compared
at daily, dekadal (10 days), and monthly resolutions. At a
daily timescale, CHIRPS, ARC2, and CHIRP provide a bet-
ter agreement with station data compared to ORH, I-RCM,
and RCMs. Compared to CHIRPS and CHIRP, ARC2, ORH,
I-RCM, and RCMs showed higher biases and errors in most
of the validation areas. Overall, the performance of CHIRPS
is higher than the other rainfall products in capturing the
daily rainfall characteristics, such as the number of wet days,
duration of wet and dry periods, total and daily rainfall, and
amount of wet periods. ARC2 better captures duration of wet
and dry periods, but showed higher underestimation of the
total and daily rainfall and number of wet days compared to
CHIRPS and CHIRP. I-RCM and RCMs, on the other hand,
showed higher overestimation of the number of wet days, du-
ration and amount of wet periods, and total rainfall and un-
derestimation of the average duration of dry periods and daily
rainfall.

ORH, conversely, appeared to be one of the worst per-
forming rainfall products for the study region, but the most
accurate product, compared to I-RCM and RCMs, for Tmax
and Tmin at a daily timescale in most of the validation areas.
The evaluation of the above products at dekadal and monthly
timescales showed that CHIRPS with high spatial resolution
(0.05◦) has a higher correlation and lower errors and biases
than the other rainfall products. As the temporal resolution
gets coarser (e.g. monthly), the correlation between ground
observations and the above products significantly increases.
In addition, biases (bias and Rbias) and errors (MAE and
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RMSE) significantly decreased. Similar to that of rainfall, the
comparison at dekadal and monthly resolution showed an im-
proved correlation and lower errors and biases for both Tmax
and Tmin. Compared to I-RCM and RCMs, ORH with higher
spatial resolution was found to be more accurate at dekadal
and monthly resolutions. Next to ORH, RCMs showed a bet-
ter performance than I-RCM, with lower biases and errors.

In general, CHIRPS for rainfall and ORH for Tmax and
Tmin performed best in the considered regions of Ethiopia,
Kenya, and Tanzania. Further studies need to confirm
whether this finding holds for other regions as well, and our
approach may represent a blueprint of how to address this
question. Since CHIRPS and ORH are available with higher
spatial and temporal resolution and for longer periods, these
data sources can be used for long-term climate studies (trend,
variability, and extreme indices) and input for climate or hy-
drological models. Considering the typical need for daily
data for model input, it remains to be investigated whether
poor daily data with a limited bias and similar variance are
an acceptable replacement of missing station data when used
for impact model studies. In addition, the products can be
used to check the plausibility of available ground stations or
substitute ground observations in regions of Ethiopia, Kenya,
and Tanzania where ground station data are not available or
accessible.

Data availability. In this study, publicly available daily rainfall and
maximum and minimum temperature data are retrieved from mul-
tiple climate data sources, as provided below. The rainfall prod-
ucts used in this study are the Africa Rainfall Climatology ver-
sion 2.0 (ARC2), available at the International Research Institute
climate data library (https://iridl.ldeo.columbia.edu/SOURCES/
.NOAA/.NCEP/.CPC/.FEWS/.Africa/.DAILY/.ARC2/; IRI/LDEO,
2016), Climate Hazards Group InfraRed Precipitation (CHIRP),
available at the Climate Hazards Group (ftp://ftp.chg.ucsb.edu/pub/
org/chg/products/CHIRP/daily/; CHG, 2017), and Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS), available
at the International Research Institute climate data library (https:
//iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/; IRI/LDE,
2016). In addition, daily rainfall and maximum and minimum tem-
perature data are retrieved from the Observational-Reanalysis Hy-
brid (ORH), available at the Terrestrial Hydrology Research Group,
Princeton University (http://hydrology.princeton.edu/data.php; Ter-
restrial Hydrology Research Group Princeton University, 2016),
and the regional climate models (RCMs) of the CORDEX-Africa
domain, available at the Earth System Grid Federation (https://
esgf-index1.ceda.ac.uk/projects/esgf-ceda/; ESGF, 2016).
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