Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4145-2018
https://doi.org/10.5194/hess-22-4145-2018
Research article
 | 
03 Aug 2018
Research article |  | 03 Aug 2018

Improvement of model evaluation by incorporating prediction and measurement uncertainty

Lei Chen, Shuang Li, Yucen Zhong, and Zhenyao Shen

Related authors

A comprehensive evaluation of input data-induced uncertainty in nonpoint source pollution modeling
L. Chen, Y. Gong, and Z. Shen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-11421-2015,https://doi.org/10.5194/hessd-12-11421-2015, 2015
Revised manuscript not accepted
Short summary
Upstream to downstream: a multiple-assessment-point approach for targeting non-point-source priority management areas at large watershed scale
L. Chen, Y. Zhong, G. Wei, and Z. Shen
Hydrol. Earth Syst. Sci., 18, 1265–1272, https://doi.org/10.5194/hess-18-1265-2014,https://doi.org/10.5194/hess-18-1265-2014, 2014

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
A decomposition approach to evaluating the local performance of global streamflow reanalysis
Tongtiegang Zhao, Zexin Chen, Yu Tian, Bingyao Zhang, Yu Li, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 28, 3597–3611, https://doi.org/10.5194/hess-28-3597-2024,https://doi.org/10.5194/hess-28-3597-2024, 2024
Short summary
A data-centric perspective on the information needed for hydrological uncertainty predictions
Andreas Auer, Martin Gauch, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, and Daniel Klotz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-64,https://doi.org/10.5194/hess-2024-64, 2024
Revised manuscript accepted for HESS
Short summary
Technical note: Complexity–uncertainty curve (c-u-curve) – a method to analyse, classify and compare dynamical systems
Uwe Ehret and Pankaj Dey
Hydrol. Earth Syst. Sci., 27, 2591–2605, https://doi.org/10.5194/hess-27-2591-2023,https://doi.org/10.5194/hess-27-2591-2023, 2023
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Why do our rainfall–runoff models keep underestimating the peak flows?
András Bárdossy and Faizan Anwar
Hydrol. Earth Syst. Sci., 27, 1987–2000, https://doi.org/10.5194/hess-27-1987-2023,https://doi.org/10.5194/hess-27-1987-2023, 2023
Short summary

Cited articles

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, 2007. 
Chaney, N. W., Herman, J. D., Reed, P. M., and Wood, E. F.: Flood and drought hydrologic monitoring: the role of model parameter uncertainty, Hydrol. Earth Syst. Sci., 19, 3239–3251, https://doi.org/10.5194/hess-19-3239-2015, 2015. 
Chen, L., Shen, Z., Yang, X., Liao, Q., and Yu, S. L.: An Interval-Deviation Approach for hydrology and water quality model evaluation within an uncertainty framework, J. Hydrol., 509, 207–214, 2014. 
Chen, L., Gong, Y., and Shen, Z.: A comprehensive evaluation of input data-induced uncertainty in nonpoint source pollution modeling, Hydrol. Earth Syst. Sci. Discuss., 12, 11421–11447, https://doi.org/10.5194/hessd-12-11421-2015, 2015. 
Cheng, Q., Chen, X., Xu, C., Reinhardt-Imjela, C., and Schulte, A.: Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme, J. Hydrol., 519, 2202–2214, 2014. 
Download
Short summary
In this study, the cumulative distribution function approach (CDFA) and the Monte Carlo approach (MCA) were used to develop two new approaches for model evaluation within an uncertainty framework. These proposed methods could be extended to watershed models to provide a substitution for traditional model evaluations within an uncertainty framework.