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Abstract. Numerous studies have been conducted to assess
uncertainty in hydrological and non-point source pollution
predictions, but few studies have considered both predic-
tion and measurement uncertainty in the model evaluation
process. In this study, the cumulative distribution function
approach (CDFA) and the Monte Carlo approach (MCA)
were developed as two new approaches for model evalua-
tion within an uncertainty condition. For the CDFA, a new
distance between the cumulative distribution functions of the
predicted data and the measured data was established in the
model evaluation process, whereas the MCA was proposed to
address conditions with dispersed data points. These new ap-
proaches were then applied in combination with the Soil and
Water Assessment Tool in the Three Gorges Region, China.
Based on the results, these two new approaches provided
more accurate goodness-of-fit indicators for model evalu-
ation compared to traditional methods. The model perfor-
mance worsened when the error range became larger, and
the choice of probability density functions (PDFs) affected
model performance, especially for non-point source (NPS)
predictions. The case study showed that if the measured er-
ror is small and if the distribution can be specified, the CDFA
and MCA could be extended to other model evaluations
within an uncertainty framework and even be used to cali-
brate and validate hydrological and NPS pollution (H/NPS)
models.

1 Introduction

Prediction of non-point source (NPS) pollution has be-
come increasingly utilized because NPS pollution is a key

threat to bodies of water (Shen et al., 2014). Numerous
hydrological models, including the Soil and Water Assess-
ment Tool (SWAT), the Hydrological Simulation Program-
Fortran (HSPF) and the Agricultural Non-Point Source
Model (AGNPS), have been developed and widely applied to
hydrological and NPS (H/NPS) pollution analyses and wa-
tershed management (Yang et al., 2008). NPS pollution is
reportedly driven by random and diffuse factors, such as cli-
mate, land use, soil, vegetation cover and human activities
(Ouyang et al., 2009), and model confidence in NPS pre-
diction, represented by model calibration and validation, is
currently lacking in modelling research.

Hydrological models always require input data, optimal
parameters and proper model structure (Di Baldassarre and
Montanari, 2009), whereas data measurement often involves
processes of sampling, transportation and analyses. Errors
in these complex processes lead to uncertainty in the data
(Chaney et al., 2015). Uncertainties in hydrology and NPS
modelling are classified as either measurement uncertainty or
prediction uncertainty (Chen et al., 2015; Di Baldassarre and
Montanari, 2009). Uncertainty analysis is a crucial step in the
application of hydrological models (Guinot et al., 2011). The
uncertainty surrounding model structure and parameteriza-
tion has been extensively investigated (Wu et al., 2017). Sev-
eral approaches, including the generalized likelihood uncer-
tainty estimation (GLUE) (Hassan et al., 2008; Sathyamoor-
thy et al., 2014; Cheng et al., 2014), the Bayesian approach
(Freni and Mannina, 2010; Han and Zheng, 2016; Parkes and
Demeritt, 2016; Zhang et al., 2009a), sequential uncertainty
fitting (SUFI-2) (Vilaysane et al., 2015; Abbaspour et al.,
2007), and Markov chain Monte Carlo (MCMC) (Vrugt et
al., 2003; Zhang et al., 2016), have been proposed. However,
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due to the lack of data, relatively few studies have focused
on the inherent uncertainty in measured data, and even fewer
studies have considered measurement and prediction uncer-
tainties in the evaluation of model performance (Di Baldas-
sarre and Montanari, 2009; Montanari and Di Baldassarre,
2013).

In model evaluation, calibration is the process used to gen-
erate optimal parameters for the best goodness-of-fit between
the predicted data and the measured data, and validation is
the process of checking the model performance using an-
other series of measured data (Chen et al., 2014). Traditional
model evaluation only considers the goodness-of-fit between
sets of measured data points and predicted data points (West-
erberg et al., 2011). Such point-to-point methods might be
inadequate because they fail to incorporate the existing un-
certainties mentioned above. Previous studies have noted that
if prediction uncertainty exists, the predicted data could be
expressed as a confidence interval (CI) or a probability den-
sity function (PDF) (Franz and Hogue, 2011; Shen et al.,
2012). Harmel and Smith (2007) used the probable error
range (PER) as an expression of measurement uncertainty
and modified the goodness-of-fit indicators using the devia-
tion term between the predicted data points and the nearest
measurement uncertainty boundaries. Harmel et al. (2010)
further modified this deviation term using a correction factor,
which was determined by the degree of overlap between each
pair of measured and predicted intervals. This idea is instruc-
tive, but it might be questionable sometimes because a larger
uncertainty or error would result in more overlap between
the prediction and measurement intervals, which would in-
dicate better model performance. In this regard, Chen et
al. (2014) developed an interval–deviation approach (IDA),
which demonstrated that H/WQ models should be evaluated
against both the nearest and farthest boundaries (the inher-
ent uncertainty intervals). Generally, this IDA approach is
suitable for incomplete data conditions, but when more data
could be collected or when a continuous and random data dis-
tribution could be assumed, these intervals may not always be
practical. Current research tends to express uncertain data as
certain function distributions to express an error term (Zhang
et al., 2009b), which might lead to a more feasible expression
than either the traditional or IDA methods.

The objective of this study is to develop a new frame-
work for model evaluation by incorporating prediction and
measurement uncertainty. Two methods, the cumulative dis-
tribution function approach (CDFA) and the Monte Carlo
approach (MCA), were proposed for different situations
(Sect. 2). Then, the new methods were used in combina-
tion with the SWAT to evaluate the Three Gorges Reservoir
Area (TGRA), China, as a case study (Sects. 3 and 4).

2 Methodology

In this study, the Nash–Sutcliffe efficiency (NSE) coefficient
was selected from commonly used indicators, and the expres-
sion is as follows:

NSE= 1−
N∑

i=1
(Oi −Pi)

2/

N∑
i=1

(
Oi −Oi

)2
, (1)

where {Oi |i = 1, 2, . . . , N} is the set of measured data,
{Pi |i = 1, 2, . . . , N} is the set of predicted data and O is the
mean value of the measured data.

In traditional indicators, the deviation between the mea-
sured and predicted data is expressed by the absolute dis-
tance (Oi–Pi) between the paired data points. This method
is questionable because it fails to incorporate prediction
and measurement uncertainty. In this paper, the probabil-
ity distributions of each data set were statistically esti-
mated, and the calculations of Oi–Pi were modified by us-
ing stochastic distances between the paired PDFs. For the
CDFA, cumulative distribution functions were used to de-
scribe uncertain data because they are simple and do not
depend on the distributional properties throughout the data
sets (see Sect. 2.1). A topological distance, which is based
on the distance between cumulative distribution functions
(distribution-to-distribution), was proposed to replace the tra-
ditional error item in the model evaluation. The Monte Carlo
method was also used to generate groups of discrete un-
certain data throughout the sampling process (Vrugt and
Ter Braak, 2011). Thus, the MCA was proposed as a supple-
ment to the CDFA when the uncertain data were discrete or
when no specific distributions could be used (see Sect. 2.2).
A flowchart of the model evaluation within the uncertainty
framework is presented in Fig. 1.

2.1 The description of the CDFA method

The idea behind the CDFA was to replace the point-to-point
comparison with the deviation between uncertain measured
data and predicted data expressed as cumulative distribu-
tion functions. In fact, this is a modification of traditional
goodness-of-fit indicators by replacing the calculations of
their Oi–Pi term by using stochastic distances between the
paired probability density functions (PDFs). A topological
distance was proposed, and visualizations of the topologi-
cal distance are illustrated in Fig. 2. The cumulative distribu-
tion function was chosen because it is a monotone increas-
ing function with a limited threshold and an integral prop-
erty. The distance between cumulative distributions was then
transformed into an area topological distance (D). The proof
of the rationality behind the topological distance D is shown
in Table 1 (in the Supplement).

Based on Table 1, (B, D) is a reasonable metric space, and
D is a reasonable measurement of B. Therefore, the differ-
ence between Fp(x) and Fo(x) is reasonable and advisable.

The detailed steps of the CDFA are as follows:
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Figure 1. A general flowchart of model evaluation within the uncertainty framework.
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Table 1. The proof for the rationality of topological distance D.

Objective Implementation Constraints

The definition of D Defined ∀f ∈ A The changing of it (f ) is denoted by g.

The definition of g f ′(x)=


0 (x < x1)

f (x) (x1 ≤ x ≤ x2)

1 (x > x2)

∃x1x2 ∈ Rf (x)= 0 and f (x)= 1, then (x1 < x2);

f ′(x)=

{
0 (x < x1)

f (x) (x ≥ x1)
∃x1 ∈ Rf (x)= 0 and ∃!x2 ∈ R, f (x)= 1;

f ′(x)=

{
f (x) (x ≤ x2)

1 (x > x2)
∃x2 ∈ R, f (x)= 1 and ∃!x1 ∈ R, f (x)= 0;

f ′(x)= f (x) ∃!x1x2 ∈ R, f (x)= 0 and f (x)= 0;

The definition of B B = {h|h= g(f (x))}, B 6=∅ h is a continuous function.

The definition of topological distance D D =
b∫
a
|f1− f2| a < b, a, b ∈ R, a and b are all real numbers∗;

∀D 6∈

{
D|D =

b∫
a
|f1− f2|dx , ∀f1, f2 ∈ B

}
∃m ∈ R; m > D (D is a limited value);

Proof of positive definiteness D(j − j)=0 ∀j ∈ B, |j − j | = 0, then D =
b∫
a
|j − j |dx = 0;

Proof of symmetry D(j1, j2)=D(j2, j1) ∀j1, j2 ∈ B then, |j1− j2| = |j2− j1|;

Trigonometric inequality |j1− j3| = |j1− j2+ j2− j3| ≤ |j1− j2| + |j2− j3| ∀j1j2j3 ∈ B;

D(j1, j3)≤D(j1, j2)+D(j2, j3)
b∫
a
|j1− j3|dx ≤

b∫
a

(∣∣j1−j2
∣∣+ |j2− j3|

)
dx

=

b∫
a
|j1− j2|dx +

b∫
a
|j2− j3|dx

∗ Where the values of a and b are as far from the origin as possible; thus, the functions are integrated over a limited interval, and there are only small differences between the results and the results
integrated for the real numbers R.

Figure 2. Expression of topological distance for (a) the case in which the measured and predicted data are non-overlapping and (b) the case
in which the measured and predicted data are overlapping.

1. the prediction and measurement uncertainty are gener-
ated using GLUE, PER or other methods;

2. the prediction and measurement data intervals are anal-
ysed, and the cumulative distribution functions of the
prediction uncertainty (Fo(x)) and the measurement un-
certainty (Fp(x)) are calculated;

3. the topological interval (area distance) between the two
functions Fo(x) and Fp(x) is quantified; and

4. the new Oi–Pi is quantified, and the modified evalua-
tion indicators are used for model evaluation.

2.2 The MCA method

In other cases, the measurement and prediction uncertainties
might be expressed as discrete data, or no continuous dis-
tribution function may fit the data set. For example, even in
some ideal conditions, the well-distributed gauges are avail-
able, the rain-gauge network cannot fully capture every point
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over the watershed and it is more common to have only a
few stations distributed in space. Rainfall at unknown points
is thus estimated by means of interpolation techniques. Some
results showed that spatial interpolation techniques resulted
in considerable uncertainty of rainfall spatial variability and
transferred larger uncertainty to H/NPS modelling. In addi-
tion, Shen et al. (2013)’s study has been carried out into the
effect of GIS data on water quality modelling and the uncer-
tainty related to the combination of the available GIS maps.
All these kinds of prediction uncertainty relating to limited
model structures, or model input data, could result in dis-
crete variables. To incorporate this type of uncertainty, MCA
was implemented using the Monte Carlo technique, which
has been used in many hydrological uncertainty studies (Sun
et al., 2008; Zhang et al., 2016). The Monte Carlo technique
is a type of random sampling method that considers combina-
tions of different input components and determines a statisti-
cal distribution for the output data (Shen et al., 2013). A key
step is sampling variables randomly for discrete data so that
the measurement and prediction data can be expressed as cer-
tain distributions. Here, (Oi–Pi) was replaced by a stochastic
expression of the deviation between pairs of data groups, and
these stochastic deviations were then used to calculate the
evaluation indicators. The details of the MCA are as follows:

1. the distribution functions or discrete measured data
points (fo(x)) and predicted data (fp(x)) are generated;

2. the sampling process of fp(x)) and fo(x) is realized
using the Latin hypercube sampling approach (Shen et
al., 2012), and the Crystal Globe software was used to
sample for the MCA;

3. based on the random samples of the predicted and mea-
sured data, corresponding individual goodness-of-fit in-
dicators are calculated;

4. the sampling process is repeated until the target sample
size is achieved; and

5. a group of goodness-of-fit indicator values are obtained,
and these values are used to produce the statistical anal-
ysis for the model evaluation within the uncertainty
framework.

3 Case study

In this study, the Daning Watershed, which is located in the
central part of the TGRA, was selected as the study area. Pre-
viously, the uncertainty ranges related to the flow, sediment
and TP predictions were quantified using the GLUE method
(Chen et al., 2014; Shen et al., 2012), and these results and
uncertainty ranges were used as the predicted data sets. Nor-
mal, uniform and lognormal distributions, which are classic
and simple PDFs, were assumed for each predicted data set.
More details about the uncertainty ranges and PDFs of the

predicted flow, sediment and total phosphorus (TP) can be
found in our previous study (Chen et al., 2014).

The measured streamflow, sediment and TP data at
the Wuxi hydrological gauges were obtained from the
Changjiang Water Resources Commission. Due to data lim-
itations, the error range of the measured data was de-
rived from Harmel et al. (2006, 2010) and Harmel and
Smith (2007). Based on our previous study (Chen et al.,
2014), the measurement uncertainty was assumed to be a nor-
mal distribution in this paper, and three scenarios, an ideal
case, a typical case and a worst case, were used. The proba-
ble error ranges (PERs) for flow, sediment and TP were 2 %,
2 % and 2 %, respectively, for each ideal-case scenario; 9 %,
16 % and 26 %, respectively, for each typical-case scenario;
and 36 %, 102 % and 221 %, respectively, for each worst-case
scenario.

4 Results and discussion

4.1 The model evaluation results using the CDFA

The model evaluation results for flow, sediment and TP are
shown in Table 2. For simplicity, only the NSE indicator was
chosen as a model evaluation indicator, and the model eval-
uation results using a traditional point-to-point method were
used as a baseline scenario. For the traditional method, the
NSE values were 0.736, 0.642 and 0.783 for flow, sediment
and TP, respectively. Using the CDFA method (assuming the
measured error was small – the ideal case), the following
changes to the NSE values were obtained: 0.752, 0.660 and
0.810 for flow, sediment and TP, respectively, in the nor-
mal distribution scenario; 0.742, 0.661 and 0.814, respec-
tively, in the uniform distribution scenario; and 0.752, 0.660
and 0.812, respectively, in the lognormal distribution sce-
nario. However, when the measurement error became large
(for the typical case), the following NSE values were ob-
tained: 0.751, 0.657 and 0.789 for flow, sediment and TP, re-
spectively, in the normal distribution scenario; 0.742, 0.661
and 0.814, respectively, in the uniform distribution scenario;
and 0.751, 0.657 and 0.791, respectively, in the lognormal
distribution scenario. When the measurement error became
negative (the worst-case scenario), the following NSE val-
ues were obtained: 0.744, 0.551 and −0.056 for flow, sed-
iment and TP, respectively, in the normal distribution sce-
nario; 0.736, 0.545 and −0.019, respectively, in the uniform
distribution scenario; and 0.744, 0.437 and −0.072, respec-
tively, in the lognormal distribution scenario.

4.2 The model evaluation results using MCA

The sampling size is important for MCA, so a sensitivity
analysis was first conducted. Groups of Oi and Pi values (10,
50, 100, 200, 500, 1000, 2000 and 5000) were randomly gen-
erated and used to calculate the NSE, and the sampling sizes
were obtained using statistical analysis of the NSE (only the
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0.789
−

0
.056

0.814
0.814

−
0
.019

0.812
0.791

−
0
.072

N
SE

(M
C

A
)

0.71–0.82
0.62–0.83

−
3
.10–0.67

0.71–0.84
0.55–0.86

−
3
.27–0.72

0.69–0.81
0.62–0.83

−
3
.01–0.67

results for 1000, 2000, and 5000 are shown in Table 3). The
sampling results showed that with increasing sampling size,
the mean value and the coefficients of variation (CV) of the
flow, sediment and TP also increased. However, when the
sampling sizes are larger than 2000, the model performance
becomes stable, and all indicators only changed within 1 %,
indicating that larger sampling sizes of Oi and Pi would not
further benefit the performance of the model. Thus, a sam-
pling size of 5000 was chosen in this study.

The evaluation results, which are expressed as the 95 %
confidence interval of the NSE for the flow, sediment and TP
predictions, are shown in Table 2. The NSE ranges for flow,
sediment and TP in the ideal case were as follows: 0.73–0.74,
0.61–0.69 and 0.71–0.82, respectively (normal distribution);
0.73–0.75, 0.60–0.70 and 0.71–0.84, respectively (uniform
distribution); and 0.73–0.74, 0.61–0.69 and 0.69–0.81, re-
spectively (lognormal distribution). The NSE ranges for flow,
sediment and TP in the typical case were as follows: 0.71–
0.75, 0.59–0.69 and 0.62–0.83, respectively (normal distribu-
tion); 0.71–0.76, 0.59–0.71 and 0.55–0.86, respectively (uni-
form distribution); and 0.71–0.75, 0.59–0.68 and 0.62–0.83,
respectively (lognormal distribution). The NSE ranges for
flow, sediment and TP in the worst case were as follows:
0.63–0.79, −0.31–0.67 and −3.10–0.67, respectively (nor-
mal distribution); 0.63–0.79, −0.53–0.68 and −3.27–0.72,
respectively (uniform distribution); and 0.63–0.79, −0.28–
0.66 and −3.01–0.67, respectively (lognormal distribution).

4.3 Analysis of influencing factors

4.3.1 Impact of error range

Generally, the data uncertainty range should always be ob-
tained by analysing a large amount of data, so it is difficult
to ensure the error range of the predicted or measured data
due to data limitations. In this study, the measurement er-
ror is expressed as the PER, and three PERs were obtained
as expressions of different error ranges (Harmel and Smith,
2007). In this section, the error ranges of the measured data
were assumed as the PERs, and the impacts of the PERs on
the evaluation results of the CDFA and the MCA were quan-
tified. Only the normal distribution was considered for the
prediction data. For the ideal-case scenario (PER of 2 %), the
NSE for the flow evaluation was 0.752, but for the typical-
case and worst-case scenarios, the values of the NSE changed
to 0.751 and 0.744, respectively. Compared to the point-to-
point result, the goodness-of-fit indicators obtained from the
CDFA (NSE) increased by 21.3 % for flow in the ideal case.
The NSE increased by 20.1 % and 9.8 % for the typical-case
and worst-case scenarios, respectively. Similar variations in
the evaluation results were observed for the MCA method.
The NSE for the flow evaluation was 63.5 % for the ideal case
(normal distribution) and was 40.9 % and 10.6 % for the typ-
ical case and the worst case, respectively (Harmel and Smith,
2007; Shen et al., 2013). For flow prediction, the evaluation
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Table 3. The result of sampling (2000 times and 5000 times) the flow, sediment and TP in different distributions.

Number of Normal distribution Uniform distribution Lognormal distribution

simulations M1
V C2

V MV CV MV CV

Flow

Ideal
1000 0.738 0.005 0.742 0.006 0.736 0.005
2000 0.737 0.005 0.742 0.006 0.736 0.005
5000 0.737 0.005 0.742 0.006 0.736 0.005

Typical
1000 0.734 0.013 0.736 0.013 0.735 0.014
2000 0.734 0.013 0.738 0.013 0.732 0.013
5000 0.733 0.013 0.737 0.013 0.733 0.013

Worst
1000 0.578 0.055 0.824 0.014 0.713 0.015
2000 0.683 0.047 0.748 0.013 0.730 0.013
5000 0.693 0.048 0.737 0.013 0.737 0.013

Sediment

Ideal
1000 0.643 0.029 0.657 0.043 0.641 0.028
2000 0.642 0.030 0.657 0.044 0.642 0.028
5000 0.642 0.030 0.657 0.044 0.642 0.029

Typical
1000 0.639 0.039 0.652 0.05 0.64 0.057
2000 0.640 0.038 0.654 0.049 0.637 0.038
5000 0.638 0.039 0.653 0.049 0.638 0.038

Worst
1000 0.378 0.818 0.484 0.987 0.467 1.224
2000 0.440 0.713 0.440 0.906 0.415 1.21
5000 0.446 0.717 0.433 0.914 0.424 1.213

TP

Ideal
1000 0.773 0.038 0.782 0.044 0.771 0.039
2000 0.772 0.039 0.782 0.044 0.771 0.039
5000 0.771 0.039 0.781 0.045 0.772 0.040

Typical
1000 0.744 0.074 0.747 0.106 0.747 0.106
2000 0.745 0.073 0.749 0.104 0.744 0.072
5000 0.743 0.073 0.748 0.105 0.746 0.072

Worst
1000 −0.091 −12.224 −0.168 −8.907 −0.172 −8.529
2000 −0.106 −10.543 −0.153 −8.172 −0.148 −8.737
5000 −0.108 −10.716 −0.150 −8.249 −0.156 −8.449

1 MV is the mean value; 2 CV is the coefficient of variation.

results obtained using the CDFA were all satisfactory with
measurement error of any size; however, for the sediment and
TP evaluations, the goodness-of-fit indicators became unac-
ceptable if the measurement errors were large (in the worst-
case scenario). In this regard, the range of measurement error
showed different impacts on the flow, sediment and TP pre-
dictions. For example, the NSE values were 0.752, 0.660 and
0.810 for the flow, sediment and TP evaluations in the ideal-
case scenario. From the results above, a large measurement
error would cause decreasing evaluation performance, which
is different from the results of Harmel and Smith (2007).
Similar results were observed for the MCA.

As shown in Table 2, increasing measurement error would
lead to decreased NSE, which means less confidence in the
model performance. The worst evaluation indicators were
observed when the measurement error was the largest. The
performance of the TP predictions became unacceptable
when the PER was 221 % (worst case). This result indicated
that a threshold error range might exist for model evaluation.
When the error range is less than this specific value (such

as the ideal and typical cases for TP prediction used in this
study), the model evaluation result is acceptable. However,
if the measurement error exceeds this threshold value (worst
case) the model evaluation would be unacceptable, and the
confidence in the model performance would be lost, espe-
cially for the NPS prediction. However, in reality, it is of-
ten difficult to accurately measure pollutant data, especially
in developing countries, such as China. In these countries, a
“calibrated model” would have few advantages over an un-
calibrated model because of the lack of precisely measured
data.

4.3.2 Impacts of data distribution

The assignment of PDFs might be the most difficult and sub-
jective task in the application of uncertainty analysis to hy-
drological models (Shen et al., 2013). Thus, model perfor-
mance might be influenced not only by the error range, but
also by the choice of PDF. In this study, the prediction un-
certainty was assumed as three certain distribution functions,
but it is always difficult to ensure which PDFs should be
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used (Shen et al., 2013). In this section, we further quanti-
fied the impacts of the different PDFs on model performance.
For simplicity, only the results of the CDFA and typical-case
scenario are considered here. For the flow evaluation, the
NSE values were 0.751, 0.742 and 0.751 when the predicted
data were modelled using the normal distribution, uniform
distribution and lognormal distribution, respectively. For TP
evaluation, the NSE values were 0.789, 0.814 and 0.791 for
the normal distribution, uniform distribution and lognormal
distribution, respectively. As in a previous study, the CI of
the prediction was larger for flow than for TP (Shen et al.,
2012). Thus, the prediction distributions have a low impact
on the evaluation in cases of high CI values, but have a big-
ger impact on the evaluation when the CI of the prediction
is low. Compared to the baseline scenario, the NSE values
for the hydrological prediction increased by 20.1 %, 7.3 %
and 20.3 % for the normal, uniform and lognormal distribu-
tions, respectively. These results indicated that the choice of
PDF would show certain impacts on the model evaluation
for hydrological, sediment and TP applications. This result
is consistent with previous studies, which also showed that
prediction uncertainty distributions can affect the goodness-
of-fit indicators (Harmel et al., 2010). Table 2 also indicates
that the choice of predicted PDFs should be dependent on the
selection of the measured PDFs. If the measurement and pre-
diction uncertainties are set using the same PDFs, such as a
normal distribution, the goodness-of-fit indicators would be
larger, indicating a more reliable model performance. Thus,
the choice of proper PDFs is important to make accurate
model evaluation for NPS predictions. Based on these re-
sults, we suggest that model acceptability can be attained
by using certain PDFs on the model output by collecting in-
formation from model documentation, previous studies, and
other literature to make an “educated guess”.

4.4 Comparison with previous methods

In a previous study, Harmel and Smith (2007) advanced
the IDA method, and this “point-to-interval” method was
based on the distance between the nearest boundaries of
paired intervals. Compared to our results, the difference be-
tween the paired data intervals or the paired PDFs overlap-
ping for larger uncertainties would be mistakenly regarded as
“no difference”. The point-to-interval method gave a higher
goodness-of-fit, but the measured data were only treated as
data points. In this regard, deviations between measurements
and the prediction data would be ignored in the model eval-
uation, which is not appropriate because the measurement
error range would greatly affect the model performance (as
mentioned in Sect. 4.3).

Chen et al. (2014) improved the nearest method by correct-
ing for the overlapping parts of the uncertainty data and us-
ing both the nearest and farthest boundaries. Using the IDA,
the NSE for the hydrological prediction would be 0.834 in
the ideal case. However, the CDFA method produced lower

NSE values, which were 0.752 for the normal distribution,
0.742 for the uniform distribution and 0.752 for the lognor-
mal distribution. In the typical case, the IDA method would
produce an NSE value of 0.833, but the CDFA would result in
an NSE value of 0.751 for the normal distribution, 0.742 for
the uniform distribution, and 0.751 for the lognormal distri-
bution. The difference between the IDA and the CDFA would
be largest for the worst case, in which the NSE values would
be 0.780 for the IDA method and 0.744 (normal distribution),
0.736 (uniform distribution), or 0.744 (lognormal distribu-
tion) for the CDFA method (all results of the IDA can be
found in Chen et al., 2014).

In Chen et al. (2014), an “interval-to-interval” method was
proposed in which an absolute distance between measure-
ment and prediction uncertainty data was derived from both
the nearest and farthest boundaries. However, due to data
limitations, a weight factor was used to balance the near-
est boundaries and the farthest boundaries, and the choice
of weight factor was subjective. When the weight factor was
set to 0.5, the IDA method would produce similar goodness-
of-fit indicators to the results of the CDFA using the uniform
or normal distributions for both the predicted and measured
data (Chen et al., 2014). For example, the NSE value for the
hydrological prediction was 0.764 using the IDA method;
if the CDFA was used, the goodness-of-fit indicators would
be 0.752, 0.742, and 0.752 for the normal, lognormal, and
uniform distributions, respectively. Therefore, when specific
PDFs were used, the IDA method could be viewed as a sim-
plification of the CDFA. Previous studies have also indicated
that the lognormal distribution provides a relatively close ap-
proximation to the true error characteristics, so the CDFA
could be more practical if certain prediction uncertainties ex-
ist (Shen et al., 2015).

5 Conclusion

In this study, two new methods were proposed and employed
to evaluate model performance within an uncertainty frame-
work: the CDFA and the MCA. Using the CDFA and the
MCA, both prediction and measurement uncertainty could
be considered for model evaluation in a post-calibration pro-
cess, and the possible impacts of error range and the choice
of PDFs could be quantified for a real application. Based on
the results, the model performance worsened when a larger
error range existed, and the choice of PDF affected the model
performance, especially for NPS pollution predictions. These
proposed methods could be extended to other goodness-of-fit
indictors and other watershed models to provide a substitu-
tion for traditional model evaluations within an uncertainty
framework. Thus, the new approaches could be a substitute
for traditional goodness-of-fit indicators and they could be
used for the model evaluation process.
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However, it should be noted that the proposed CDFA
and the MCA would serve for model evaluation in a post-
calibration process rather than a new calibration technique
due to the technical complexity in implementing this ap-
proach within the model calibration. With the results pre-
sented, fixed PDFs or error range for prediction data could
not be found due to insufficient knowledge and natural ran-
domness. Thus modellers should better assess the error range
of measured data for their use in watershed simulations, and
more data should be gathered to obtain a real measurement
error range and a proper PDF for the predicted data. Further
explanations are also suggested for the inherent uncertainty
of hydrological and pollutant transportation processes. More
case studies should be conducted to test the IDA, CDFA and
MCA in future practical analyses of other watershed models.
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