

Supplement of

Improvement of model evaluation by incorporating prediction and measurement uncertainty

Lei Chen et al.

Correspondence to: Zhenyao Shen (zyshen@bnu.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Table S1. The proof for the rationality of topological distance D.

objective	implementation	constraints
The definition of D	Defined $\forall f \in A$	the changing of it (f) is denoted by g ;
The definition of g	$f'(x) = \begin{cases} 0 & (x < x_1) \\ f(x) & (x_1 \leq x \leq x_2) \\ 1 & (x > x_2) \end{cases}$ $f'(x) = \begin{cases} 0 & (x < x_1) \\ f(x) & (x \geq x_1) \end{cases}$ $f'(x) = \begin{cases} f(x) & (x \leq x_2) \\ 1 & (x > x_2) \end{cases}$ $f'(x) = f(x)$	$\exists x_1, x_2 \in R, f(x) = 0$ and $f(x) = 1$, then $(x_1 < x_2)$; $\exists x_1 \in R, f(x) = 0$ and $\exists! x_2 \in R, f(x) = 1$; $\exists x_2 \in R, f(x) = 1$ and $\exists! x_1 \in R, f(x) = 0$; $\exists! x_1, x_2 \in R, f(x) = 0$ and $f(x) = 0$;
The definition of B	$B = \{h h = g(f(x))\}, B \neq \emptyset$	h is a continuous function;
The definition of Topological distance D	$D = \int_a^b f_1 - f_2 $	$a < b, a, b \in R, a$ and b are all real numbers ^a ;
Proof of positive Definiteness	$\forall D \notin \{D D = \int_a^b f_1 - f_2 d_x, \forall f_1, f_2 \in B\}$	$\exists m \in R; m > D$ (D is a limited value);
Proof of symmetry	$D(j_1, j_2) = D(j_2, j_1)$	$\forall j \in B, j - j = 0$, then $D = \int_a^b j - j d_x = 0$; $\forall j_1, j_2 \in B$, then, $ j_1 - j_2 = j_2 - j_1 $;
Trigonometric inequality	$ j_1 - j_3 = j_1 - j_2 + j_2 - j_3 \leq j_1 - j_2 + j_2 - j_3 $ $D(j_1, j_3) \leq D(j_1, j_2) + D(j_2, j_3)$	$\forall j_1, j_2, j_3 \in B$; $\int_a^b j_1 - j_3 d_x \leq \int_a^b (j_1 - j_2 + j_2 - j_3) d_x$ $= \int_a^b j_1 - j_2 d_x + \int_a^b j_2 - j_3 d_x$

^awhere the values of a and b are as far from the origin as possible, thus the functions are integrated over a limited interval, and there are only small differences between the results and the results integrated for the real numbers R .