Articles | Volume 22, issue 7
Hydrol. Earth Syst. Sci., 22, 4015–4032, 2018
https://doi.org/10.5194/hess-22-4015-2018
Hydrol. Earth Syst. Sci., 22, 4015–4032, 2018
https://doi.org/10.5194/hess-22-4015-2018

Research article 26 Jul 2018

Research article | 26 Jul 2018

Evaporation suppression and energy balance of water reservoirs covered with self-assembling floating elements

Milad Aminzadeh et al.

Related authors

Simulated or measured soil moisture: which one is adding more value to regional landslide early warning?
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021,https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021,https://doi.org/10.5194/essd-13-1593-2021, 2021
Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021,https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts
Minsu Kim and Dani Or
Biogeosciences, 14, 5403–5424, https://doi.org/10.5194/bg-14-5403-2017,https://doi.org/10.5194/bg-14-5403-2017, 2017
Short summary
Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial) plant leaves
Stanislaus J. Schymanski, Daniel Breitenstein, and Dani Or
Hydrol. Earth Syst. Sci., 21, 3377–3400, https://doi.org/10.5194/hess-21-3377-2017,https://doi.org/10.5194/hess-21-3377-2017, 2017
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use
Yaogeng Tan, Zengchuan Dong, Sandra M. Guzman, Xinkui Wang, and Wei Yan
Hydrol. Earth Syst. Sci., 25, 6495–6522, https://doi.org/10.5194/hess-25-6495-2021,https://doi.org/10.5194/hess-25-6495-2021, 2021
Short summary
Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land
Sara Modanesi, Christian Massari, Alexander Gruber, Hans Lievens, Angelica Tarpanelli, Renato Morbidelli, and Gabrielle J. M. De Lannoy
Hydrol. Earth Syst. Sci., 25, 6283–6307, https://doi.org/10.5194/hess-25-6283-2021,https://doi.org/10.5194/hess-25-6283-2021, 2021
Short summary
Robustness of a parsimonious subsurface drainage model at the French national scale
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021,https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021,https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021,https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary

Cited articles

Aminzadeh, M. and Or, D.: Temperature dynamics during nonisothermal evaporation from drying porous surfaces, Water Resour. Res., 49, 7339–7349, https://doi.org/10.1002/2013WR014384, 2013. 
Aminzadeh, M. and Or, D.: Energy partitioning dynamics of drying terrestrial surfaces, J. Hydrol., 519, 1257–1270, 2014. 
Aminzadeh, M. and Or, D.: Pore-scale study of thermal fields during evaporation from drying porous surfaces, Int. J. Heat Mass Tran., 104, 1189–1201, https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.039, 2017. 
Assouline, S., Narkis, K., and Or, D.: Evaporation from partially covered water surfaces, Water Resour. Res., 46, 1–12, https://doi.org/10.1029/2010WR009121, 2010. 
Assouline, S., Narkis, K., and Or, D.: Evaporation suppression from water reservoirs: Efficiency considerations of partial covers, Water Resour. Res., 47, 1–8, https://doi.org/10.1029/2010WR009889, 2011. 
Download
Short summary
Significant evaporative losses from local water reservoirs in arid regions exacerbate water shortages during dry spells. We propose a systematic approach for modeling energy balance and fluxes from covered water bodies using self-assembling floating elements, considering cover properties and local conditions. The study will provide a scientific and generalized basis for designing and implementing this important water conservation strategy to assist with its adaptation in various arid regions.