Articles | Volume 22, issue 5
https://doi.org/10.5194/hess-22-2795-2018
https://doi.org/10.5194/hess-22-2795-2018
Research article
 | 
08 May 2018
Research article |  | 08 May 2018

How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers

Hafsa Ahmed Munia, Joseph H. A. Guillaume, Naho Mirumachi, Yoshihide Wada, and Matti Kummu

Related authors

Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-362,https://doi.org/10.5194/egusphere-2024-362, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – Towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
EGUsphere, https://doi.org/10.5194/egusphere-2023-2562,https://doi.org/10.5194/egusphere-2023-2562, 2024
Short summary
GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model
Jens A. de Bruijn, Mikhail Smilovic, Peter Burek, Luca Guillaumot, Yoshihide Wada, and Jeroen C. J. H. Aerts
Geosci. Model Dev., 16, 2437–2454, https://doi.org/10.5194/gmd-16-2437-2023,https://doi.org/10.5194/gmd-16-2437-2023, 2023
Short summary
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022,https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale
Luca Guillaumot, Mikhail Smilovic, Peter Burek, Jens de Bruijn, Peter Greve, Taher Kahil, and Yoshihide Wada
Geosci. Model Dev., 15, 7099–7120, https://doi.org/10.5194/gmd-15-7099-2022,https://doi.org/10.5194/gmd-15-7099-2022, 2022
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Theory development
HESS Opinions: The unsustainable use of groundwater conceals a “Day Zero”
Camila Alvarez-Garreton, Juan Pablo Boisier, René Garreaud, Javier González, Roberto Rondanelli, Eugenia Gayó, and Mauricio Zambrano-Bigiarini
Hydrol. Earth Syst. Sci., 28, 1605–1616, https://doi.org/10.5194/hess-28-1605-2024,https://doi.org/10.5194/hess-28-1605-2024, 2024
Short summary
Water productivity is in the eye of the beholder: benchmarking the multiple values produced by water use in the Phoenix metropolitan area
Benjamin L. Ruddell and Richard Rushforth
Hydrol. Earth Syst. Sci., 28, 1089–1106, https://doi.org/10.5194/hess-28-1089-2024,https://doi.org/10.5194/hess-28-1089-2024, 2024
Short summary
Levee system transformation in coevolution between human and water systems along the Kiso River, Japan
Shinichiro Nakamura, Fuko Nakai, Yuichiro Ito, Ginga Okada, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2023-2866,https://doi.org/10.5194/egusphere-2023-2866, 2023
Short summary
HESS Opinions: Drought impacts as failed prospects
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023,https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Reframing water demand management: a new co-governance framework coupling supply-side and demand-side solutions toward sustainability
Yueyi Liu, Hang Zheng, and Jianshi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-1884,https://doi.org/10.5194/egusphere-2023-1884, 2023
Short summary

Cited articles

Al-Faraj, F. A. and Scholz, M.: Impact of upstream anthropogenic river regulation on downstream water availability in transboundary river watersheds, Int. J. Water Resour. Dev., 31, 28–49, 2015. 
Allan, J. A.: The Middle East water question: Hydropolitics and the global economy, Ib Tauris, London, 2002. 
Beck, L., Bernauer, T., Siegfried, T. and Böhmelt, T.: Implications of hydro-political dependency for international water cooperation and conflict: Insights from new data, Polit. Geogr., 42, 23–33, 2014. 
Bjornlund, H.: Farmer participation in markets for temporary and permanent water in southeastern Australia, Agr. Water Manage., 63, 57–76, 2003. 
Brochmann, M. and Gleditsch, N.,P.: Shared rivers and conflict – A reconsideration, Polit. Geogr., 31, 519–527, 2012. 
Download
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.