Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3859-2017
https://doi.org/10.5194/hess-21-3859-2017
Review article
 | 
28 Jul 2017
Review article |  | 28 Jul 2017

Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review

Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen

Related authors

Critical scales to explain urban hydrological response: an application in Cranbrook, London
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018,https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic systems in a suburban watershed
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Laurence Lin, Amanda K. Suchy, Jonathan M. Duncan, and Arthur J. Gold
Hydrol. Earth Syst. Sci., 28, 4599–4621, https://doi.org/10.5194/hess-28-4599-2024,https://doi.org/10.5194/hess-28-4599-2024, 2024
Short summary
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Exploring the driving factors of compound flood severity in coastal cities: a comprehensive analytical approach
Yan Liu, Ting Zhang, Yi Ding, Aiqing Kang, Xiaohui Lei, and Jianzhu Li
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-100,https://doi.org/10.5194/hess-2024-100, 2024
Revised manuscript accepted for HESS
Short summary
Enhancing generalizability of data-driven urban flood models by incorporating contextual information
Tabea Cache, Milton Salvador Gomez, Tom Beucler, Jovan Blagojevic, João Paulo Leitao, and Nadav Peleg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-63,https://doi.org/10.5194/hess-2024-63, 2024
Revised manuscript accepted for HESS
Short summary
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023,https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary

Cited articles

Aronica, G. and Canarozzo, M.: Studying the hydrological response of urban catchments using a semi-distributed linear non-linear model, J. Hydrol., 238, 35–43, 2000.
Aronica, G., Freni, G., and Oliveri, E.: Uncertainty analysis of the influence of rainfall time resolution in the modelling of urban drainage systems, Hydrol. Process., 19, 1055–1071, 2005.
Bacchi, B. and Kottegoda, N.: Identification and calibration of spatial correlation patterns of rainfall, J. Hydrol., 165, 311–348, 1995.
Bergstrom, S. and Graham, L. P.: On the scale problem in hydrological modelling, J. Hydrol., 211, 253–265, 1998.
Berndtsson, R. and Niemczynowicz, J.: Spatial and temporal scales in rainfall analysis – some aspects and future perspective, J. Hydrol., 100, 293–313, 1986.
Download
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.