Articles | Volume 18, issue 11
https://doi.org/10.5194/hess-18-4403-2014
https://doi.org/10.5194/hess-18-4403-2014
Comment/reply
 | 
05 Nov 2014
Comment/reply |  | 05 Nov 2014

Comment on "Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements" by Lhomme et al. (2014)

W. J. Shuttleworth

Related authors

Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale
R. Rosolem, T. Hoar, A. Arellano, J. L. Anderson, W. J. Shuttleworth, X. Zeng, and T. E. Franz
Hydrol. Earth Syst. Sci., 18, 4363–4379, https://doi.org/10.5194/hess-18-4363-2014,https://doi.org/10.5194/hess-18-4363-2014, 2014
The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation
J. Shuttleworth, R. Rosolem, M. Zreda, and T. Franz
Hydrol. Earth Syst. Sci., 17, 3205–3217, https://doi.org/10.5194/hess-17-3205-2013,https://doi.org/10.5194/hess-17-3205-2013, 2013

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Theory development
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024,https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach
Lu Tian, Markus Disse, and Jingshui Huang
Hydrol. Earth Syst. Sci., 27, 4115–4133, https://doi.org/10.5194/hess-27-4115-2023,https://doi.org/10.5194/hess-27-4115-2023, 2023
Short summary
What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses
Richard D. Crago, Jozsef Szilagyi, and Russell J. Qualls
Hydrol. Earth Syst. Sci., 27, 3205–3220, https://doi.org/10.5194/hess-27-3205-2023,https://doi.org/10.5194/hess-27-3205-2023, 2023
Short summary
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022,https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022,https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, Irrig. Drainage Paper, 56, Rome, Italy: UN Food and Agriculture Organization, 1998.
Doorenbos, J. and Pruitt. W. O.: Crop water requirements, Irrig. Drainage Paper 24, Rome, Italy: United Nations Food and Agriculture Organization, 1977.
Lhomme, J. P., Boudhina, N., and Masmoudi, M. M.: Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements, Hydrol. Earth Syst. Sci. Discuss., 11, 4217–4233, https://doi.org/10.5194/hessd-11-4217-2014, 2014.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234, 1965
Penman, H. L.: Natural evaporation from open water, bare soil, and grass, Proc. Royal Soc. London, A193, 120–145, 1948.
Short summary
This paper explains the Matt-Shuttleworth approach clearly, simply and concisely. It shows how this approach can be implemented using a few simple equations and provides access to ancillary calculation resources that can be used for such implementation. If the crop water requirement community considered it preferable to use the Penman-Monteith equation to estimate crop water requirements directly for all crops, this could now be done using the Matt-Shuttleworth approach.