Articles | Volume 17, issue 2
https://doi.org/10.5194/hess-17-579-2013
https://doi.org/10.5194/hess-17-579-2013
Research article
 | 
08 Feb 2013
Research article |  | 08 Feb 2013

Improving statistical forecasts of seasonal streamflows using hydrological model output

D. E. Robertson, P. Pokhrel, and Q. J. Wang

Related authors

Uncovering a Key Predictors for Enhancing Daily Streamflow Simulation Using Machine Learning
Arash Aghakhani, David E. Robertson, and Valentijn R. N. Pauwels
EGUsphere, https://doi.org/10.5194/egusphere-2025-553,https://doi.org/10.5194/egusphere-2025-553, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Development of a national 7-day ensemble streamflow forecasting service for Australia
Hapu Arachchige Prasantha Hapuarachchi, Mohammed Abdul Bari, Aynul Kabir, Mohammad Mahadi Hasan, Fitsum Markos Woldemeskel, Nilantha Gamage, Patrick Daniel Sunter, Xiaoyong Sophie Zhang, David Ewen Robertson, James Clement Bennett, and Paul Martinus Feikema
Hydrol. Earth Syst. Sci., 26, 4801–4821, https://doi.org/10.5194/hess-26-4801-2022,https://doi.org/10.5194/hess-26-4801-2022, 2022
Short summary
Insights from a new methodology to optimize rain gauge weighting for rainfall-runoff models
Ashley J. Wright, David E. Robertson, Jeffrey P. Walker, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-450,https://doi.org/10.5194/hess-2019-450, 2019
Revised manuscript not accepted
Short summary
Seasonal streamflow forecasting in the upper Indus Basin of Pakistan: an assessment of methods
Stephen P. Charles, Quan J. Wang, Mobin-ud-Din Ahmad, Danial Hashmi, Andrew Schepen, Geoff Podger, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 3533–3549, https://doi.org/10.5194/hess-22-3533-2018,https://doi.org/10.5194/hess-22-3533-2018, 2018
Short summary
A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments
Andrew Schepen, Tongtiegang Zhao, Quan J. Wang, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 1615–1628, https://doi.org/10.5194/hess-22-1615-2018,https://doi.org/10.5194/hess-22-1615-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025,https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Distribution, trends, and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025,https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Are dependencies of extreme rainfall on humidity more reliable in convection-permitting climate models?
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025,https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025,https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary

Cited articles

Alves, O., Wang, G., Zhong, A., Smith, N., Tzeitkin, F., Warren, G., Schiller, A., Godfrey, S., and Meyers, G.: POAMA: Bureau of Meteorology Operational Coupled Model Seasonal Forecast System, National Drought Forum, Brisbane, 2002.
Ashok, K., Guan, Z. Y., and Yamagata, T.: Influence of the Indian Ocean Dipole on the Australian winter rainfall, Geophys. Res. Lett., 30, https://doi.org/10.1029/2003GL017926, 2003.
Bierkens, M. F. P. and van Beek, L. P. H.: Seasonal Predictability of European Discharge: NAO and Hydrological Response Time, J. Hydrometeorol., 10, 953–968, https://doi.org/10.1175/2009jhm1034.1, 2009.
DelSole, T. and Shukla, J.: Artificial Skill due to Predictor Screening, J. Climate, 22, 331–345, https://doi.org/10.1175/2008jcli2414.1, 2009.
Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization method for calibrating watershed models, J. Hydrol., 158, 265–284, 1994.
Download
Share