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Abstract. Statistical methods traditionally applied for sea-
sonal streamflow forecasting use predictors that represent the
initial catchment condition and future climate influences on
future streamflows. Observations of antecedent streamflows
or rainfall commonly used to represent the initial catchment
conditions are surrogates for the true source of predictabil-
ity and can potentially have limitations. This study investi-
gates a hybrid seasonal forecasting system that uses the sim-
ulations from a dynamic hydrological model as a predictor
to represent the initial catchment condition in a statistical
seasonal forecasting method. We compare the skill and re-
liability of forecasts made using the hybrid forecasting ap-
proach to those made using the existing operational prac-
tice of the Australian Bureau of Meteorology for 21 catch-
ments in eastern Australia. We investigate the reasons for
differences. In general, the hybrid forecasting system pro-
duces forecasts that are more skilful than the existing op-
erational practice and as reliable. The greatest increases in
forecast skill tend to be (1) when the catchment is wetting up
but antecedent streamflows have not responded to antecedent
rainfall, (2) when the catchment is drying and the dominant
source of antecedent streamflow is in transition between sur-
face runoff and base flow, and (3) when the initial catchment
condition is near saturation intermittently throughout the his-
torical record.

1 Introduction

Forecasts of streamflows for a range of forecast periods and
lead times are valuable to many users, including emergency
services, hydroelectricity generators, irrigators, rural and ur-
ban water supply authorities and environmental managers.

Forecasts of seasonal streamflows can inform tactical man-
agement of water resources, allowing water users and man-
agers to plan operational water management decisions and
assess the risks of alternative water use and management
strategies. To be useful to water users and managers in as-
sessing risks, seasonal streamflow forecasts need to be accu-
rate and reliably quantify forecast uncertainty.

Statistical methods are commonly used for operational
seasonal streamflow forecasting around the world, due to
their robustness and ability to reliably quantify forecast
uncertainty (Plummer et al., 2009; Robertson and Wang,
2012; Garen, 1992; Pagano et al., 2009). Statistical stream-
flow forecasting methods use predictors that describe the
two sources of seasonal streamflow predictability, the initial
catchment condition and future climate influences (Robert-
son and Wang, 2012; Rosenberg et al., 2011). Climate in-
dices, such as the Southern Oscillation Index or Indian Ocean
Dipole Mode Index, are commonly used to represent the
influence of future climate on streamflows (Robertson and
Wang, 2012). The initial catchment condition is represented
by observations of antecedent streamflow, antecedent rainfall
or, in cold climates, snow water equivalent, depth or extent
(Robertson and Wang, 2012; Garen, 1992). In all cases, the
predictors used are simple indices that act as surrogates for
the true source of predictability in a statistical model.

Antecedent streamflow or rainfall totals can be crude sur-
rogate indicators of the initial catchment condition. Robert-
son and Wang (2012) found that a single predictor, selected
from a pool of candidates that included antecedent stream-
flow and rainfall totals for up to the preceding three months,
was sufficient to characterise the initial catchment conditions
in the majority of locations and seasons. However, under
some circumstances a second predictor could add additional
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580 D. E. Robertson et al.: Improving statistical forecasts of seasonal streamflows

independent information on the initial catchment condition.
They concluded that more refined indicators of the initial
catchment conditions that better represent catchment dynam-
ics could improve forecast skill.

Antecedent streamflow or rainfall totals are limited in their
ability to provide a refined index describing initial catch-
ment conditions for several reasons. Conceptually, catchment
soil moisture and groundwater storages have upper and lower
bounds. When these storages are full, streamflows (and rain-
fall) can continue to increase to levels beyond those that re-
flect catchment moisture storage. Therefore, when observed
antecedent streamflow is very high, subsequent streamflow
forecasts may be considerably higher than the actual soil
moisture or groundwater storage levels would cause. The
dynamics of rainfall-runoff processes can also lead to an-
tecedent streamflow or rainfall being a poor indicator of the
initial catchment condition. When a catchment is wetting
up, antecedent streamflows do not immediately respond to
antecedent rainfall, but rather soil moisture and groundwa-
ter storages are replenished first. In this circumstance, an-
tecedent streamflows can potentially underestimate the actual
soil moisture conditions and lead to forecasts that are too low.

Another limitation of using antecedent streamflow and
rainfall totals as indicators of the initial catchment condi-
tion arises because the performance of forecasts made us-
ing a particular indicator as a predictor varies considerably
in space and time (Robertson and Wang, 2012). Therefore, it
is necessary to choose which indicator to use for any location
or season. Any method of choosing predictors that is based
on the predictive performance of candidate predictors has the
potential to introduce artificial skill, where the skill of retro-
spective forecasts is higher than the skill realised in real-time
applications (Robertson and Wang, 2012; Michaelsen, 1987;
DelSole and Shukla, 2009). Introduction of artificial skill can
be prevented by choosing a single set of predictors a priori for
all locations and seasons, and therefore it is desirable to elim-
inate predictor selection processes. However, the challenge is
to identify a set of predictors that can perform as well as or
better than selected predictors.

The use of dynamic hydrological models for seasonal
streamflow forecasting has been investigated and adopted
to overcome some of the limitations of statistical forecast-
ing techniques (for example, Bierkens and van Beek, 2009;
Koster et al., 2010; Wood and Schaake, 2008). Hydrologi-
cal models describe the processes by which precipitation is
converted into streamflow and in doing so explicitly repre-
sent catchment soil moisture and groundwater storages as
state variables. Therefore, hydrological models can capture
catchment dynamics that the simple indices used in statisti-
cal models cannot. When used in forecasting mode, the con-
dition of model state variables is initialised by running the
model using observed forcing data up to the forecast date. A
streamflow forecast is then produced by forcing the model
with forecasts of rainfall and other forcing variables. Fu-
ture rainfall is highly uncertain and difficult to accurately

forecast, and therefore several sources of future rainfall have
been investigated, including conditional and unconditional
historical climate sequences and output from seasonal cli-
mate forecasting models (Bierkens and van Beek, 2009;
Wood et al., 2005). While these forecasts are derived from
understanding of the hydrological processes occurring in the
catchment, in many instances the direct forecasts from hy-
drological models are biased and do not reliably quantify
forecast uncertainty (Shi et al., 2008; Wood and Schaake,
2008).

Both statistical and dynamical streamflow forecasting
methods appear to have strengths and weaknesses. Recently,
Rosenberg et al. (2011) investigated the benefits of a hybrid
seasonal forecasting system that uses the output from a phys-
ically based hydrological model as predictors in a statisti-
cal forecasting method in a climate where snow melt is the
dominant source of streamflow. They showed that by using
simulations of snow water equivalent instead of observations
as predictors that the skill of seasonal streamflow forecasts
could be enhanced. The skill improvements were attributed
to the simulations capturing the spatial and temporal varia-
tion in snow water equivalent better than the few sites that
provide ground-based observations.

This paper also investigates a hybrid seasonal forecasting
system, but in contrast to Rosenberg et al. (2011) we con-
sider the problem in environments where snow melt is not an
important source of streamflow. We investigate how the out-
put of a dynamic hydrological model can be used to improve
the representation of initial catchment conditions for statis-
tical streamflow forecasting and reduce artificial skill. We
produce forecasts of three month streamflow totals with the
Bayesian joint probability (BJP) modelling approach (Wang
and Robertson, 2011; Wang et al., 2009) using two alterna-
tive sets of predictors to represent initial catchment condi-
tions. The first set of predictors represents the operational
practice by the Bureau of Meteorology in Australia, where
the predictor with the highest Pseudo Bayes factor is selected
from a pool of candidates comprising antecedent stream-
flow and rainfall totals for up to the preceding three months
(Robertson and Wang, 2012). The second set of predictors
is defined a priori and uses simulations from a hydrological
model that represents only the influence of initial catchment
condition of streamflows for the forecast period. We compare
the skill and reliability of these forecasts for 21 catchments in
eastern Australia and discuss the mechanisms by which the
forecast performance is improved.

2 Methods

2.1 Hydrological modelling

For this study, we use a hydrological model to produce sim-
ulations that represent only the influence of initial catchment
conditions on seasonal streamflows. Hydrological modelling
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is undertaken using WAPABA, a monthly water partition and
balance model with two conceptual storages and five model
parameters. WAPABA uses consumption curves to partition
water according to supply and demand, which allow for spa-
tial and temporal heterogeneity of catchment process. WA-
PABA has been shown to out-perform other monthly mod-
els in Australia and simulate monthly streamflow volumes
as well as daily models forced with daily data (Wang et al.,
2011).

The WAPABA model parameters are calibrated by max-
imising a multi-objective function modified from Zhang et
al. (2008). The model fit is evaluated using a uniformly
weighted average of the Nash–Sutcliffe efficiency coefficient
(Nash and Sutcliffe, 1970), the Nash–Sutcliffe efficiency of
the log transformed flows, the Pearson correlation coeffi-
cient and a symmetric measure of bias. Model calibration is
performed using the Shuffled Complex Evolution algorithm
(Duan et al., 1994).

Using calibrated model parameters, simulations are pro-
duced that represent only the initial catchment conditions in-
fluence on streamflow totals of the next three months. For
a given date of interest, these simulations are obtained by
running the model from the start of the historical record to
the date of interest using observed forcing data, to initialise
the model state variables, and then simulating streamflows
for the subsequent three months using monthly climatology
mean forcing data. A time series of these simulations of three
month streamflow totals was produced by repeating the pro-
cess for all months in the historical record. Using this ap-
proach, variation in the simulated three month streamflow to-
tals for a given month is solely due to differences in the initial
conditions of the soil moisture and groundwater storages and
not related to variation in the climate forcing. Alternatives to
using the monthly climatology mean forcing data were inves-
tigated, such as the climatology median forcing data and the
mean and median of streamflow ensembles produced using
all historically observed forcing data, but lead to final results
that are no different to using the climatology mean forcing
data.

2.2 Statistical streamflow forecasting

We use the Bayesian joint probability (BJP) modelling ap-
proach (Wang and Robertson, 2011; Wang et al., 2009) to
produce joint forecasts of three month streamflow and rain-
fall totals. The BJP modelling approach assumes the joint
distribution of forecast variables and their predictors is de-
scribed by a transformed multivariate normal distribution. A
Yeo–Johnson transformation is for variables defined over the
entire real space, while a log-sinh transformation (Wang et
al., 2012) is used for variables that are defined for real values
greater or equal to zero, for example streamflows or rainfall.
Model parameters, including transformation parameters and
reparameterisations of the means, variances and correlation

coefficients of the multivariate normal distribution are in-
ferred using Bayesian methods.

In this study, we primarily compare statistical streamflow
forecasts made using two sets of predictors. The first set of
predictors represents the existing operational practice of the
Bureau of Meteorology in Australia. Predictors representing
initial catchment conditions and future climate influences on
streamflows are selected separately using the procedure de-
scribed by Robertson and Wang (2012). The performance of
a range of candidate predictors is assessed using the Pseudo
Bayes factor (PsBF), a Bayes factor based on the cross-
validation predictive density. The candidate predictor with
the highest PsBF is selected, provided that the highest PsBF
value is greater than a threshold value which can be produced
using randomised predictor data. Imposing the threshold of
the predictor selection reduces the likelihood of choosing a
predictor due to chance features in the historical data. Predic-
tors representing the initial catchment condition are chosen
from a pool that includes monthly antecedent streamflow and
rainfall totals for up to the preceding three months and these
are selected on their ability to forecast three month stream-
flow totals. Predictors representing climate during the fore-
cast period are selected from a pool of 13 monthly climate
indices lagged by up to three months and these are selected
on their ability to forecast three month rainfall totals. At most
two predictors are selected, one to represent the initial catch-
ment condition and one to represent the climate during the
forecast period. Forecasts of three month totals of stream-
flow and catchment average rainfall are made jointly. Sepa-
rate models are established for each season and location to
allow for inter-annual variations in climate and hydrological
processes.

The second set of predictors used to make forecasts for this
study replaces the selected predictors representing the initial
catchment condition with a fixed set of the WAPABA simu-
lations described in the previous section and total streamflow
for the month preceding the forecast (lag-1 streamflow). The
previous month’s streamflow is included as a form of model
updating to provide a real-time measure of the ‘true’ condi-
tion of the catchment leading up to the forecast. The selected
predictors representing climate during the forecast period are
the same as in the first set of predictors.

2.3 Cross validation for assessment of
forecast performance

The hydrological and statistical modelling processes de-
scribed in the preceding sections require observations to in-
fer model parameters. For real-time forecasting applications,
all available historical data of the appropriate quality may
be used to infer model parameters. However if these model
parameters are to be used to assess the performance of the
forecasting methods for historical events, the forecast skill
and reliability will be inflated. Therefore, it is necessary to
assess forecast performance on data that has not been used
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for parameter inference and predictor selection. Tradition-
ally, the skill of statistical forecasting models is assessed
using leave-one-out cross validation and this provides a re-
alistic assessment of performance because the temporal se-
quence of data records is not preserved in model parame-
ter inference. However, in this study we are also using a
hydrological model which preserves and uses the tempo-
ral sequence of data records in model parameter inference,
due to the presence of state variables in the model which
carry information from one time step to the next. Therefore,
forecast performance measures assessed using leave-one-out
cross validation may be artificially inflated, because forecasts
may not be independent of the data used for parameter in-
ference. To limit this inflation of forecast performance mea-
sures, we adopt a leave-one-plus-x-years-out cross validation
approach. Ideally, the value ofx is as small as possible to
allow the data use to infer model parameters to reflect op-
erational conditions in terms of available data length, while
it needs to be sufficiently long to minimise any artificial in-
flation of forecast performance measures. For this study, we
adopt leave-one-plus-four-years-out cross validation to as-
sess forecast performance.

To make a cross-validation forecast for a year of interest,
model parameter inferences were based on all historical data
with the exception of the forecast year of interest and the four
subsequent years. Hydrological model parameters were ob-
tained by running the model for the entire record using all
available forcing data, but omitting the observed streamflows
for the year of interest and four subsequent years in the eval-
uation of the objective function. Simulations representing the
initial catchment condition were produced for all years in the
historical record and used in the statistical model to produce
a forecast for the year of interest.

The selected predictors used in the statistical models were
also cross-validated. The predictors for the year of interest
were selected using the PsBF computed using all histori-
cal forecasts, except the year of interest and the four sub-
sequent years. The selected predictors representing initial
catchment conditions used to produce forecasts for each lo-
cation, season and year are summarised in the Supplement.
Once model predictors and parameters were obtained, fore-
casts were made for the year of interest only and the process
was repeated for all years in the historical record.

2.4 Forecast performance measures

There are many ways to assess the performance of stream-
flow forecasts. We assess the skill and reliability of the cross
validation forecasts. Forecast skill is a measure of the qual-
ity of a set of forecasts relative to a baseline or reference
set of forecasts (Jolliffe and Stephenson, 2003). We use skill
scores that assess the percentage reduction in forecast er-
ror scores relative to the error scores of a reference forecast.
This means that forecasts with a positive skill score are better
than the reference, while forecasts with a negative skill score

have greater errors than the reference. For this study we as-
sess forecast error using two scores; the root mean squared
error in probability of the forecast median (RMSEP) (Wang
and Robertson, 2011) and the continuous ranked probabil-
ity score (CRPS). The reference forecasts used to compute
the skill scores are the cross-validation distribution of his-
torically observed (climatology) streamflows. The two skill
scores adopted assess different aspects of the forecast distri-
bution. The CRPS skill score assesses the reduction in error
of the whole forecast probability distribution, and can be sen-
sitive to a few forecasts with large errors. The RMSEP skill
score is less sensitive to forecasts with large errors, provided
the anomaly is in the correct direction, and only considers the
median of the forecast distribution.

Forecast reliability measures assess the statistical consis-
tency of the forecast probability distributions and the ob-
served frequency of associated events (Toth et al., 2003). For
this study we use histograms of probability integral trans-
forms (PIT) to assess the average reliability of the forecast
probability distributions for all locations and seasons.

3 Catchments and data

In this study, we investigate the performance of forecasts
made using the two different sets of predictors represent-
ing the initial catchment condition for 21 catchments in east-
ern Australia that experience a range of climatic and hydro-
logical conditions (Figs. 1, 2 and Table 1). We use the ob-
served monthly streamflow data obtained from various wa-
ter resource management agencies and the Bureau of Mete-
orology. For most catchments, with the exception of some in
Queensland and Victoria, the data are available from 1950 to
2008 (see Table 1). The monthly catchment average rainfall
and potential evapotranspiration for each catchment are cal-
culated from 5 km gridded data available from the Australian
Water Availability Project (Jones et al., 2009). The monthly
values of the 13 climate indices are obtained from the Bureau
of Meteorology and described in Appendix A.

4 Results

4.1 Forecast skill improvements

Forecasts made using WAPABA simulations and lag-1
streamflow as predictors to represent initial catchment con-
ditions generally have greater skill than forecasts made using
selected predictors (Fig. 3). The average forecast skill score
for forecasts made using the WAPABA simulations and lag-1
streamflow as predictors is 2.7 % greater for both the RMSEP
and CRPS skill scores than for forecasts made using the se-
lected predictors. While this average improvement appears
to be small, the range of changes in both skill scores extends
from −10 % to+25 %. The greatest increases and decreases
in forecast skill tend to occur for those locations and seasons

Hydrol. Earth Syst. Sci., 17, 579–593, 2013 www.hydrol-earth-syst-sci.net/17/579/2013/
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Fig. 1.Location of study catchments (location numbers correspond to identifiers in Table 1).

where the skill of forecasts made using selected predictors is
less than 10 %.

Figure 4 presents the increase in forecast skill that is
achieved by replacing the selected predictors by the WA-
PABA simulations and lag-1 streamflow arranged by catch-
ment and season. Increases in both skill scores are most pro-
nounced in the Queensland catchments (at the top of Fig. 4)
and for the MJJ, JJA, NDJ and DJF seasons in the central
Victorian and Upper Murray catchments. Decreases in fore-
cast skill are most evident for the MAM and AMJ seasons
in central Victorian and Upper Murray catchments. The sea-
sons where there is the greatest increase in skill tend to be
those that cover the steepest rise or fall of the annual hydro-
graph (see Fig. 2) and therefore this suggests that the selected
predictors are unable to adequately capture the inter-annual
variations in the dynamics of catchments wetting and drying.

Figure 5 presents the skill scores of cross validation fore-
casts by catchment and season. There is a distinct seasonal

pattern in forecast skill, particularly for the catchments in
the Upper Murray, central and southern Victoria. The highest
skill forecasts tend to be for seasons that cover the period
when the annual hydrograph is falling, while the lowest skill
forecasts tend to be for seasons that cover the period when the
annual hydrograph is rising. The Tasmanian catchments have
low forecast skill year round because these catchments tend
to remain near saturation all year, streamflows are strongly
related to concurrent rainfall, and seasonal rainfall is difficult
to forecast. The Queensland catchments are in tropical and
sub-tropical environments with pronounced wet and dry sea-
sons. Forecast skill tends to be highest for the dry seasons and
lowest for seasons covering the wettest months (November to
March). Skill also tends to be low for seasons and catchments
where frequently rivers cease to flow. In these circumstances
the forecast error, particularly the RMSEP error, of a clima-
tology forecast is small and therefore it is difficult to further
reduce forecast error.

www.hydrol-earth-syst-sci.net/17/579/2013/ Hydrol. Earth Syst. Sci., 17, 579–593, 2013
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Table 1.Attributes of the 21 catchments used for the study. (Res. indicates Reservoir inflow, HES indicates inflow to hydroelectric scheme).

Mean
annual Annual

Available Catchment rainfall Mean annual runoff
ID Catchment Region Record area (km2) (mm) flow (mm) coeff.

1 Barron River Queensland 1950–2008 228 1367 605 (138 GL) 0.44
2 South Johnstone River Queensland 1974–2008 390 3128 2018 (787 GL) 0.65
3 Burdekin River Queensland 1967–2008 36 260 567 76 (2765 GL) 0.13
4 Brisbane River Queensland 1950–2000 3866 846 79 (304 GL) 0.09
5 Somerset Res. Queensland 1950–2000 1366 1245 289 (395 GL) 0.23
6 Hume Res. Upper Murray 1950–2008 12 184 819 227 (2764 GL) 0.28
7 Dartmouth Res. Upper Murray 1950–2008 3193 1042 279 (890 GL) 0.27
8 Kiewa River Upper Murray 1965–2008 1748 1099 248 (433 GL) 0.23
9 Ovens River Upper Murray 1959–2008 7543 963 175 (1320 GL) 0.18
10 Nillahcootie Res. Central Victoria 1950–2008 422 942 150 (63 GL) 0.16
11 Eildon Res. Central Victoria 1950–2008 3877 1104 373 (1447 GL) 0.34
12 Goulburn Res. Central Victoria 1950–2008 7166 769 188 (1349 GL) 0.24
13 Eppalock Res. Central Victoria 1950–2008 1749 630 98 (172 GL) 0.16
14 Cairn Curran Res. Central Victoria 1950–2008 1603 617 72 (115 GL) 0.12
15 Tullaroop Res. Central Victoria 1950–2008 702 633 77 (54 GL) 0.12
16 Thompson Res. Southern Victoria 1950–2008 487 1299 485 (236 GL) 0.37
17 Upper Yarra Res. Southern Victoria 1950–2008 336 1387 443 (149 GL) 0.32
18 Maroondah Res. Southern Victoria 1950–2008 129 1351 577 (74 GL) 0.43
19 O’Shannassy Res. Southern Victoria 1950–2008 127 1404 766 (97 GL) 0.55
20 Mersey-Forth HES Tasmania 1950–2008 2698 1900 793 (2141 GL) 0.42
21 King HES Tasmania 1950–2008 731 2703 1724 (1260 GL) 0.64

Fig. 2.Plot of streamflow seasonality for all catchments. (Mean an-
nual flow is provided following the catchment name).

4.2 Forecast reliability

Replacing the selected predictors representing initial catch-
ment conditions with WAPABA simulations and lag-1
streamflow produced little change in the reliability of stream-
flow forecasts. Figure 6 presents histograms of the PIT val-
ues for forecasts of made using both sets of predictors. The
differences between the two histograms are small and the
general pattern of the histograms is similar. Perfectly reli-
able forecasts will produce a PIT histogram that is a uniform
distribution. Figure 6 suggests that when viewed collectively
the forecasts are not necessarily reliable, with the most obvi-
ous deviations from uniformity occurring in the highest and
lowest bins of the histogram. However when the reliability
is assessed for each season and catchment separately, devia-
tions from uniformity are within the range expected by sam-
ple variability.

4.3 Reasons for improvements in forecast skill

The improvements in forecast skill occur under three main
sets of conditions: (1) when the catchment is wetting up
but antecedent streamflows have not responded to antecedent
rainfall; (2) when the catchment is drying and the dominant
source of antecedent streamflow is in transition between sur-
face runoff and base flow; and (3) when the initial catch-
ment condition is near saturation intermittently throughout

Hydrol. Earth Syst. Sci., 17, 579–593, 2013 www.hydrol-earth-syst-sci.net/17/579/2013/
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Fig. 3.Skill scores of forecasts made using WAPABA simulations and lag-1 streamflow as predictors plotted against skill scores of forecasts
made using selected predictors for the RMSEP (left panel) and CRPS (right panel) skill scores. Each point represents the skill of forecasts for
a single location and season. Points above the 1 : 1 line indicate improvements in forecast skill. (Green points are catchments in Queensland,
red points are catchments in Tasmania, hollow blue circles tributaries to the upper Murray River, light blue are catchments in central Victoria
and dark blue are catchments in southern Victoria).

Fig. 4. Increase in skill scores of forecasts achieved by replacing selected predictors representing initial catchment conditions with WAPABA
simulations and lag-1 streamflow.

the historical record. Here we examine some examples of
how replacing the selected predictors with WAPABA simula-
tions and lag-1 streamflows influences cross-validation fore-
casts and improves forecast skill.

4.3.1 When the catchment is wetting up

The selected predictors are either antecedent streamflow or
rainfall totals for the previous month. When the catchment
is wetting up, antecedent streamflows are primarily base
flow and have not necessarily responded to antecedent rain-
fall. Therefore, antecedent streamflow does not necessarily

represent the wetness of the catchment well. Where an-
tecedent rainfall totals have been insufficient to saturate the
catchment, they will primarily reflect the surface moisture
conditions of the catchment.

Figure 7 provides an example of forecasts made for this
situation for March-April-May forecasts for Kiewa River in-
flows to the Murray River. For this example, replacing the
selected predictor representing initial catchment conditions
with WAPABA simulations and lag-1 streamflow increases
the RMSEP skill score from 9 % to 18 % and the CRPS skill
score from 1 % to 10 %. The selected predictor representing

www.hydrol-earth-syst-sci.net/17/579/2013/ Hydrol. Earth Syst. Sci., 17, 579–593, 2013



586 D. E. Robertson et al.: Improving statistical forecasts of seasonal streamflows

Fig. 5.Skill scores of the cross-validation forecasts made using WAPABA simulations and lag-1 streamflow as predictors.

Fig. 6.Probability Integral Transform histograms illustrating the re-
liability of forecasts made using selected predictors (solid grey bars)
and WAPABA and lag-1 streamflow as predictors (hatched bars).

initial catchment conditions is predominantly total stream-
flow for January and February, which will provided an in-
dication of base flow conditions. Overall the forecast quan-
tile ranges for a given forecast median are similar using both
sets of predictors, however forecast medians are rearranged.
By replacing the selected predictors with WAPABA simu-
lations and lag-1 streamflow the forecast error is reduced,
particularly for forecasts associated with observations in the
upper and lower quartiles of the historical distribution (light
grey shade in Fig. 6). The primary reason for the differ-
ence between the forecasts produced using the two sets of
predictors is due to the WAPABA simulations being more

Fig. 7. Forecasts of Kiewa River inflows into the Murray River
for the March-April-May season. Using selected predictors, RM-
SEP skill score = 9 % and CRPS skill score = 1 %, using WA-
PABA simulations and lag-1 streamflow as predictors RMSEP skill
score = 18 %, and CRPS skill score = 10 %. (1 : 1 line, forecast me-
dian; dark blue vertical line, forecast [0.25, 0.75] quantile range;
light and dark blue vertical line, forecast [0.10, 0.90] quantile range;
dark grey horizontal line, climatological median; mid-gray shade,
climatological [0.25, 0.75] quantile range; light and mid-gray shade,
climatological [0.10, 0.90] quantile range; red dot, observed catch-
ment inflow).

strongly correlated to streamflows during the forecast pe-
riod than any of the candidate predictors representing ini-
tial catchment conditions used for predictor selection. The
correlation between the WAPABA simulations and stream-
flows during the forecast period is also better preserved for
independent cross validation forecasts. This suggests that the
WAPABA simulations provide a better representation of the
process of catchment wetting up than any of the candidates.
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Fig. 8. Forecasts of inflows into Dartmouth Reservoir for the
November-December-January season. Using selected predictors,
RMSEP skill score = 19 % and CRPS skill score = 17 %, using WA-
PABA simulations and lag-1 streamflow as predictors RMSEP skill
score = 31 %, and CRPS skill score = 28 %. (legend as per Fig. 7).

4.3.2 When the catchment is drying out

When the catchment is drying out, antecedent streamflows
may be dominated by direct surface runoff if there has been
recent rain, or by base flows if there has not been. Total
monthly streamflows of similar magnitude can be produced
by both sources and therefore antecedent streamflow may
not necessarily provide the best indicator of the wetness of a
catchment. Figure 8 provides an example of forecasts made
for this situation of November-December-January forecasts
for inflows into Dartmouth Reservoir. For this example, re-
placing the selected predictor representing initial catchment
conditions with WAPABA simulations and lag-1 streamflow
increases the RMSEP skill score from 19 % to 31 % and the
CRPS skill score from 17 % to 28 %. The selected predictor
representing initial catchment conditions is predominantly
total streamflow for September and October. Like the pre-
vious example, when the catchment is wetting up, the fore-
cast quantile ranges for a given forecast median are similar
using both sets of predictors and the forecast medians are re-
arranged. However, in contrast to the previous example, the
skill gains are achieved by reducing the errors of the median
of forecasts with corresponding observations in the central
quartiles (mid-gray shade in Fig. 7) of the historical obser-
vations rather than in the outer quartiles. It is for these mod-
erate seasonal flow totals that antecedent streamflows could
be sourced from either surface runoff or base flow and the
WAPABA simulations can distinguish the dominant source,
whereas the candidates used in predictor selection cannot.
As with the previous example the WAPABA simulations are
more strongly correlated to streamflows during the forecast
period than any of the candidate predictors representing ini-
tial catchment conditions used in the predictor selection.

4.3.3 When the catchment is intermittently saturated

The soil moisture and groundwater stores of a catchment are
bounded, that is, soil can become saturated and groundwater

Fig. 9.Forecasts of inflows into Upper Yarra Reservoir for the July-
August-September season. Using selected predictors, RMSEP skill
score = 5 % and CRPS skill score = 3 %, using WAPABA simula-
tions and lag-1 streamflow as predictors RMSEP skill score = 17 %,
and CRPS skill score = 12 %. (legend as per Fig. 7).

water tables can approach the surface. However, the an-
tecedent streamflow and rainfall totals used as candidate in-
dicators of the catchment condition in predictor selection are
theoretically unbounded, that is, they continue to increase
when the soil moisture and groundwater stores are full. When
the soil in a catchment is saturated and groundwater stores
are near capacity in the month preceding a forecast, an-
tecedent streamflow and rainfall are poor indicators of the
condition. For a given forecast period, a catchment may be
saturated consistently or intermittently throughout the histor-
ical record. For much of the year, the Tasmanian catchments
considered in this study provide examples of consistently sat-
urated catchment conditions throughout the historical record.
For these locations and seasons, the forecast skill is close
to zero and replacing the selected predictors with WAPABA
simulations and lag-1 streamflow results in little change in
forecast skill.

When the catchment is intermittently saturated through the
historical record, replacing the selected predictors with WA-
PABA simulations and lag-1 streamflows can improve the
skill of streamflow forecasts. Figure 9 provides an example
of when the catchment is intermittently saturated through the
historical record using forecasts of July-August-September
inflows into Upper Yarra Reservoir. For this example, re-
placing the selected predictor representing initial catchment
conditions with WAPABA simulations and lag-1 streamflow
increases the RMSEP skill score from 5 % to 17 % and the
CRPS skill score from 3 % to 12 %. The selected predictor
representing initial catchment conditions is predominantly
total streamflow for April, May and June. Like the previous
examples, the forecast quantile ranges for a given forecast
median are similar (using both sets of predictors) and the
forecast medians are rearranged to more closely match to the
observations. The skill gains are achieved by reducing errors
in the forecast median for all forecasts throughout the entire
range of historical observations. This is due to streamflows
during the forecast period being more strongly correlated
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Fig. 10.Relationship between predictors representing initial catch-
ment conditions and seasonal streamflow totals for July-August-
September inflows into Upper Yarra Reservoir.

with the WAPABA simulations than any of the candidate in-
dicators of initial catchment conditions considered in the pre-
dictor selection process.

The relationship between streamflow during the forecast
period and the WAPABA simulations is approximately lin-
ear (Fig. 10). The relationship between streamflows during
the forecast period and other variables used as candidates for
predictor selection appears linear for low values of the can-
didate predictor and deviate from linearity above a threshold
value. This two-part relationship suggests that for low values
the candidate predictors are reasonable indicators of the ini-
tial catchment conditions, but at higher values they are not.
Examining the initialised state variables of WAPABA used
in producing the simulations that represent initial catchment
conditions suggests that when the antecedent streamflows ex-
ceed this threshold the soil moisture store is at or near ca-
pacity and the groundwater store level is very high. There-
fore, the improvements in forecast skill arising from replac-
ing the selected predictors with WAPABA simulations and
lag-1 streamflow can be attributed to a better representation
of the catchment process when the catchment intermittently
becomes very wet.

5 Discussion

In this study, selected predictors representing initial catch-
ment conditions were replaced by a combination of simula-
tions from a dynamic hydrological model and lag-1 stream-
flows. Lag-1 streamflows were included as a form of model
updating to provide a real-time measure of the actual catch-
ment condition leading up to the forecast. However, as lag-1
streamflow is not always a good indicator of the catchment
condition and its inclusion may moderate some of the bene-
fit of using the WAPABA simulations. Figure 11 presents the
increases in forecast skill arising from using lag-1 stream-
flows as well as WAPABA simulations to represent the initial
catchment condition. In general, including lag-1 streamflow
to provide a real-time measure of the actual catchment condi-
tion has little impact on the forecast skill. In some instances,

including lag-1 streamflow increases forecast skill for a small
number of seasons and locations, but most importantly it
does not degrade forecast skill. Therefore, it appears that in-
cluding lag-1 streamflows as a form of model update is ap-
propriate.

For this study, we simulated the initial catchment influ-
ence on future streamflows by forcing initialised hydrologi-
cal models with monthly climatology mean rainfall and po-
tential evapotranspiration. Our motivation for using simu-
lated streamflows, rather than the state variables from WA-
PABA, was because the simulated streamflows integrate the
condition of both the model soil moisture and groundwater
stores. The relative influence of soil moisture and ground wa-
ter levels on seasonal streamflows varies with forecast date.
Examples of this seasonally varying relationship are shown
in Figs. 13 and 14. For forecasts made at the start of May, the
May-June-July streamflow totals are more highly correlated
with the groundwater storage levels than the soil moisture, or
lag-1 streamflow (Fig. 13). For forecasts made at the start of
November, November-December-January streamflow totals
are more highly correlated with soil moisture than ground-
water storage levels, or lag-1 streamflow (Fig. 14). In both
instances, the correlation between the WAPABA simulations
and the seasonal streamflow totals are comparable to the bet-
ter of the two state variables. Therefore, the WAPABA sim-
ulations appear to be robust representations of the integrated
condition of both the soil moisture and groundwater stores at
the forecast time.

For the majority of catchments and seasons, the skill of
forecasts is due to the knowledge of the initial catchment
condition. Figure 12 illustrates the contribution of the climate
indices to forecast skill. When the points in Fig. 12 are lo-
cated on the 1 : 1 line the climate indices make no contribu-
tion to the skill of streamflow forecasts, while points below
the 1 : 1 line suggest that climate indices improve forecast
skill. The contribution of climate indices to streamflow fore-
cast skill tends to be largest for catchments in Queensland,
where there is the strongest evidence for using climate in-
dices to forecast seasonal rainfall (Schepen et al., 2012).

The points above the 1 : 1 line in Fig. 12 indicate that fore-
casts made without selected climate indices are more skilful
that those made with climate indices. This suggests that while
there is evidence for using climate indices to forecast rainfall
during a fitting period, the fitted relationship does not per-
form well for independent forecasts. The approach to assess-
ing forecast skill used in this paper is designed to expose cir-
cumstances where this occurs and assess the true skill of the
predictor selection and forecasting approaches by using cross
validated predictors as well as cross-validated model param-
eters. Where the predictors are not cross validated, it is likely
that the reported forecast skill is artificially inflated and will
not be maintained in operational applications (Michaelsen,
1987; DelSole and Shukla, 2009).

For this study, we adopted leave-one-plus-four-years-out
cross validation to assess forecast performance. We adopted
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Fig. 11. Increase in skill scores of forecasts achieved by using lag-1 streamflow as well as WAPABA simulations to represent the initial
catchment condition.

Fig. 12. The contribution of selected climate indices to forecast skill illustrated by plotting skill scores of forecasts made without using
climate indices as predictors against skill scores of forecasts made with selected climate indices as predictors for the RMSEP (left panel)
and CRPS (right panel) skill scores. All forecasts use WAPABA simulations and lag-1 streamflows as predictors to represent the influence of
initial catchment conditions. (Legend as per Fig. 3)

this approach to limit the potential for forecast performance
to be artificially inflated due to the state variables in WA-
PABA carrying information from one time step to the next
and resulting in forecasts that are not independent of data
used for parameter inference. We tested the assumption
that leave-one-plus-four-years-out was sufficient to create
independent forecasts by also assessing forecast skill us-
ing leave-one-plus-one-years-out and leave-one-plus-nine-
years-out. In the assessment, we fixed the climate predic-
tors so that variations in the forecast performance measures
were solely due to the different periods omitted from the data
used for parameter inference. The differences between the

forecast skill scores produced using the different cross vali-
dation methods tended to be within the range of sample vari-
ability (not shown). Where there were differences there was
no clear pattern to the best or worst performing cross vali-
dation approach and therefore the adopted approach appears
appropriate.

The climate indices used to represent the future climate
influences on streamflow in this study are surrogates for the
true source of climate predictability. The true source of cli-
mate predictability arises from understanding of the initial
conditions of the ocean, atmosphere and land surface and
the processes by which these conditions evolve and interact.
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Fig. 13. The relationship between May-June-July streamflow to-
tals and the WAPABA state variables at the end of April. April
streamflow and WAPABA simulations for May-June-July for Kiewa
River inflows into the Murray River (Pearson correlation coeffi-
cients shown in top left corner of each plot).

Many dynamic coupled ocean–atmosphere models have been
developed to produce seasonal climate forecasts (for exam-
ple: Alves et al., 2002). These models simulate the dynamic
evolution of chaotic ocean and atmospheric processes from
estimates of the ocean, atmosphere and land surface initial
conditions. Forecasts of rainfall, or other atmospheric vari-
ables, produced by these models may provide better indica-
tors of future climate influences on seasonal streamflows than
simple climate indices because they integrate a wide range
of initial conditions. They also provide the opportunity for
the use of concurrent relationships, which tend to be stronger
than lagged relationships. However, comprehensive analysis
of dynamic climate model output is necessary to better un-
derstand the quality of the forecasts and which variables are
useful for streamflow forecasting. Future work will investi-
gate using forecasts from dynamic climate models for sea-
sonal forecasting of streamflows in Australia using statistical
models and rainfall–runoff models.

WAPABA simulates monthly streamflow totals in valida-
tion periods using monthly forcing data, as well as daily
rainfall–runoffs models forced with daily data (Wang et al.,
2011). However, the skill of raw WAPABA simulations rep-
resenting the initial catchment condition was considerably
poorer than the forecasts resulting from using the WAPABA
simulations as a predictor in the BJP modelling approach.
The poor skill of the raw WAPABA simulations represent-
ing initial catchment condition is primarily due to variation

Fig. 14. The relationship between November-December-January
streamflow totals and the WAPABA state variables at the end
of October. October streamflow and WAPABA simulations for
November-December-January for Kiewa River inflows into the
Murray River (Pearson correlation coefficients shown in top left
corner of each plot).

in seasonal biases than overall forecast performance measure
do not diagnose (not shown). The BJP modelling approach
was able to extract information from the biased WAPABA
simulations and produce skilful forecasts with minimal bi-
ases. The water balance model used in this study is a rela-
tively simple, lumped monthly model. Situations may exist
where such a model may not necessarily provide sufficient
spatial, temporal or process resolution to adequately describe
the catchment condition at the forecast time. In these situa-
tions, more sophisticated models may be warranted to de-
scribe the catchment conditions. Simulations from more so-
phisticated models can also be included as predictors in the
BJP modelling approach using the process described in this
paper.

6 Conclusions

Forecasts of seasonal streamflows are valuable to a wide
range of users. Traditionally, these forecasts are produced
using statistical methods with observations of antecedent
streamflows or rainfall as predictors to represent the condi-
tion of the catchment at the forecast date and with climate
indices as predictors to represent the influence of future cli-
mate. These predictors are surrogates for the true source of
predictability and can potentially have limitations. Dynamic
hydrological models have also been used for streamflow
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Table A1. Climate indices included as candidate predictors of seasonal forecast of streamflow and data sources.

Period of
Candidate predictors record used Data source

Southern Oscillation Index (SOI) (Troup, 1965) 1950–2008 Australian Bureau of Meteorology
NINO3 (SST anomaly over 90◦ W–150◦ W, 5◦ S–5◦ N) 1950–2008 NCAR, ERSST.v3 (Smith et al., 2008)
NINO3.4 (SST anomaly over 120◦ W–170◦ W, 5◦ S–5◦ N) 1950–2008 NCAR, ERSST.v3 (Smith et al., 2008)
NINO4 (SST anomaly over 150◦ W–160◦ E, 5◦ S–5◦ N) 1950–2008 NCAR, ERSST.v3 (Smith et al., 2008)
ENSO Modoki Index (Ashok et al., 2003) 1950-2008 NCAR, ERSST.v3 (Smith et al., 2008)
20◦ Isotherm (Ruiz et al., 2006) 1980–2008 Bureau of Meteorology
Indian Ocean Dipole Mode Index (Saji et al., 1999) 1950-2008 NCAR, ERSST.v3 (Smith et al., 2008)
Indian Ocean West Pole Index (Saji et al., 1999) 1950–2008 NCAR, ERSST.v3 (Smith et al., 2008)
Indian Ocean East Pole Index (Saji et al., 1999) 1950–2008 NCAR, ERSST.v3 (Smith et al., 2008)
Indonesia Index (Verdon and Franks, 2005) 1950-2008 NCAR, ERSST.v3 (Smith et al., 2008)
Tasman Sea Index (Murphy and Timbal, 2008) 1950–2008 NCAR, ERSST.v3 (Smith et al., 2008)
Southern Annular Mode (Marshall, 2003) 1979–2008 Antarctic Oscillation Index NOAA (Mo, 2000)
140◦ E Blocking Index (Risbey et al., 2009) 1950–2008 Calculated from NCEP/NCAR reanalysis data (Kalnay et al., 1996)

forecasting, but often require statistical post-processing to
remove biases and correct the reliability of forecast prob-
ability distributions. This study has investigated whether a
hybrid seasonal forecasting system that uses the output of
a dynamic hydrological model as a predictor in a statisti-
cal forecasting approach can lead to more skilful forecasts.
Forecasts of three month streamflow totals were made using
two alternative sets of predictors to represent initial catch-
ment conditions: predictors selected using the method em-
ployed in the operational practice by the Bureau of Meteorol-
ogy in Australia; and the combination of simulations from a
monthly water balance model that represents the influence of
initial catchment condition of streamflows and lag-1 stream-
flow. The skill and reliability of streamflow forecasts made
using these sets of predictors were compared for 21 catch-
ments in eastern Australia and insights into the reasons for
any differences investigated.

In general, replacing selected predictors representing the
initial catchment condition with simulations from a monthly
balance model and lag-1 streamflow increases the forecast
skill and has little impact on forecast reliability. The mag-
nitude of the skill increases varies with location and season.
The greatest increases in forecast skill tend to be for three
sets of circumstances: (1) when the catchment is wetting up
but antecedent streamflows have not responded to antecedent
rainfall; (2) when the catchment is drying and the dominant
source of antecedent streamflow is in transition between sur-
face runoff and base flow; and (3) when the initial catch-
ment condition is near saturation intermittently throughout
the historical record. There is little change in forecast skill for
catchments and seasons that are very dry or consistently satu-
rated throughout the historical record. Even with the skill im-
provements realised by replacing the selected predictors, the
skill of streamflow forecasts tends to be the highest for sea-
sons that include the falling limb of the annual hydrograph,
when seasonal streamflows are strongly related to the ini-
tial catchment condition. The skill tends to be the lowest for

seasons that include the rising limb, when seasonal stream-
flows are strongly related to concurrent rainfall. In general
the contribution of climate indices used to represent the in-
fluence of future climate to forecast skill is small but compa-
rable to that of forecasts of seasonal rainfall. Future work will
investigate how using the output of dynamic climate models
may improve this situation.

Lag-1 streamflow was included as a predictor in addition
to the monthly water balance simulations as a form of model
updating to provide a real-time measure of the catchment
condition. In general, it contributes little to forecast skill, but
for some seasons and location skill increases of up to 20% are
realised by its inclusion. Most importantly, including lag-1
streamflow does not degrade forecast skill and therefore can
be confidently included as a predictor for operational fore-
casts. The use of a more sophisticated hydrological model
with increased spatial, temporal or process resolution may
reduce the need for model updating. The output of such a
higher resolution hydrological model could be used as a pre-
dictor in the BJP modelling approach using the methods de-
scribed in this paper.

Appendix A

Climate indices used as candidate predictors

Climate indices used as candidate predictors to represent the
influence of climate during the forecast period on stream-
flows.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
17/579/2013/hess-17-579-2013-supplement.pdf.
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