Articles | Volume 17, issue 2
Hydrol. Earth Syst. Sci., 17, 461–478, 2013
https://doi.org/10.5194/hess-17-461-2013
Hydrol. Earth Syst. Sci., 17, 461–478, 2013
https://doi.org/10.5194/hess-17-461-2013
Research article
01 Feb 2013
Research article | 01 Feb 2013

Local sensitivity analysis for compositional data with application to soil texture in hydrologic modelling

L. Loosvelt et al.

Related authors

Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022,https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary
Tree hydrodynamic modelling of the soil–plant–atmosphere continuum using FETCH3
Marcela Silva, Ashley M. Matheny, Valentijn R. N. Pauwels, Dimetre Triadis, Justine E. Missik, Gil Bohrer, and Edoardo Daly
Geosci. Model Dev., 15, 2619–2634, https://doi.org/10.5194/gmd-15-2619-2022,https://doi.org/10.5194/gmd-15-2619-2022, 2022
Short summary
Unsaturated zone model complexity for the assimilation of evapotranspiration rates in groundwater modelling
Simone Gelsinari, Valentijn R. N. Pauwels, Edoardo Daly, Jos van Dam, Remko Uijlenhoet, Nicholas Fewster-Young, and Rebecca Doble
Hydrol. Earth Syst. Sci., 25, 2261–2277, https://doi.org/10.5194/hess-25-2261-2021,https://doi.org/10.5194/hess-25-2261-2021, 2021
Short summary
Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020,https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Evaluating the land-surface energy partitioning in ERA5
Brecht Martens, Dominik L. Schumacher, Hendrik Wouters, Joaquín Muñoz-Sabater, Niko E. C. Verhoest, and Diego G. Miralles
Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020,https://doi.org/10.5194/gmd-13-4159-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Benchmarking global hydrological and land surface models against GRACE in a medium-sized tropical basin
Silvana Bolaños Chavarría, Micha Werner, and Juan Fernando Salazar
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022,https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Guidance on evaluating parametric model uncertainty at decision-relevant scales
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022,https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022,https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary
Sequential data assimilation for real-time probabilistic flood inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021,https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary
Key challenges facing the application of the conductivity mass balance method: a case study of the Mississippi River basin
Hang Lyu, Chenxi Xia, Jinghan Zhang, and Bo Li
Hydrol. Earth Syst. Sci., 24, 6075–6090, https://doi.org/10.5194/hess-24-6075-2020,https://doi.org/10.5194/hess-24-6075-2020, 2020
Short summary

Cited articles

Aitchison, J.: The statistical-analysis of compositional data, J. Roy. Stat. Soc. B, 44, 139–177, 1982.
Aitchison, J.: Principal components analysis of compositional data, Biometrika, 70, 57–65, 1983.
Aitchison, J.: The Statistical Analysis of Compositional Data, in: Monographs on Statistics and Applied Probability, p. 416, Chapman and Hall Ltd, London (UK), 1986.
Aitchison, J.: On criteria for measures of compositional difference, Math. Geol., 24, 365–379, 1992.
Aitchison, J. and Egozcue, J. J.: Compositional data analysis: Where are we and where should we be heading?, Math. Geol., 37, 829–850, 2005.
Download