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Abstract. Compositional data, such as soil texture, are hard
to deal with in the geosciences as standard statistical meth-
ods are often inappropriate to analyse this type of data. Espe-
cially in sensitivity analysis, the closed character of the data
is often ignored. To that end, we developed a method to as-
sess the local sensitivity of a model output with resect to a
compositional model input. We adapted the finite difference
technique such that the different parts of the input are per-
turbed simultaneously while the closed character of the data
is preserved. This method was applied to a hydrologic model
and the sensitivity of the simulated soil moisture content to
local changes in soil texture was assessed. Based on a high
number of model runs, in which the soil texture was varied
across the entire texture triangle, we identified zones of high
sensitivity in the texture triangle. In such zones, the model
output uncertainty induced by the discrepancy between the
scale of measurement and the scale of model application,
is advised to be reduced through additional data collection.
Furthermore, the sensitivity analysis provided more insight
into the hydrologic model behaviour as it revealed how the
model sensitivity is related to the shape of the soil moisture
retention curve.

1 Introduction

In environmental studies, modellers are sometimes con-
fronted with multivariate data that carry only relative infor-
mation of which the components represent parts of a whole.
Such type of data is called compositional or closed data as
the components always sum to a constant, e.g. 1 or 100 %. A

typical example is the sedimentary particle size distribution
of which the closed character implies that the components
are not free to vary independently such that if one of its com-
ponents (e.g. clay) decreases (increases), at least one of the
others (e.g. silt or sand) must increase (decrease). Because
of this particular property, the application of standard statis-
tical methods to compositional data is hampered and many
of the results are invalid because the methods are inappro-
priate to analyse this type of data. Problems in the analysis
of compositional data have been discussed since the end of
the twentieth century by a number of authors (e.g.Aitchison,
1986; Aitchison and Egozcue, 2005).

A frequently performed statistical exercise involves the
evaluation of how changes in the model input or parameters
affect the model output. This is widely known as sensitivity
analysis (SA) and allows for (i) the allocation of the uncer-
tainty in the model output to different sources of uncertainty
in the model input (Saltelli et al., 2000), (ii) the prioritisation
of additional data collection or research concerning the un-
certainties identified as most important (Frey and Patil, 2002)
and (iii) the verification or validation of a model (Fraedrich
and Goldberg, 2000).

According to the objective of the analysis, the techniques
for sensitivity analysis are usually classified into screen-
ing, global and local methods. Screening methods aim at
identifying the model inputs to which the model output is
most sensitive. Global methods calculate the total effect of
a model input on the model output across the entire input
space, whereas local methods investigate the sensitivity of
the model output for a specific input scenario, i.e. at a fixed
set of points from the model input domain. The local methods
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are especially important for complex, nonlinear models as
the effect of a model input on the model output may be highly
localised, which makes the assessment of a global effect in-
appropriate in this case. Screening methods are often rela-
tively simple and are a particular instance of sampling-based
methods. One of the most commonly used screening methods
is the elementary effect method (Campolongo et al., 2007).
Commonly used global methods are the Sobol method (e.g.
Sobol, 1993; Saltelli et al., 2008a), the Fourier amplitude
sensitivity test (FAST) (e.g.Saltelli et al., 1999; McRae et al.,
1982), the response surface method (RSM) (e.g.Cryer and
Havens, 1999; Kleijnen et al., 1992) and Monte Carlo based
methods (Hofer, 1999; Gwo et al., 1996). Most of them are
variance based, which means that the resulting sensitivity re-
flects the contribution of the model input to the total variance
in the model output. In contrast, local methods are based on
first-order second-moment approximations (FOSM) in which
it is assumed that the first two moments are sufficient to char-
acterise a variable (Dettinger and Wilson, 1981). Examples
of local methods are the Morris method (e.g.Morris, 1991;
Francos et al., 2003) and the finite difference method (e.g.
Lenhart et al., 2002; Foglia et al., 2009). Depending on the
specific SA problem, a screening, global or local method
needs to be selected such that the method fits the objective(s)
of the analysis. For a review on methods for sensitivity anal-
ysis, the reader is referred toSaltelli et al.(2006), Frey and
Patil (2002) andHelton and Davis(2003).

In case a SA on multiple model inputs is intended, the in-
puts can be varied simultaneously based on their underlying
probability distribution (e.g.Gwo et al., 1996), or they can
be varied individually around a base value while keeping the
value of the other model inputs constant (e.g.Ferreira et al.,
1995). The latter strategy is known as one at a time sensi-
tivity analysis (OAT-SA) and has been the subject of discus-
sion because it is built on assumptions of model linearity and
cannot detect interactions between model inputs (Saltelli and
Annoni, 2010). Furthermore, OAT-SA is by definition non-
explorative as only a fraction of the total hyperspace is ex-
plored, and is therefore attributed “the curse of dimensional-
ity” ( Saltelli and Annoni, 2010). Despite the shortcomings of
OAT-SA, a literature review bySaltelli et al.(2006) revealed
that most published sensitivity analyses use OAT. In some
cases (strong) input correlations were observed (Boateng and
Cawlfield, 1999; Zhu et al., 2010) and the assumption of in-
dependent inputs was therefore incorrectly adopted. Only in
a limited number of SA studies, correlation structures have
been incorporated (Pan et al., 2011; Jacques et al., 2006;
Gevrey et al., 2006). The reason why OAT is so popular is
that the observed effect on the model output is solely due
to the fact that one input has been changed, which is con-
sistent with the modeller’s way of thinking to systematically
evaluate the effect of input variation. In case the model input
consists of compositional data, the different components of
the input are related through the closure balance, and conse-
quently an OAT-SA on its individual components is not jus-

tified, but instead all components should be varied simulta-
neously in order to preserve the closed character of the data.
Despite the need to deal with this type of data in environmen-
tal models, limited research on sensitivity analysis involving
compositional model inputs has been reported to date. Of-
ten, the methods applied do not or only partly respect the
characteristic properties of compositional data. For example,
Bormann(2007) defined a neighbourhood sensitivity for soil
texture by applying a fixed change of 1 % in the portion of
clay or silt while keeping the portion of silt, respectively sand
fixed, although a simultaneous change in all of its portions
would have been expected.

In this study, the main objective is to develop a sensitivity
analysis method that allows to quantify the sensitivity of a
model output with resect to a specific input scenario in case
the model input consists of compositional data. To that end,
the finite difference technique has been adopted and mod-
ified to deal with the closed character of the inputs. The
method comprises the calculation of an omnidirectional lo-
cal sensitivity index that indicates the average impact on the
model output when perturbing the compositional model in-
put in different directions around a given point. Since the
results of the derivative-based method depend on the mag-
nitude of perturbation (Breshears et al., 1992), especially in
case the model shows strong nonlinear relationships and cor-
relations (Saltelli et al., 2000), the method also includes a
procedure to optimise the perturbation factor. Subsequently,
the SA method is applied to the hydrologic model TOPLATS
and is used to evaluate changes in the simulated soil moisture
content with respect to small local changes in soil texture, of
which the composition was varied across the entire input do-
main, defined by the soil texture triangle. On the basis of this
generated local sensitivity index, we aim at locating regions
in the texture triangle to which the modelled soil moisture is
most sensitive.

In addition to constructing and applying the SA method,
another objective of this study is to gain more insight into
the behaviour of the hydrologic model, and more specifically
with regard to the role of soil texture therein. Information
on soil texture is essential for the operation of a hydrologic
model since it is used to estimate the soil hydraulic parame-
ters from the hydraulic model. Because soil texture is often
measured at a number of sparsely distributed locations within
the study area, all locations falling into the same soil type
as the one of the sampled location (cf. information on the
soil map) are attributed the same hydraulic properties within
the hydrologic model. This discrepancy between the scale of
measurement (spacing, cfr. scale triplet (Blöschl and Siva-
palan, 1995)) and the scale of model application (grid res-
olution) raises doubts about the suitability of the measured
input value as the most probable (Barth et al., 2001) since it
may give rise to large uncertainties in the model output. In
this perspective, the presented sensitivity analysis offers the
possibility to reduce this type of model output uncertainty
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by formulating guidelines for additional data collection as a
function of the measured soil texture.

2 Materials and methods

2.1 The hydrologic model

The TOPMODEL-based Land-Atmosphere Transfer Scheme
(TOPLATS) is a spatially distributed water and energy bal-
ance model that is based on a lateral redistribution of wa-
ter (Famiglietti and Wood, 1994; Peters-Lidard et al., 1997;
Pauwels and Wood, 1999), i.e. groundwater gradients induce
spatial patterns of soil moisture and are estimated from the
local topography and the soil transmissivity (Sivapalan et al.,
1987). The original model (Famiglietti and Wood, 1994) was
modified in 1997 to correct for deficiencies in the representa-
tion of the heat fluxes (e.g. ground heat flux) (Peters-Lidard
et al., 1997), and in 1999 to expand the representation of the
hydrological processes towards conditions in high latitudes
(e.g. frozen ground and snow) (Pauwels and Wood, 1999).

A separate local water and energy balance equation is
solved for each pixel to generate for each time step a spatial
distribution of the water table depth, the soil moisture con-
tent, the surface temperature and the amount of water stored
in the canopy. At the pixel scale, the soil column is parti-
tioned into an upper root zone and a lower transmission zone.
The soil moisture content in both layers (assumed uniformly
with depth) is initialised based on the local water table depth
and the assumption of an equilibrium moisture profile after
which the soil moisture content is updated using the local soil
water balance equations as described inPeters-Lidard et al.
(1997).

2.1.1 Model parametrization

In TOPLATS, the soil properties are modelled through
the closed-form analytical equations ofBrooks and Corey
(1964), which express the relationship between the soil mois-
ture contentθ [m3m−3

], the hydraulic headψ [m] and the
hydraulic conductivityK [ms−1

]. The soil moisture reten-
tion curve (SMRC) and the hydraulic conductivity curve de-
scribe howψ is related toθ andK, respectively. The shape
of both curves is determined by the soil hydraulic parame-
ters (SHPs): the residual soil moisture contentθr [m3m−3

],
the saturated soil moisture contentθs [m3m−3

], the bubbling
pressureψc [m], the pore size distribution indexλ [−] and
the saturated hydraulic conductivityKs [ms−1

]. When field
measurements of the SHPs are not available, they are esti-
mated based on soil textural information (soil type or particle
size distribution) through application of either class or con-
tinuous pedotransfer functions (PTFs). Numerous PTFs have
been proposed, reviewed and evaluated over the last decade
(e.g.Tietje and Tapkenhinrichs, 1993; Wagner et al., 2001;
Nemes et al., 2009), but the accuracy and reliability of the
PTFs are highly variable (Loosvelt et al., 2011) and mainly

depend on the similarity of the soil and climatic features be-
tween the region of PTF development and the region of PTF
application.

In this study, the continuous PTFs ofRawls and Braken-
siek(1985, 1989) (Table 1) are applied to estimate the SHPs
for the Brooks and Corey(1964) model based on the sand
contentZ [%], the clay contentC [%], and the soil poros-
ity P [-]. The latter is calculated from the bulk densityρb
[gcm−3] and the particle densityρs [gcm−3] following the
relationshipP = 1−ρb/ρs. The particle density is corrected
for the presence of organic matter, for which a content of 3 %
(Sleutel et al., 2006) and a density of 1.45 gcm−3 (Kaiser
and Guggenberger, 2003; Mayer et al., 2004) is assumed.
The bulk density,ρb, is calculated following the procedure
as described bySaxton and Rawls(2006). When applying
the PTFs ofRawls and Brakensiek(1985, 1989), one should
bare in mind that these PTFs were actually developed for tex-
tures with a clay content between 5 % and 60 % and a sand
content between 5 % and 70 %.

In addition to the soil parameters (e.g. SHPs, soil re-
sistance, heat capacity), TOPLATS has a large number of
other model parameters among which the vegetation param-
eters (e.g. albedo, leaf area index, stomatal resistance) and
the TOPMODEL parameters (e.g. saturated subsurface flow,
initial water table depth) are the most important ones (see
Sect.2.1.2).

2.1.2 Data set

The hydrologic model is applied at a point location (with
coordinates 50.89◦ N and 4.09◦ E) in the catchment of the
Bellebeek (Belgium) in order to simulate the soil moisture
content of the upper soil layer (5 cm) during the period 1 Jan-
uary 2006 to 31 December 2006, using an hourly time step.
For the catchment, appropriate values for the parameters
to estimate baseflow are taken from the literature (Samain
et al., 2011): the subsurface flow at complete saturation is
6.31 m3 s−1, the exponential baseflow coefficient is 2.51 [-],
and the initial average depth of the groundwater table is
1.51 m. The soil and land cover type registered at the simula-
tion point are loam and bare soil, respectively. The meteoro-
logical variables wind speed, relative humidity, net radiation,
atmospheric pressure and temperature (dry bulb, wet bulb,
dew point) were registered with a temporal resolution of 10
to 60 min at the meteorological station of Liedekerke, which
is situated near the outlet of the catchment. Missing data were
complemented by measurements from nearby meteorolog-
ical stations (at Gooik and Denderbelle, respectively 3 km
south and 10 km north of the catchment). Measurements of
incoming shortwave radiation were not available at the sta-
tion of Liedekerke, but were calculated from the net radia-
tion based on a regression (with a correlation coefficient of
0.96) between the shortwave and net radiation measured at a
nearby meteorological station in Gooik. The meteorological
records point out that the weather conditions in the catchment
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Table 1. Regression equations of theRawls and Brakensiek(1985, 1989) pedotransfer functions to estimate the soil hydraulic parameters
from theBrooks and Corey(1964) hydraulic model.

φc = exp
(
4.34+ 0.18×C− 2.48P − 2.14× 10−3C2

− 4.36× 10−2Z×P − 6.17× 10−1C×P

+1.44× 10−3Z2
×P 2

− 8.55× 10−3C2
×P 2

− 1.28× 10−5Z2
×C

+8.95× 10−3C2
×P − 7.25× 10−4Z2

×P + 5.4× 10−6C2
×Z+ 0.50×P 2

×C
)

λ = exp
(
0.78+ 1.76× 10−2Z− 1.06×P − 5.3× 10−5Z2

− 2.73× 10−3C2

+1.11×P 2
− 3.09× 10−2Z×P + 2.66× 10−4Z2

×P 2
− 6.11× 10−3C2

×P 2

−2.35× 10−6Z×C+ 7.99× 10−3C2
×P − 6.74× 10−3P 2

×C
)

θs = 1.16× 10−2
− 1.47× 10−3Z− 2.24× 10−3C×P + 0.98P + 9.87× 10−5C2

+ 3.61× 10−3Z×P

−1.09× 10−2C×P − 0.96× 10−4C2
×P − 2.44× 10−3P 2

×Z+ 1.15× 10−2P ×C

θr = −1.82× 10−2
+ 8.73× 10−4Z+ 5.13× 10−3C+ 2.94× 10−2P − 1.54× 10−4C2

−1.08× 10−3Z×P − 1.82× 10−4C2
×P 2

+ 3.07× 10−4C2
×P − 2.36× 10−3P 2

×C

Ks = 2.78× 10−6
× exp

(
19.52×P − 8.97− 2.82× 10−2C+ 1.81× 10−4Z2

− 9.41×
−3C2

− 8.40×P 2

+7.77× 10−2Z×P − 2.98× 10−3Z2
×P 2

− 1.95× 10−2C2
×P 2

+ 1.73× 10−5Z2
×C

+2.73× 10−2C2
×P + 1.43× 10−3Z2

×P − 3.5× 10−6C2
×Z

)
Notation:θs is the saturated soil moisture content [m3 m−3], θr the residual soil moisture content [m3 m−3], Ks the saturated hydraulic
conductivity [cm s−1], λ the pore size distribution [-],φc the bubbling pressure [cm],C the clay content [%],Z the sand content [%] andP the
porosity [-], calculated as1− ρb/ρs following the procedure as described inSaxton and Rawls(2006).

of the Bellebeek apply to a temperate climate with an annual
mean temperature of 11.5◦C and a total annual rainfall of
750 mm. Furthermore, in situ soil moisture measurements (at
2.5 cm depth) taken between 13 May and 30 May 2007 are
used to validate the model.

2.2 Compositional data

2.2.1 Basic concept and operations

Compositional or closed data are multivariate data, repre-
sented by positive real vectors of which the components sum
up to a constantκ. The components of the vector show the
relative weight or importance of the parts in a total, which
means that compositional data carry only relative informa-
tion. A typical example of compositional data is soil texture,
which provides information on the relative portion of sand,
clay and silt in a given soil sample, and of which the closed
character implies that changing one portion causes the other
portions to change as well, such that the sum of the portions
remains equal to 100 %. The set of all possible compositions
x withD components forms a simplex sample space, denoted
asSD, and is defined as

SD =

{
x = (x1,x2, ...,xD) |xi ≥ 0, i = 1,2, ...,D;

D∑
i=1

xi = κ > 0
}
, (1)

wherexi is thei-th part of compositionx, andκ is the clo-
sure constant of which the value is generally 1 (proportions)
or 100 (percentage). For the specific problem setting in this
study, the sample space is a simplex withκ = 100 andD = 3,

as the soil texture encloses three different parts that sum up to
100 %. In the simplex, the compositionp0 with coordinates(

100
3 ,

100
3 ,

100
3

)
is called the barycenter and can be conceived

as the origin of the sample space.
Specific operations and statistical properties (e.g. distribu-

tions) for compositional data were introduced byAitchison
(1986) and further developed byEgozcue and Pawlowsky-
Glahn(2006). The basic operations on the simplex that are
relevant for the sensitivity analysis are summarised below.
For a comprehensive description of these and other proper-
ties, the reader is referred toAitchison(1982).

– Vector addition of compositionx ∈ SD and composition
y ∈ SD (also called perturbation) (Aitchison, 1986):

x ⊕ y =

(
x1 · y1∑D
i=1xi · yi

,
x2 · y2∑D
i=1xi · yi

, ...,
xD · yD∑D
i=1xi · yi

)
. (2)

For a detailed discussion on the visualization, the role
and the interpretation of addition in the simplex, we re-
fer to Aitchison and Ng(2005) andvon Eynatten et al.
(2002).

– Scalar multiplication of a compositionx ∈ SD by a
scalarλ ∈ R (also called power transformation) (Aitchi-
son, 1986):

λ� x =

(
xλ1∑D
i=1x

λ
i

,
xλ2∑D
i=1x

λ
i

, ...,
xλD∑D
i=1x

λ
i

)
. (3)
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– Aitchison distance between compositionx ∈ SD and
compositiony ∈ SD (Aitchison, 1983):

dA(x,y)=

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln

(
xi

xj

)
− ln

(
yi

yj

))2

. (4)

The Aitchison distance is a measure for the difference
between two compositionsx andy (Aitchison, 1992).
If one of the compositions corresponds to the barycenter
(e.g.y = p0 =

(
κ
D
, κ
D
, ..., κ

D

)
), thendA(x,p0) is equal

to the norm ofx, denoted as‖x ‖A .

Furthermore, it is worth mentioning that coordinates in the
vector space can be transformed into a Cartesian coordinate
system. A frequently used transformation is the isometric lo-
gratio (ILR) transformation, which preserves all metric prop-
erties (Egozcue et al., 2003). Although a coordinate trans-
formation is not required within the presented SA method,
it will be used for a better understanding of the operations
in the simplex and as an alternative approach for sensitivity
analysis in case of high-dimensional compositions (D > 3).

2.2.2 Soil texture in the simplex

The texture of a soil samplex = (C,Z,L) is defined by
the distribution of the soil particle sizesC (clay, diame-
ter< 2 µm),Z (sand, diameter> 2 mm) andL (silt, 2 µm<
diameter< 2 mm). Because the parts cannot vary indepen-
dently (there are only two degrees of freedom), it is possi-
ble to visualise the soil texture, a 3-D composition, in two
dimensions by means of an equivalent representation in the
texture triangle (Fig.1). This is an equilateral triangle with
vertices atp1= (100, 0, 0),p2 = (0, 100, 0) andp3 = (0, 0,
100). The three vertices are defined counter-clockwise and
are connected through the segmentsp1p3, p3p2 andp2p1,
scaled from 0 to 100.

In the texture triangle, three bisectors are defined as the
straight lines through one of the vertices and the barycen-

ter p0 =

(
100
3 ,

100
3 ,

100
3

)
(see Fig.1). The bisector through

vertexp1, p2 andp3 is referred to as B1, B2, and B3, respec-
tively, and has the property that the values of two parts of the
composition are always equal on this line.

2.3 Local sensitivity analysis on compositional data

The aim of a local sensitivity analysis is to measure the
effect of perturbing a specific compositionx, i.e. inducing
small relative changes to the composition, on the model out-
put y. The sensitivity ofy with respect tox is expressed
as a sensitivity function that is defined as the derivative of
y with respect tox and is evaluated at one particular value
of x by using the finite difference approximation. Therefore,
small changes inx need to be imposed that, considering the
closed character ofx, imply a change in each of its partsxi
(i = 1,2, ...,D) while maintaining

∑D
i=1xi = κ. The model
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26

Fig. 1. Representation of a samplex = (C,Z,L) in the texture tri-
angle with indication of the bisectors B1, B2 and B3, the vertices
p1, p2, p3 and the boundary conditions on the PTFs ofRawls and
Brakensiek(1985, 1989).

output y is said to be sensitive to model inputx if small
changes inx produce large changes iny. On the contrary,
y is called insensitive tox if small changes inx have almost
no effect ony.

2.3.1 Perturbing in the 2-D euclidean space

The methodology presented in this paper for perturbing
compositional data is built by analogy with a perturba-
tion in a two-dimensional Euclidean space. Suppose we
want to simultaneously perturb two inputsx∗

1 andx∗

2 with
a factor ξ , four possible outcomes are evident and are
given by the Cartesian coordinates(x∗

1 · (1+ ξ),x∗

2 · (1+ ξ)),
(x∗

1 · (1 − ξ),x∗

2 · (1 − ξ)), (x∗

1 · (1+ ξ),x∗

2 · (1− ξ)),
(x∗

1 · (1− ξ),x∗

2 · (1+ ξ)). These are the intersections of the
bisectors of the Cartesian coordinate system and the circle

with centrex = (x∗

1,x
∗

2) and radiusd =

√
(ξx∗

1)
2 + (ξx∗

2)
2.

The circle defines all possible perturbations and is therefore
further referred to as the perturbation circle. Since it is im-
possible to evaluate an infinite number of perturbations, only
a limited set of perturbed points, e.g. the four points on the
bisectors, can be considered.

This idea is adopted for the perturbation of a 3-D com-
positionx = (x1,x2,x3). Consider a random samplex from
S3 which is defined by its triangular coordinates in a ternary
diagram (see Fig.1). Through ILR transformation, the com-
position can be represented in the 2-D Euclidean space by
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means of the Cartesian coordinates (Fig.2a):

(
x∗

1,x
∗

2

)
=

(
1

√
6

ln

(
x2

1

x2 · x3

)
,

1
√

2
ln

(
x2

x3

))
. (5)

Likewise, any geometric shape on the ternary diagram can
be transformed. Figure2a shows that after ILR transforma-
tion, the bisectors B1, B2, and B3 preserve their angles of
60◦ (see Sect.2.2.2) and the barycenterp0 forms the ori-
gin of the Cartesian system in which the bisectors inter-
sect. The perturbation of samplex with factor ξ can now
be performed in the Euclidean space, following the method-
ology described above. First of all, the perturbation circle

with centrex = (x∗

1,x
∗

2) and radiusd =

√
(ξx∗

1)
2 + (ξx∗

2)
2

is constructed (Fig.2b). As only a perturbation in the direc-
tions given by the bisectors (further called perturbation axes)
is considered, the directions of the bisectors are transferred
to compositionx by means of a translation. The perturbed
points are then defined by the intersectionsxi+ andxi− be-
tween the translated bisectors B′

i (i ∈ {1,2, ..,D}) and the
perturbation circle (Fig.2b). Finally, the Cartesian coordi-
nates of the perturbed compositionsxi+ andxi− are back
transformed to the simplex through an inverse ILR transfor-
mation (Egozcue et al., 2003) (Fig. 3, see further).

2.3.2 Perturbing in the simplex

Yet, in order to avoid the roundabout method of coordinate
transformations, the operations in the Euclidean space are
mimicked by operations in the simplex. This results in the
following procedure to perturb a compositionx with a con-
stant factorξ :

1. Perform one of the scalar multiplicationsx± = (1±ξ)�

x (Eq. 3) in order to rescale the compositionx with a
factorξ . The scaling factorξ determines the magnitude
of the perturbation, i.e. the higher the value ofξ , the
more the perturbed composition will deviate from the
sampled compositionx.

2. Calculate the Aitchison distancedA(x,x±) = d (Eq.4)
in order to quantify the difference between the sampled
compositionx and the rescaled compositionsx+ and
x−. Note that for the same value ofξ , the value ofd
increases with increasing values of‖x ‖A .

3. Define a circle with centrep0 and radiusd and deter-
mine the intersections between the circle and the pertur-
bation axes, here the bisectors B1, B2, and B3 (Fig. 3).
For each axis in directioni ∈ {1,2, ..,D}, this problem
is solved by searching for the compositionsvi+ andvi−
on the axis that satisfy the condition‖vi ‖A= d (see Ap-
pendix). The resulting compositions are further called
directional vectors because they are necessary to trans-
fer the direction of the perturbation axes to the sampled
compositionx.

4. Add the directional vectorsvi+ and vi− (i ∈
{1,2, ..,D}) to the compositionx (Eq. 2). This results
in three pairs of new compositions{xi+,xi−} that lie
on the perturbation circle (Fig.3). Since the performed
operation preserves the distance in the simplex, the per-
turbation circle aroundx has radiusd. Although its cir-
cular shape is distorted in the simplex (the further from
the barycenter, the more distortion; examples of circles
are shown in Fig.3), the definition of a circle remains
valid.

In summary, when perturbing compositionx in the simplex
SD with a fixed factorξ following the methodology de-
scribed above, we obtain three pairs of new compositions
{xi+,xi−} with i ∈ {1,2, ..,D} that are a subset of all pos-
sible perturbations, defined by the circle with centrex and
radiusd = dA(x,xi±). Note that althoughM ∈N other per-
turbation axes could have been chosen by selectingM points
on a circle around the barycenter, either at random or such
that they form angles of360

2M degrees, and by connecting each
of the selected points with the barycenter. In case ofM per-
turbation axes, steps 4 and 5 from the methodology would re-
spectively result inM pairs of directional vectors{vi+,vi−}

andM pairs of perturbed compositions{xi+,xi−}. In this
study, we selected the bisectors as perturbation axes (hence,
M = 3) such that the perturbed compositions (i) define an-
gles of 60◦ degrees on the perturbation circle, and (ii) lie on
the translated bisectors B′

i , connectingx with vertexpi (see
Fig. 3). The compositional lines B′i also illustrate the effect
of increasing (or decreasing) the magnitude of perturbation
in direction i, as the perturbed compositions always lie on
this line but shift towards (or away from) vertexpi .

Note that generalizing the methodology might raise some
difficulties (Egozcue, 2012). ForM > 3, calculating the di-
rectional vectors in the ternary diagram becomes compli-
cated. In this case, it is advised to rely on a simplicial ex-
pression that computes the ILR coordinates of the directional
vectors as the intersection points of the circle with radiusd

and centerp0 andM perturbation axes, regularly distributed
on the circle. Through inverse ILR transformation, the direc-
tional vectors are expressed in the simplex. ForD > 3, e.g.
when soil texture is described with more than three parts,
the perturbation circle is not easily generalised to a sphere
or hyper-sphere and the distribution of the perturbation axes
might raise difficulties (Egozcue, 2012).

2.3.3 Calculating the sensitivity index

The methodology for perturbing a composition in the sim-
plex allows to approximate the sensitivity function by means
of the finite difference technique. The sensitivity function can
be further summarised into a sensitivity index in order to ex-
press the sensitivity ofy to small changes inx by means of a
single value. In this section, it is described how the sensitivity
index is evaluated at one particular value ofx.
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Fig. 3. Perturbation in the simplex of a compositionx sampled
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1, B′
2 and B′

3; illus-
tration of compositional circles at different locations in the texture
triangle.

In the simplex, a compositionx is sampled uniformly at
random from the sample space. Therefore, a Dirichlet distri-
bution is defined, which is the multivariate generalisation of
the beta distribution and is parametrized by a vectorα. The
density function of the Dirichlet distribution is given by

fD(x;α)=

0
(∑D

i=1αi

)
5Di=10(αi)

5Di=1x
αi−1
i (6)

with x = (x1, ...,xD) a sample fromSD, α = (α1, ...,αD) the
parameter vector andD the dimension of the sample space.
In order to guarantee that the composition is sampled uni-
formly at random, the conditionα = 1 should be fulfilled.
The sampled compositionx is thereupon perturbed inM
different directions following the methodology described in
Sect.2.3.2.

After sampling and perturbingx, the model outputyt is
determined at time stept for both the sampled composition
x and the perturbed compositionsxi+ andxi−. For each di-
rectioni given by the perturbation axes, a forward and back-
ward directional sensitivity function, respectively denoted
as∇vi+yt(x) and∇vi−yt(x), are calculated using the finite
difference technique:


∇vi+yt(x)≈

yt(x ⊕ vi+)− yt(x)

dA(x ⊕ vi+,x)
=
yt(xi+)− yt(x)

d

∇vi−yt(x)≈
yt(x)− yt(x ⊕ vi−)

dA(x ⊕ vi−,x)
=
yt(x)− yt(xi−)

d

(7)
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with t the time step of model outputy, vi± the directional
vectors for perturbation in directioni and d the Aitchison
distance (see Eq.4). Averaging both functions leads to a cen-
tral, directional sensitivity function∇iyt(x), which indicates
the average change iny caused by opposite changes inx in
the direction of perturbation axisi:

∇iyt(x)≈
yt(x ⊕ vi+)− yt(x ⊕ vi−)

dA(x ⊕ vi+,x ⊕ vi−)

=
yt(xi+)− yt(xi−)

2D
. (8)

As the sensitivity function itself is not useful for sensitivity
analysis (Saltelli et al., 2008b), it is summarised into an om-
nidirectional local sensitivity indexS (by analogy with the
sensitivity index proposed byHill and Tiedeman(2007)):

S(x)=
1

M

M∑
i=1

√√√√ 1

N

N∑
t=1

(∇iyt(x))
2 (9)

with N the number of time steps in the model output and
M the number of perturbation axes (hereM = 3). The sen-
sitivity index is hence a single value that reflects the average
response ofy whenx is perturbed with a fixed factorξ in M
different directions, each covering two opposite changes in
x. It is calculated as the root mean squared difference in the
model output resulting from two oppositely perturbed com-
positions, averaged over the different perturbation directions.
As such, the sensitivity index can be easily updated when
∇iyt(x) is calculated for additional perturbation directions,
i.e.M > 3. In case the model outputy is time-independent,
i.e. N = 1, thenS reduces to the mean absolute difference
in the model output resulting from two oppositely perturbed
compositions. An overview of the methodology to calculate
the sensitivity index is given in Algorithm1.

Note that forD > 3, a large number of points on the
perturbation (hyper-)sphere will be required to compute the
sensitivity index. In this case, computation of the sensitiv-
ity function can be simplified by estimating the directional
derivatives based on the ILR coordinates of the sampled
composition:

∇viyt(x)=

(
∂yt

∂x∗

1
,
∂yt

∂x∗

2
, ...,

∂yt

∂x∗

D-1

)
·
(
v∗

1,i,v
∗

2,i, ...,v
∗

D-1,i
)> (10)

As such, any directional derivative can be computed if for
each of theD-1 orthogonal axis on the ILR coordinate space,
the gradient∂yt/∂x

∗ has been determined (Egozcue, 2012).

2.3.4 Optimizing the perturbation factor

The choice of the perturbation factorξ determines the quality
of the sensitivity function: the smaller its value, the better the

Algorithm 1 : Calculate the local sensitivity indexS for
a sampled compositionx

Data: - a compositionx from the sample spaceSD

(Sect.2.3.2);
– a perturbation factorξ (Sect.2.3.4);
– a set ofM perturbation directions;

Result: sensitivity indexS for y atx

begin
perform the scalar multiplication(1± ξ)� x = x±

(Sect.2.3.2, step 1);
calculate the Aitchison distancedA(x,x±) (Sect.2.3.2,
step 2);
for each perturbation directioni ∈ {1,2, ..,M} do

determine the directional vectors{vi+,vi−}

(Sect.2.3.2, step 3);
add the directional vectors tox to obtain{xi+,xi−}

(Sect.2.3.2, step 4);
apply the model to determineyt(xi+) andyt(xi−);
approximate the central, directional sensitivity
function∇iyt(x) (Eq.8)

calculate the omnidirectional local sensitivity indexS(x)
(Eq.9)

end

finite difference scheme approximates the derivative. How-
ever, if ξ is taken too small it might give rise to numerical
errors. If ξ is taken too large, errors due to model nonlin-
earities might be introduced in the analysis (De Pauw and
Vanrolleghem, 2006). Therefore, an optimization procedure
is included in the presented SA framework. The basic idea is
to make both types of error as small as possible by minimiz-
ing the difference in model sensitivity when inducing oppo-
site changes in the model input, i.e. the difference between
the sensitivity functions∇vi+yt(x) and∇vi−yt(x) should be
as small as possible when perturbing in directioni. Although
several measures can be used to quantify this difference, the
sum of squared difference between their absolute values is
selected in this study and is denoted asCi(x):

Ci(x)=
1

N

N∑
t=1

(∣∣∇vi+yt(x)
∣∣− ∣∣∇vi−yt(x)

∣∣)2. (11)

By taking the absolute value of the sensitivity functions,
we allow that opposite changes inx result in non-opposite,
but similar model responses. Since the sensitivity analysis
exploresM directions on the perturbation circle,M val-
ues ofCi(x) are obtained on which the minimization pro-
cedure needs to be carried out. In order to solve this opti-
mization problem, the maximum value over allCi(x) (with
i ∈ {1,2, ..,M}), further calledCmax(x), is used as an ob-
jective function. For the SA problem in this study, it is
chosen to limitξ to a set of fixed values, such thatξ ∈

{10−5,10−4,10−3,10−2,10−1
} although other intermediate

values could have been chosen as well. An overview of
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Algorithm 2 : Optimise the perturbation factorξ for a
sampled compositionx

Data: – a compositionx from the sample spaceSD

(Sect.2.3.2);
– a set ofL perturbation factorsξ (Sect.2.3.4);
– a set ofM perturbation directions;

Result: optimal perturbation factorξ atx

begin
apply the model to determineyt(x);
for eachξ ∈ {ξ1,ξ2, .., ξL} do

perform the scalar multiplication(1± ξ)� x = x±

(Sect.2.3.2, step 1);
calculate the Aitchison distancedA(x,x±)

(Sect.2.3.2, step 2);
for each perturbation directioni ∈ {1,2, ..,M} do

determine the directional vectors{vi+,vi−}

(Sect.2.3.2, step 3);
add the directional vectors tox to obtain
{xi+,xi−} (Sect.2.3.2, step 4);
apply the model to determineyt(xi+) and
yt(xi−);
approximate the sensitivity functions∇vi+yt(x)

and∇vi−yt(x) (Eq.7);
calculateCi(x) (Eq.11);

determineCmax(x) as
M

max
i=1

Ci(x);

select the value ofξ for whichCmax(x) is minimal;
end

the methodology to optimise the perturbation factor for a
sampled composition is given in Algorithm2.

3 Results and discussion

The experimental set-up consists of two main steps: in the
first step, 100 textures are sampled from the texture triangle
to determine the optimal factorξ for perturbing soil texture.
In the second step, 5000 textures are sampled from the tex-
ture triangle and are used as input to the hydrologic model
to evaluate the response of the simulated soil moisture when
texture is perturbed with the optimal perturbation factor.

3.1 Identification of the optimal perturbation factor

Hundred compositions are sampled from the texture trian-
gle according to a Dirichlet distribution (withα = 1). For
each sampled texture, the perturbation factorξ is evaluated
for the values in{10−5,10−4,10−3,10−2,10−1

} by applying
the methodology as described in Algorithm2. For eachξ ,
we obtain 100 values ofCmax of which the mean, the mini-
mum and the maximum are shown in Fig.4b. The mean value
of Cmax clearly shows a minimum forξ = 10−2, which sug-
gests that this value is optimal for perturbing a broad range
of textures. Although the minimum value ofCmax is lowest

for ξ = 10−4, this perturbation factor can be discarded as be-
ing optimal since the spread over the different values ofCmax
is very large for this value ofξ . Or stated differently: when
ξ = 10−4 would be selected as optimal, it would result in a
very low value ofCmax for only a limited number of textures,
whereas the majority of the samples would be characterised
by a larger value ofCmax. These findings are in correspon-
dence with the frequency distribution of the optimalξ -values
(Fig.4b), which shows that for the major part (about 65 %) of
the samples,Cmax is minimal when they are perturbed with
10−2. For 25 % and 10 % of the samples, the optimal value of
ξ is respectively smaller and larger than 10−2. The samples
from the group with an optimalξ smaller than 10−2 show
a relatively heterogeneous distribution in the texture triangle
(see Fig.5) with the highest concentration around textures
with a clay content above 40 % or a sand content between
20 % and 50 %. The samples from the group with an optimal
ξ larger than 10−2 are mainly located around textures with a
sand and clay content of 30 %.

For practical purposes, it is chosen to use a fixed value
of 10−2 for the perturbation factor, as it would unnecessar-
ily increase the complexity of the sensitivity analysis when
makingξ dependent of the sampled texture. Consequently,
deviations from the optimal value are mainly located within
the texture classesclay loamandloam(Fig. 5).

3.2 Identification of sensitive regions in the texture
triangle

Identifying sensitive regions in the texture triangle with re-
spect to the estimation of soil parameters or with respect to
the prediction of soil moisture is useful for the model user as
it allows to reduce the uncertainty in the predicted variable.
Since standardly available soil information is often limited
to a soil map of the study area and a number of sparsely dis-
tributed soil texture measurements, the measurement is as-
sumed to be representative for the corresponding soil map
unit. Consequently, the model user attributes the same parti-
cle size distribution to all locations falling into that soil map
unit, whereas the soil texture at a location different from the
measurement point, but within the same soil map unit, may
(largely) deviate from the sampled texture. Although it is as-
sumed that the spatial variability within a homogeneous soil
map unit covers only a minor part of the total variability
in texture that is enclosed within the definition of the cor-
responding soil type, the discrepancy between the scale of
measurement and the scale of model application might in-
troduce large uncertainties in the model output. If large un-
certainties in either the estimated SHPs or the simulated soil
moisture are not acceptable (depending on the objective of
the study), the uncertainty about the potential bias in the mea-
sured soil texture due to spatial variability should be further
reduced through additional data collection. If the pattern in
sensitivity is identified, the following rule of thumb to priori-
tize additional data collection can be applied: “If the sampled
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texture, which is assumed to be representative for a certain
soil map unit, is located within a region of high sensitivity
in the texture triangle, then additional texture samples within
the area corresponding to this soil map unit, as delineated on
the soil map, should be taken”. By accounting for the spa-
tial variability, a more accurate estimate of the representative
(most probable) texture for the given soil map unit can be
formulated and can be used to reduce the uncertainty in the
model output. On the contrary, if the sampled texture is lo-
cated within a region of low sensitivity in the texture triangle,
the discrepancy between the scale of measurement and the
scale of model application will have a low impact on the pre-
dicted variable, and taking additional samples may therefore

be discarded, unless a high spatial variability in soil texture
exists.

3.2.1 Sensitivity of soil hydraulic parameters

Five thousand compositionsT = (C,Z,L) are sampled from
the texture triangle according to a Dirichlet distribution (with
α = 1) and are perturbed withξ = 10−2. For both the sam-
pled and perturbed compositions, the corresponding SHPs
are estimated with the PTFs ofRawls and Brakensiek(1985),
on which the sensitivity function∇iSHP(T )with i ∈ {1,2,3}

and the sensitivity indicesSSHP are calculated by applying
the methodology as described in Algorithm1. A contour plot
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of SSHP (Fig. 6a–e) reveals that the sensitivity pattern highly
depends on the parameter under consideration, although the
patterns inSθs andSψb show a remarkable resemblance. For
these parameters, the hot spot of high sensitivity is located
around textures with a clay content of 60–80 % and a sand
content of 20–40 %. The sensitivitiesSθr andSλ show a pat-
tern that is highly dominated by the clay content: an increase
in the clay content causes an increase (decrease) in the sen-
sitivity if the clay content is lower (higher) than 30 %. Al-
though the clay content of the hot spot matches forSθr and
Sλ, the corresponding sand content is different: around 0 %
for the former and around 70 % for the latter. On the con-
trary, the pattern inSKs is dominated by the sand content: the
higher the sand content, the higher the sensitivity. The order
of magnitude of the sensitivity index should be interpreted
with respect to the corresponding SHP. Therefore, the mean
predicted SHP over the entire texture triangle is given as a
reference in Fig.6. Also note that results outside the valid-
ity zone of the PTFs should be interpreted with care (see
Sect.2.1.1 and Fig.1). This zone is indicated on the con-
tour plots in Fig.6. In summary, the potential uncertainty in
the predicted SHPs due to the discrepancy in scale between
measurement and model application highly varies across the
texture triangle and among the different SHPs, making it very
difficult to formulate general guidelines to reduce the uncer-
tainty in the predicted SHPs.

3.2.2 Sensitivity of soil moisture

After determining the sensitivity of the estimated SHPs to
soil texture, the SHPs are used as input to the hydrologic
model TOPLATS (run in spatially distributed mode) in or-
der to simulate the daily soil moisture contentθt during the
year 2006 at the simulation location (see Sect.2.1.2) under
Belgian weather conditions (see Sect.2.1.2). The 5000 sam-
pled textures and their perturbed textures are successively at-
tributed to the simulation location on which the correspond-
ing sensitivity functions∇iθt(T ) with i ∈ {1,2,3} and sen-
sitivity index Sθ are calculated as described in Algorithm1.
Figure6f shows a contour plot ofSθ as a function ofT and
reveals a rather simple sensitivity pattern. For textures with
a clay content lower than 35 % or higher than 70 %, the sen-
sitivity is strongly determined by the clay content. In case
C < 35 %, the textural sensitivity increases with increasing
values of the clay content, whereas in caseC > 70 % the tex-
tural sensitivity decreases with increasing values of the clay
content. For soils with a clay content between 35 % and 70 %,
Sθ is also highly influenced by the percentage of sand in the
soil. The hot spot of high sensitivity is located around tex-
tures with a clay and sand content of 55 % and 45 %, respec-
tively. This means that for these measured textures, the po-
tential uncertainty inθ that is associated with the scaling is-
sue will be the highest, but can, however, be reduced through
additional data collection.

3.2.3 Evaluation of the USDA class as sensitivity region

The objective of this section is to investigate whether a soil
map of a region with indication of the USDA soil classes can
be used as a rudimentary tool to set up the texture sampling
strategy prior to data collection. As such, the discrepancy be-
tween the scale of measurement and the scale of model appli-
cation within that region is optimally managed with respect
to the uncertainty in the model prediction. For the predic-
tion in a region that goes together with an USDA soil class
that is attributed a high sensitivity towards soil texture, it is
important to reduce the uncertainty on the textural variabil-
ity within that region. Obviously, sufficient samples should
be taken to accurately estimate the representative texture. By
using the representative texture, a lower model prediction un-
certainty is achieved. Otherwise, if the soil map indicates that
the prediction will take place in a region where the soil class
shows a low sensitivity towards texture, then resources can be
saved and data collection can be limited to a single soil sam-
ple. However, this strategy is only valid under the assumption
that the textural variability within that region is low.

In order to associate regions of high and low sensitivity of
the SHP estimation with the commonly used USDA soil clas-
sification,SSHP is averaged over the samples falling into the
same USDA soil class, further denoted asSSHP(Table2). For
θs andψb, the soil class corresponding to the highestSSHP is
clay, whereas forθr, λ andKs this is respectivelysilt loam,
sandy clay loamandsandy loam, which are also the classes
that contain the hot spot of high sensitivity for their respec-
tive SHP (Fig.6). However, the hot spot only covers a part
of the entire soil class, such that advising a higher sampling
density to formulate a representative texture for the corre-
sponding soil map units will not always be relevant. Based
on these results, we may argue that the USDA classification
is only useful as a preliminary indication for the sensitivity
in SHP prediction because the variation in sensitivity within
an USDA class is often high. As a consequence, the USDA
soil map is suboptimal when used as a tool to optimise the
sampling strategy with respect to the potential uncertainty
in the estimated SHPs that is associated with the scaling is-
sue. These findings call for a refinement of the USDA soil
classes as they seem to be too rough to accurately describe
the soil texture. In addition, the definition of soil texture
should evolve towards a representation with more than three
grain classes.

By analogy,Sθ is averaged over each USDA soil class and
the resultingSθ is shown together with its standard devia-
tion in Fig.7. Based on the total range inSθ , four sensitivity
classes are defined: low sensitivity (0≤ Sθ < 0.04), medium
sensitivity (0.04≤ Sθ < 0.08), high sensitivity (0.08≤ Sθ <

0.12) and very high sensitivity (0.12≤ Sθ ). The soil class
sandy clayis attributed the highestSθ and falls into the high
sensitivity class, which is obvious as this class contains the
hot spot of high sensitivity (see Fig.6). However, the vari-
ation in sensitivity within that soil class is very large and
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Fig. 6. Contour plot of the sensitivity index across the texture triangle for the estimated soil hydraulic parameters

(a)-(e) θs (mean is 0.18 m3 ·m−3), θr (mean is 0.03 m3 ·m−3), ψb (0.16 m), λ (mean is 0.49), and log10Ks

(mean is −6.11m ·s−1) and for the simulated soil moisture content θ (f). Results outside the validity zone of

the PTFs (indicated by a white line) and near the borders of the triangle should be interpreted with care.
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Fig. 6. Contour plot of the sensitivity index across the texture triangle for the estimated soil hydraulic parameters(a–e) θs (mean is
0.18 m3 m−3), θr (mean is 0.03 m3 m−3), ψb (0.16 m),λ (mean is 0.49), and log10Ks (mean is−6.11 m s−1) and for the simulated soil
moisture contentθ (f). Results outside the validity zone of the PTFs (indicated by a white line) and near the borders of the triangle should be
interpreted with care.
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Table 2.Average sensitivity index within the USDA soil classes, for the different soil hydraulic parameters; the class with the highest average
sensitivity is indicated in boldface, whereas the class with the lowest average sensitivity is in italics.

Soil Class Sθs Sθr Sψb Sλ SKs

Sand 5.84× 10−4 5.02× 10−4 5.02× 10−4 7.21× 10−3 1.77× 10−6

Loamy Sand 1.33× 10−3 1.44× 10−3 2.24× 10−3 2.04× 10−2 4.84× 10−6

Sandy Loam 4.72× 10−3 8.12× 10−3 2.55× 10−2 1.09× 10−1 1.07× 10−5

Sandy Clay Loam 4.10× 10−3 5.33× 10−3 2.85× 10−2 1.47× 10−1 5.02× 10−6

Sandy Clay 4.34× 10−3 8.02× 10−4 3.35× 10−2 5.72× 10−2 3.77× 10−7

Loam 4.41× 10−3 6.41× 10−3 3.37× 10−2 7.31× 10−2 7.89× 10−7

Clay Loam 6.25× 10−3 4.35× 10−3 5.07× 10−2 1.00× 10−1 2.38× 10−7

Silt Loam 6.90× 10−3 1.52× 10−2 5.95× 10−2 1.02× 10−1 5.97× 10−7

Silt 6.48× 10−4 2.11× 10−3 6.91× 10−3 6.26× 10−3 2.52× 10−8

Silty Clay Loam 3.25× 10−3 4.79× 10−3 2.18× 10−2 6.40× 10−2 4.46× 10−8

Silty Clay 3.22× 10−3 1.83× 10−3 2.62× 10−2 5.39× 10−2 1.91× 10−8

Clay 2.39× 10−2 5.80× 10−3 2.61× 10−1 1.49× 10−1 9.45× 10−8

Sandy Clay
Clay Loam

Clay
Sandy Clay Loam

Loam
Silty Clay Loam

Silty Clay
Silt Loam

Sandy Loam
Silt

Loamy Sand
Sand

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Sθ

Very HighHighMediumLow

Fig. 7. Average sensitivity index Sθ for the 12 USDA soil classes with indication of the standard deviation

and the sensitivity classes low (0≤Sθ < 0.04), medium (0.04≤Sθ < 0.08), high (0.08≤Sθ < 0.12) and very

high (0.12≤Sθ).
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Fig. 7. Average sensitivity indexSθ for the 12 USDA soil classes
with indication of the standard deviation and the sensitivity classes
low (0 ≤ Sθ < 0.04), medium (0.04≤ Sθ < 0.08), high (0.08≤

Sθ < 0.12) and very high (0.12≤ Sθ ).

ranges from medium to very high. Also other soil classes
enclose more than one sensitivity class, e.g.clay and silt,
which would require to re(de)fine those soil classes with re-
spect to their sensitivity. On the contrary, some USDA classes
completely fall within a single sensitivity class. The classes
loamy sandandsandtherefore correctly represent a low sen-
sitivity, whereas the classesloam, silty clay loamand silty
clay represent a medium sensitivity. This supports the ear-
lier findings to use the USDA soil classification (and hence
the USDA soil map) only as a preliminary indication of the
model output sensitivity towards textural changes. The dom-
inant sensitivity class that is associated with the USDA class
is then an indication of the sampling density needed to for-
mulate a representative texture for the given USDA class. For
example the clayey soil classes (e.g.sandy clay, clay loam
andclay) will require a higher sampling density.

3.3 Identification of the hydrologic model behaviour

The scatterplot in Fig.8a shows how the model response
Sθ is related to the average annual soil moisture content
θavg =

1
N

∑N
t=1θt simulated with TOPLATS, from which it

is clear that very high model sensitivities are only expected
if the simulated soil moisture has a value between 0.2 and
0.4, with a maximum around 0.3. On the contrary, low sen-
sitivities occur for both very low (θavg< 0.2) and very high
soil moisture contents (θavg> 0.45). This suggests that the
more extreme (dry or wet) the soil moisture content becomes,
the less uncertainty in the simulation result is involved when
there is a discrepancy between the scale of texture measure-
ment and the scale of model application. Similarly, scatter-
plots betweenSθ and the SHPs (Fig.8b–f) reveal that the sen-
sitivity can only be very high if the SHPs take specific values:
θs, θr, ψb, λ andKs should be within the range[0.42,0.49],
[0.1,0.12], [0.05,0.6], [0.4,1] and[5× 10−8,5× 10−6

], re-
spectively. The parameter values for which a maximum in
Sθ is recorded, are combined to construct the SMRC that in-
volves the highest uncertainty inθ . The so-called “high sen-
sitivity” SMRC shows a rather linear behaviour (Fig.9) that
is characteristic for fine-textured soils with a low effective
porosity, i.e.θs− θr. For the sake of simplicity, it can be said
that this SMRC corresponds to low values ofθs, ψb andλ,
and a high value ofθr. On the contrary, a low sensitivity of
the simulated soil moisture is not exclusively related to spe-
cific values of the SHPs, since for a broad range of SHP val-
ues the correspondingSθ falls into the low sensitivity class.
Nevertheless, it is observed that the more the SHP values de-
viate from the specified range that gives rise to a very high
sensitivity,Sθ shifts towards the low sensitivity class. This
means that the sensitivity of the simulated soil moisture is
certainly low in caseθs, ψb andλ have a high value andθr
has a low value. The so-called “low sensitivity” SMRC that
results from this soil parameter combination is characteristic
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Fig. 8. Scatterplot between Sθ and the soil hydraulic parameters θs, θr , ψb, λ, Ks (a)-(e) and the average

simulated soil moisture content θavg (5000 sampled textures).
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Fig. 8. Scatterplot betweenSθ and the soil hydraulic parametersθs, θr, ψb, λ,Ks (a–e)and the average simulated soil moisture contentθavg
(5000 sampled textures).
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Fig. 9.Soil moisture retention curve (SMRC) for which the sensitiv-
ity of the simulated soil moisture to textural changes is the highest
and the lowest, respectively.

for coarse-textured soils with a high effective porosity and
shows a highly nonlinear behaviour.

4 Conclusions

Considering the omnipresence of compositional data in the
geosciences, we developed a method to perform a local sen-
sitivity analysis on compositional model inputs. As the dif-
ferent parts of the input vary simultaneously, while preserv-
ing the closed character of the input, this method allows to
abandon incorrect practice of OAT-SA. In the presented SA
method, a sensitivity index is calculated based on the finite
difference technique to approximate the directional deriva-
tives of the model output with respect to the compositional
model input. Local perturbations of the compositions were
realised by operations in the simplex (for complex SA prob-
lems we suggest to implement the alternative approach using
ILR coordinates) and we relied on the assumption that all
possible perturbations are defined by a perturbation circle.
Additionally, we supplemented the SA method with a proce-
dure to optimise the perturbation factor in order to minimise
numerical errors and errors due to model nonlinearities.

The SA method was subsequently applied to a hydrologic
model to assess the sensitivity of the simulated soil moisture
content to changes in soil texture, for a high number of com-
positions in the texture triangle. In a first step, we found that
the optimal factor to perturb soil texture is 10−2. Although
this value was found to be optimal in 65 % of the cases, it was

chosen to use a fixed value ofξ in order not to unnecessar-
ily complicate the sensitivity analysis. However, one should
be aware that in 10 % of the cases this value is too low and
might introduce numerical errors in the sensitivity analysis,
and that in 25 % of the cases this value is too high, which
might result in errors due to the nonlinear behaviour of the
hydrologic model. Especially near the borders of the ternary
diagram, deviation of the perturbation factor from its opti-
mal value might affect the sensitivity analysis. A perturbation
factor of 10−2 was used to perform a local SA on 5000 dif-
ferent textures, sampled according to a Dirichlet distribution
from the texture triangle. The analysed models are the PTFs
of Rawls and Brakensiek(1985) and the hydrologic model
TOPLATS of which the generated outputs are respectively
the soil hydraulic parameters and the soil moisture content.
Based on these model applications, the sensitivity index was
calculated for both model outputs and was evaluated with
respect to the position of the sampled texture in the texture
triangle.

The results of the sensitivity analysis were found to be use-
ful (i) to reduce the uncertainty on the modelled output when
there is a discrepancy between the scale of measurement and
the scale of model application and (ii) to gain more insight
into the behaviour of the applied model, and more specifi-
cally on how it reacts on changes in the soil texture with re-
spect to its position in the texture triangle. As such, we found
that the simulated soil moisture is most sensitive to soil tex-
ture when the measured clay content is around 55% and the
sand content around 45 %. This means that the potential un-
certainty that is involved with the scaling issue will be the
highest under these textural conditions. Therefore, when high
uncertainties in the modelled output are not acceptable, it is
advised to take one or more additional texture samples within
the soil map unit that encloses the original sample such that
a better estimate of the most probable texture can be formu-
lated. Similarly, we identified zones of high sensitivity for the
soil parameters, showing a high variability in their sensitivity
pattern. We also investigated whether a soil map with indica-
tion of the USDA soil classes can be used as a tool to opti-
mise the texture sampling strategy by reviewing the USDA
soil classification with respect to the pattern in model output
sensitivity. The results point out that USDA classes are only
useful as a rudimentary indication for the sensitivity as they
distinguish between high and low sensitivity, but comprise
a large within-class-variability of the sensitivity. Especially
the clayey soil classessandy clay, clay loamandclay involve
high to very high sensitivities, such that it is advised to ap-
ply a high(er) sampling density within these soil map units
to calculate the representative texture. Furthermore, we were
able to relateSθ to the shape of the soil moisture retention
curve and recorded the highest sensitivity when the values of
θs, ψb andλ are low and the value ofθr is high. The result-
ing curve is characteristic for fine-textured soils with a low
effective porosity and shows a rather linear behaviour.
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Note that all results are specific for the given experimental
set-up and that extrapolation of the results towards other flow
models and soil parameter estimation methods is not justi-
fied as long as the generality of the results is not pointed out.
Moreover, the results should be interpreted in a broader per-
spective of model uncertainties because optimizing the sam-
pling strategy based on the textural sensitivity is only relevant
if model uncertainties related to the soil hydraulic parameter
estimation, e.g. accuracy and reliability of the selected PTFs,
have been assessed and minimised.

Appendix A

Procedure to determine the directional vectors

The directional vectorsv = (v1,v2,v3) are defined as the in-
tersection between the bisectors B1, B2, B3 and the circle

with centrep0 =

(
100
3 ,

100
3 ,

100
3

)
and radiusd. This defini-

tion implies the following:

1. the coordinates ofv must respect the system of Carte-
sian equations that describe each of the bisectors. Since
on the bisectors, two components are always equal, the
problem boils down to finding two parts ofv instead of
three;

2. the norm ofv should equald, asv should be at a dis-
tanced from p0.

For the directional vectors on B1, the problem is mathemati-
cally defined as

‖v ‖A =

√√√√1

6

3∑
i=1

3∑
j=1

(
ln

(
vi

vj

))2

= d

v2 =
1− v1

2
v2 = v3

(A1)

Solving this system of equations results in two solutions for
v1 andv2:
v1a =

1

2e
√

3/2d + 1
,v1b =

1

2e−
√

3/2d + 1

v2a =
e
√

3/2d

2e
√

3/2d + 1
,v2b =

e−
√

3/2d

2e−
√

3/2d + 1

(A2)

To determine the directional vectors on B2 and B3, the same
procedure is followed. The table below summarises the coor-
dinates of the resulting vectors. The minus sign indicates the
point on the bisector that is the farthest away from its vertex,
whereas the plus sign refers to the point on the bisector that
is the closest to the vertex (see Fig.3).

Table A1. Coordinates of the directional vectors on bisector B1, B2
and B3.

v+ v−

B1 (v1a,v2a,v2a) (v1b,v2b,v2b)

B2 (v2a,v1a,vv2a) (v2b,v1b,v2b)

B3 (v2a,v2a,v1a) (v2b,v2b,v1b)
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