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Abstract. Compositional data, such as soil texture, are hardtypical example is the sedimentary particle size distribution
to deal with in the geosciences as standard statistical methsf which the closed character implies that the components
ods are often inappropriate to analyse this type of data. Espeare not free to vary independently such that if one of its com-
cially in sensitivity analysis, the closed character of the dataponents (e.g. clay) decreases (increases), at least one of the
is often ignored. To that end, we developed a method to asethers (e.g. silt or sand) must increase (decrease). Because
sess the local sensitivity of a model output with resect to aof this particular property, the application of standard statis-
compositional model input. We adapted the finite differencetical methods to compositional data is hampered and many
technique such that the different parts of the input are perof the results are invalid because the methods are inappro-
turbed simultaneously while the closed character of the datgriate to analyse this type of data. Problems in the analysis
is preserved. This method was applied to a hydrologic modebf compositional data have been discussed since the end of
and the sensitivity of the simulated soil moisture content tothe twentieth century by a number of authors (&igchison,

local changes in soil texture was assessed. Based on a hidgt986 Aitchison and Egozcye005.

number of model runs, in which the soil texture was varied A frequently performed statistical exercise involves the
across the entire texture triangle, we identified zones of higtevaluation of how changes in the model input or parameters
sensitivity in the texture triangle. In such zones, the modelaffect the model output. This is widely known as sensitivity
output uncertainty induced by the discrepancy between thanalysis (SA) and allows for (i) the allocation of the uncer-
scale of measurement and the scale of model applicatiortainty in the model output to different sources of uncertainty
is advised to be reduced through additional data collectionin the model input$altelli et al, 2000, (ii) the prioritisation
Furthermore, the sensitivity analysis provided more insightof additional data collection or research concerning the un-
into the hydrologic model behaviour as it revealed how thecertainties identified as most importakRtéy and Patjl2002
model sensitivity is related to the shape of the soil moistureand (iii) the verification or validation of a moddFi@@edrich
retention curve. and Goldberg2000.

According to the objective of the analysis, the techniques
for sensitivity analysis are usually classified into screen-
ing, global and local methods. Screening methods aim at
1 Introduction identifying the model inputs to which the model output is

most sensitive. Global methods calculate the total effect of
In environmental studies, modellers are sometimes cony model input on the model output across the entire input
fronted with multivariate data that carry only relative infor- space, whereas local methods investigate the sensitivity of
mation of which the components represent parts of a wholethe model output for a specific input scenario, i.e. at a fixed

Such type of data is called compositional or closed data aget of points from the model input domain. The local methods
the components always sum to a constant, e.g. 1 or 100 %. A
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462 L. Loosvelt et al.: Sensitivity analysis for compositional data

are especially important for complex, nonlinear models astified, but instead all components should be varied simulta-
the effect of a model input on the model output may be highlyneously in order to preserve the closed character of the data.
localised, which makes the assessment of a global effect inbBespite the need to deal with this type of data in environmen-
appropriate in this case. Screening methods are often relgal models, limited research on sensitivity analysis involving
tively simple and are a particular instance of sampling-basedompositional model inputs has been reported to date. Of-
methods. One of the most commonly used screening method®n, the methods applied do not or only partly respect the
is the elementary effect metho@4mpolongo et al.2007). characteristic properties of compositional data. For example,
Commonly used global methods are the Sobol method (e.gBormann(2007) defined a neighbourhood sensitivity for soll
Sobo| 1993 Saltelli et al, 20083, the Fourier amplitude texture by applying a fixed change of 1% in the portion of
sensitivity test (FAST) (e.dbaltelli et al, 1999 McRae et al. clay or silt while keeping the portion of silt, respectively sand
1982, the response surface method (RSM) (€gyer and  fixed, although a simultaneous change in all of its portions
Havens 1999 Kleijnen et al, 1992 and Monte Carlo based would have been expected.
methods Kofer, 1999 Gwo et al, 1996. Most of them are In this study, the main objective is to develop a sensitivity
variance based, which means that the resulting sensitivity reanalysis method that allows to quantify the sensitivity of a
flects the contribution of the model input to the total variance model output with resect to a specific input scenario in case
in the model output. In contrast, local methods are based othe model input consists of compositional data. To that end,
first-order second-moment approximations (FOSM) in whichthe finite difference technique has been adopted and mod-
itis assumed that the first two moments are sufficient to charified to deal with the closed character of the inputs. The
acterise a variableDettinger and Wilson1981). Examples  method comprises the calculation of an omnidirectional lo-
of local methods are the Morris method (eMprris, 1991 cal sensitivity index that indicates the average impact on the
Francos et a).2003 and the finite difference method (e.g. model output when perturbing the compositional model in-
Lenhart et al.2002 Foglia et al, 2009. Depending on the put in different directions around a given point. Since the
specific SA problem, a screening, global or local methodresults of the derivative-based method depend on the mag-
needs to be selected such that the method fits the objective(sjtude of perturbationBreshears et 311992, especially in
of the analysis. For a review on methods for sensitivity anal-case the model shows strong nonlinear relationships and cor-
ysis, the reader is referred &altelli et al.(2006, Frey and  relations Galtelli et al, 2000, the method also includes a
Patil (2002 andHelton and Davig2003. procedure to optimise the perturbation factor. Subsequently,
In case a SA on multiple model inputs is intended, the in-the SA method is applied to the hydrologic model TOPLATS
puts can be varied simultaneously based on their underlyingnd is used to evaluate changes in the simulated soil moisture
probability distribution (e.gGwo et al, 1996, or they can  content with respect to small local changes in soil texture, of
be varied individually around a base value while keeping thewhich the composition was varied across the entire input do-
value of the other model inputs constant (d&=grreira et al.  main, defined by the soil texture triangle. On the basis of this
1995. The latter strategy is known as one at a time sensi-generated local sensitivity index, we aim at locating regions
tivity analysis (OAT-SA) and has been the subject of discus-in the texture triangle to which the modelled soil moisture is
sion because it is built on assumptions of model linearity andmost sensitive.
cannot detect interactions between model inpatdtélli and In addition to constructing and applying the SA method,
Annoni, 2010. Furthermore, OAT-SA is by definition non- another objective of this study is to gain more insight into
explorative as only a fraction of the total hyperspace is ex-the behaviour of the hydrologic model, and more specifically
plored, and is therefore attributed “the curse of dimensional-with regard to the role of soil texture therein. Information
ity” ( Saltelliand Annoni2010. Despite the shortcomings of on soil texture is essential for the operation of a hydrologic
OAT-SA, a literature review bgaltelli et al.(2006 revealed  model since it is used to estimate the soil hydraulic parame-
that most published sensitivity analyses use OAT. In someers from the hydraulic model. Because soil texture is often
cases (strong) input correlations were obserBmh{eng and measured at a number of sparsely distributed locations within
Cawlfield 1999 Zhu et al, 2010 and the assumption of in- the study area, all locations falling into the same soil type
dependent inputs was therefore incorrectly adopted. Only iras the one of the sampled location (cf. information on the
a limited number of SA studies, correlation structures havesoil map) are attributed the same hydraulic properties within
been incorporatedP@n et al. 2011 Jacques et gl2006 the hydrologic model. This discrepancy between the scale of
Gevrey et al.2006. The reason why OAT is so popular is measurement (spacing, cfr. scale triplBtdschl and Siva-
that the observed effect on the model output is solely dugpalan 1995) and the scale of model application (grid res-
to the fact that one input has been changed, which is conelution) raises doubts about the suitability of the measured
sistent with the modeller’s way of thinking to systematically input value as the most probabRafth et al, 2001) since it
evaluate the effect of input variation. In case the model inputmay give rise to large uncertainties in the model output. In
consists of compositional data, the different components othis perspective, the presented sensitivity analysis offers the
the input are related through the closure balance, and consgossibility to reduce this type of model output uncertainty
quently an OAT-SA on its individual components is not jus-

Hydrol. Earth Syst. Sci., 17, 461478 2013 www.hydrol-earth-syst-sci.net/17/461/2013/



L. Loosvelt et al.: Sensitivity analysis for compositional data 463

by formulating guidelines for additional data collection as a depend on the similarity of the soil and climatic features be-

function of the measured soil texture. tween the region of PTF development and the region of PTF
application.
) In this study, the continuous PTFs Bawls and Braken-
2 Materials and methods siek (1985 1989 (Table 1) are applied to estimate the SHPs

for the Brooks and Corey1964 model based on the sand
contentZ [%], the clay contenC [%], and the soil poros-

The TOPMODEL-based Land-Atmosphere Transfer Schemd P_[:j’]' The latter is calculated from t_hge bulk densiby
(TOPLATS) is a spatially distributed water and energy bal-[9¢M ] and the particle densitys [gcm ] following the
ance model that is based on a lateral redistribution of wa

2.1 The hydrologic model

relationshipP = 1— pp/ps. The particle density is corrected

ter (Famiglietti and Wood1994 Peters-Lidard et 311997 for the presence of organic matter, for which a content of 3%
Pauwels and Woqd 999, i.e. groundwater gradients induce (Sleutel et al. 200§ and a density of 1.45 g_CTﬁ (Kaiser
spatial patterns of soil moisture and are estimated from théd Guggenberge2003 Mayer et al, 2004 is assumed.

local topography and the soil transmissivigigapalan et a). The bulk'densitypb, is calculated following the procedure
1987). The original modelamiglietti and Wood1994 was &S described bjaxton and Rawl¢2009. When applying

modified in 1997 to correct for deficiencies in the representa{ne PTFs oRawls and Brakensie 985 1989, one should

tion of the heat fluxes (e.g. ground heat fluRgfers-Lidard bare in mind that these PTFs were actually developed for tex-

et al, 1997, and in 1999 to expand the representation of thefUres With a clay content between 5% and 60 % and a sand

hydrological processes towards conditions in high latitudescOntent between 5% and 70 %. _

(e.g. frozen ground and snowg4uwels and Woqd 999. _ In addition to the _50|I parameters (e.g. SHPs, soil re-
A separate local water and energy balance equation iS$'Stance, heat capacity), TOPLATS has a large number of

solved for each pixel to generate for each time step a spatid?ther model parameters among which the vegetation param-
distribution of the water table depth, the soil moisture con-€t€rs (€.g. albedo, leaf area index, stomatal resistance) and

tent, the surface temperature and the amount of water storelf® TOPMODEL parameters (€.g. saturated subsurface flow,
in the canopy. At the pixel scale, the soil column is parti- initial water table depth) are the most important ones (see

tioned into an upper root zone and a lower transmission zone>ect2.1.2.
The soil moisture content in both layers (assumed uniformly
with depth) is initialised based on the local water table depth?-1-2 Data set

and the assumption of an equilibrium moisture profile after ) ) ) ) ) )
which the soil moisture content is updated using the local soill '€ hydrologic model is applied at a point location (with

water balance equations as describe@éters-Lidard et al. coordinates 50.8%N and 4.09E) in the catchment of the

(1997). Bellebeek (Belgium) in order to simulate the soil moisture
content of the upper soil layer (5 cm) during the period 1 Jan-
2.1.1 Model parametrization uary 2006 to 31 December 2006, using an hourly time step.

For the catchment, appropriate values for the parameters
In TOPLATS, the soil properties are modelled through to estimate baseflow are taken from the literatiBanfain
the closed-form analytical equations Bfooks and Corey et al, 2011): the subsurface flow at complete saturation is
(1964, which express the relationship between the soil mois-6.31 P s~1, the exponential baseflow coefficient is 2.51 [-],
ture conten® [m3m~3], the hydraulic heads [m] and the  and the initial average depth of the groundwater table is
hydraulic conductivityk [ms~1]. The soil moisture reten- 1.51 m. The soil and land cover type registered at the simula-
tion curve (SMRC) and the hydraulic conductivity curve de- tion point are loam and bare soil, respectively. The meteoro-
scribe howy is related to? and K, respectively. The shape logical variables wind speed, relative humidity, net radiation,
of both curves is determined by the soil hydraulic parame-atmospheric pressure and temperature (dry bulb, wet bulb,
ters (SHPs): the residual soil moisture cont@ntm®m=2], dew point) were registered with a temporal resolution of 10
the saturated soil moisture cont@g{m3m~3], the bubbling  to 60 min at the meteorological station of Liedekerke, which
pressuref¢ [m], the pore size distribution index[—] and is situated near the outlet of the catchment. Missing data were
the saturated hydraulic conductivifs [ms1]. When field ~ complemented by measurements from nearby meteorolog-
measurements of the SHPs are not available, they are estical stations (at Gooik and Denderbelle, respectively 3km
mated based on soil textural information (soil type or particle south and 10 km north of the catchment). Measurements of
size distribution) through application of either class or con-incoming shortwave radiation were not available at the sta-
tinuous pedotransfer functions (PTFs). Numerous PTFs havéon of Liedekerke, but were calculated from the net radia-
been proposed, reviewed and evaluated over the last decadien based on a regression (with a correlation coefficient of
(e.g.Tietje and Tapkenhinrichd993 Wagner et a].200%, 0.96) between the shortwave and net radiation measured at a
Nemes et a).2009, but the accuracy and reliability of the nearby meteorological station in Gooik. The meteorological
PTFs are highly variabld_posvelt et al. 2011 and mainly  records point out that the weather conditions in the catchment
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Table 1. Regression equations of tiawls and Brakensiekl 985 1989 pedotransfer functions to estimate the soil hydraulic parameters
from theBrooks and Corey1964 hydraulic model.

b = exp(4.34+ 0.18x C —2.48P —2.14x 107°3C2—436x 102Z x P —6.17x 10°1C x P
+1.44x 107372 x P2-855x1073C2x P2—-1.28x 107522 x C
18.95x10°3C2x P —7.25x 10422 x P +5.4x 10°8C2 x Z +0.50x P2 x c)

= exp(0.78+ 176x 10727 —1.06x P —53x 107572 — 2.73x 10-3¢2
+1.11x P2—3.09%x 1072Z x P +2.66x 107422 x P2—6.11x 1073C2 x P2
—235x106Zx C+7.99%103C2x P—6.74x10°3P2x C

fs= 116x1072-147x1073Z—224x 1073C x P +0.98P + 9.87x 107°C2+3.61x 10°3Z x P
—1.09%x 1072C x P —0.96x 10°4C2 x P —2.44x 10°3P2 x Z +1.15x 1072P x C

Or= —182x10724+873x1074Z+513x 1073C +2.94x 1072Pp — 1.54x 10~4C?
—1.08x103Zx P—1.82x 1074C2 x P24+3.07x107%C%x P —236x 10°3P2x C

Ks= 278x10°%x exp(19.52 x P—897—282x102C+1.81x 10422 -941x3Cc2-840x P2
+7.77x1072Z x P —2.98x 107322 x P2 -1.95x 1072C2 x P2+1.73x 10°°Z2x C
+273x1072C2x P+143x 107322 x P —35x 10°5C2 x z)

Notation:és is the saturated soil moisture contenl3[m*3], Oy the residual soil moisture content%rm*?’], Ks the saturated hydraulic
conductivity [cm s3], » the pore size distribution [-}ic the bubbling pressure [cm{; the clay content [%]Z the sand content [%] and the
porosity [-], calculated a%— pp/ ps following the procedure as describedSaxton and Rawlg2006.

of the Bellebeek apply to a temperate climate with an annuahs the soil texture encloses three different parts that sum up to
mean temperature of 11°8 and a total annual rainfall of 100 %. In the simplex, the compositigry with coordinates
750 mm. Furthermore, in situ soil moisture measurements (a( 100 100 190) js called the barycenter and can be conceived

2.5 cm depth) taken between 13 May and 30 May 2007 are, ¢ th’e zr’lg|3n of the sample space.
used to validate the model.

Specific operations and statistical properties (e.qg. distribu-
tions) for compositional data were introduced Aigchison
(1986 and further developed bi¥gozcue and Pawlowsky-
Glahn(2006. The basic operations on the simplex that are
relevant for the sensitivity analysis are summarised below.

Compositional or closed data are multivariate data, reprefor & comprehensive description of these and other proper-

sented by positive real vectors of which the components sunii€s, the reader is referred fatchison (1982).

up to a constant. The components of the vector show the

relative weight or importance of the parts in a total, which — Vector addition of composition € S” and composition

means that compositional data carry only relative informa- y € SP (also called perturbationpftchison, 1986

tion. A typical example of compositional data is soil texture,

which provides information on the relative portion of sand,

clay and silt in a given soil sample, and of which the closed xPy= ( 5 i s =

character implies that changing one portion causes the other DlicaXi Vi iZaXicVio o XizaXitVi

portions to change as well, such that the sum of the portions

remains equal to 100 %. The set of all possible compositions ~ For a detailed discussion on the visualization, the role

x with D components forms a simplex sample space, denoted  and the interpretation of addition in the simplex, we re-

asS?, and is defined as fer to Aitchison and Ng(2005 andvon Eynatten et al.
(2002.

2.2 Compositional data

2.2.1 Basic concept and operations

A1-)1 X2- Y2 XD YD ) (2)
Yi

sP {x = (r1, %2, xp) X =0, i=1,2,... D
— Scalar multiplication of a compositiom € S? by a
scalarn. € R (also called power transformatioritchi-

son 1986:

e

Il
N

xi=i<>0}, 1)

1

whereyx; is thei-th part of composition:, andk is the clo-
sure constant of which the value is generally 1 (proportions) A A )
AOXx = ( )
i=

3

X X X
or 100 (percentage). For the specific problem setting in this 1 2 | b
study, the sample space is a simplex witlk: 100 andD = 3,

=D
1x Z 1x Zi:lxiA
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— Aitchison distance between compositiane S” and h
compositiony € S? (Aitchison, 1983:

da(x,y) = %XD:XD: <In (;C—;) —In (ﬁ))z (4)

i=1j=1 Yj

The Aitchison distance is a measure for the difference
between two compositions and y (Aitchison, 1992).

If one of the compositions corresponds to the barycentel
(e.9.y=po=(5.%5..-. 5)). thenda(x, po) is equal

to the norm ofx, denoted ag x | a.

baricenter

40 sample x

Furthermore, it is worth mentioning that coordinatesinthe  ~ * A
vector space can be transformed into a Cartesian coordinal
system. A frequently used transformation is the isometric lo-
gratio (ILR) transformation, which preserves all metric prop-
erties Egozcue et al.2003. Although a coordinate trans- o -
formation is not required within the presented SA method, ™™ ® N ° ® 0
. . . . Sand [%)]
it will be used for a better understanding of the operations
in the simplex and as an alternative approach for sensitivityrig. 1. Representation of a sampte= (C, Z, L) in the texture tri-

jarea where Rawls and Brakensiek
[1985,1989] PTFs are valid

analysis in case of high-dimensional compositioBs 3). angle with indication of the bisectors;BB, and B, the vertices
P1, p2, p3 and the boundary conditions on the PTF<Rafwls and
2.2.2 Soil texture in the simplex Brakensiek1985 1989.

The texture of a soil sample = (C, Z, L) is defined by
the distribution of the soil particle sizeS (clay, diame-
ter< 2pum), Z (sand, diametes 2 mm) andL (silt, 2 um <

: ) output y is said to be sensitive to model inputif small
diameter< 2 mm). Because the parts cannot vary indepen- ; )
. changes inc produce large changes in On the contrary,

dently (there are only two degrees of freedom), it is possi-_ . ; o . :
ble to visualise the soil texture, a 3-D composition, in two v is called insensitive ta if small changes in- have almost
' ! go effect ony.

dimensions by means of an equivalent representation in th
texture triangle (Figl). This is an equilateral triangle with
vertices atpy=(100, O, 0),p2=(0, 100, 0) andp3=(0, 0,  2.3.1 Perturbing in the 2-D euclidean space
100). The three vertices are defined counter-clockwise and

are connected through the segmepips, psp2 and pop1, , , )
scaled from 0 to 100. The methodology presented in this paper for perturbing

In the texture triangle, three bisectors are defined as th&_omposmonal d_ata IS built by _analogy with a perturba-
tion in a two-dimensional Euclidean space. Suppose we

straight lines through one of the vertices and the barycen- ant to simultaneously perturb two inputg and 3 with
__ {100 100 100 . . Wi Imu usly u WO | Xg Wi

ter po= (77 T) (see Fig.1). The bisector through factor £, four possible outcomes are evident and are

vertexpi, p2 andpsis referred to as B Bz, and B, respec-  given by the Cartesian coordinates - (1+&), x5 - (1+&)),

tively, and has the property that the values of two parts ofthe(xik C 1= E)xh - L= &), (- A48, x5 (1-8)),

composition are always equal on this line. (xf-(1—§),x5 - (1+8)). These are the intersections of the

bisectors of the Cartesian coordinate system and the circle
with centrex = (x§,x3) and radiusd = ,/(§x})2 + (£x3)2.

The aim of a local sensitivity analysis is to measure theThe circle defines all possible perturbations and is therefore
effect of perturbing a specific compositian i.e. inducing  further referred to as the perturbation circle. Since it is im-
small relative changes to the composition, on the model outpossible to evaluate an infinite number of perturbations, only
put y. The sensitivity ofy with respect tox is expressed a limited set of perturbed points, e.g. the four points on the
as a sensitivity function that is defined as the derivative ofbisectors, can be considered.

y with respect tax and is evaluated at one particular value  This idea is adopted for the perturbation of a 3-D com-
of x by using the finite difference approximation. Therefore, positionx = (x1, x2, x3). Consider a random samptefrom
small changes i need to be imposed that, considering the S which is defined by its triangular coordinates in a ternary
closed character of, imply a change in each of its parts diagram (see Fidl). Through ILR transformation, the com-
(i=12,..., D) while maintainingzi’ilx,' =«. The model position can be represented in the 2-D Euclidean space by

2.3 Local sensitivity analysis on compositional data
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means of the Cartesian coordinates (). 4. Add the directional vectorsv;y and v, (i €
) {1,2,.., D}) to the compositiorx (Eq. 2). This results

(xk.x3) = (iln< X3 )il <2)) 5) in three pairs of new comp93|t|oq$i+,xi_} that lie
V6 \x2:-x3) /2 \x3 on the perturbation circle (Fi@). Since the performed

operation preserves the distance in the simplex, the per-
Likewise, any geometric shape on the ternary diagram can  turbation circle around has radiusgl. Although its cir-

be transformed. Figur2a shows that after ILR transforma- cular shape is distorted in the simplex (the further from
tion, the bisectors B B>, and B preserve their angles of the barycenter, the more distortion; examples of circles
60° (see Sect2.2.2 and the barycentepg forms the ori- are shown in Fig3), the definition of a circle remains
gin of the Cartesian system in which the bisectors inter- valid.

sect. The perturbation of samplewith factor & can now ) o )
be performed in the Euclidean space, following the method—'”Dsummary*_ when perturbing compositienin the simplex
ology described above. First of all, the perturbation circle S with a fixed factoré following the methodology de-

ith ok x d radius] — e 2 scribed above, we obtain three pairs of new compositions
with centrex = (x7,x3) and radiusd = /(§x7) + (§x3) {xi4+,x;_} with i € {1,2, .., D} that are a subset of all pos-

is constructed (Fig2b). As only a perturbation in the direc-  gjple perturbations, defined by the circle with centrand
tions given by the bisectors (further called perturbation axes)adiusqg — da(x,x;+). Note that althougt¥ €N other per-

is considered, the directions of the bisectors are transferreg|; pation axes could have been chosen by seledtimpints

to compositionx by means of a translation. The perturbed on 3 circle around the barycenter, either at random or such
points are then defined by the intersectians andx;_ be-  that they form angles cg%) degrees, and by connecting each
tween the translated bisectors; B € {1,2,.., D}) and the 4 the selected points with the barycenter. In casafaper-
perturbation circle (Fig2b). Finally, the Cartesian coordi- tyrpation axes, steps 4 and 5 from the methodology would re-
nates of the perturbed compositions, andx; are back  gpectively result i pairs of directional vectorg; ., v;_}
transformed to the simplex through an inverse ILR transfor-gng as pairs of perturbed compositions; ., x;_}. In this
mation Egozcue et al2003 (Fig. 3, see further). study, we selected the bisectors as perturbation axes (hence,
M = 3) such that the perturbed compositions (i) define an-
gles of 60 degrees on the perturbation circle, and (ii) lie on
the translated bisectors Bconnectinge with vertex p; (see

Yet, in order to avoid the roundabout method of coordinate . ) :
glg. 3). The compositional lines Balso illustrate the effect

transformations, the operations in the Euclidean space are _* ) ) . .
mimicked by operations in the simplex. This results in the 9f increasing (or decreasing) the magnitude of perturhation

following procedure to perturb a compositisnwith a con- in directioni, as the perturbed compositions always lie on
stant factok: this line but shift towards (or away from) vertgx.

Note that generalizing the methodology might raise some
1. Perform one of the scalar multiplicationg = (1+£)© difficulties (Egozcue 2012. For M > 3, calculating the di-
x (Eqg. 3) in order to rescale the compositianwith a rectional vectors in the ternary diagram becomes compli-
factoré. The scaling factof determines the magnitude cated. In this case, it is advised to rely on a simplicial ex-
of the perturbation, i.e. the higher the value&fthe pression that computes the ILR coordinates of the directional
more the perturbed composition will deviate from the vectors as the intersection points of the circle with radius
sampled composition. and centepg andM perturbation axes, regularly distributed

o ) on the circle. Through inverse ILR transformation, the direc-
2. Calculate the Aitchison distand® (v, x+) = d (EQ.4)  {ignal vectors are expressed in the simplex. Pos 3, e.g.

in order to quantify the difference between the sampledyyhen soil texture is described with more than three parts,
compositionx and the rescaled compositions. and  the perturbation circle is not easily generalised to a sphere
x_. Note that for the same value 6f the value ofd o hyper-sphere and the distribution of the perturbation axes
increases with increasing values|of ||a. might raise difficulties Egozcue2012).

2.3.2 Perturbing in the simplex

3. Dgfme a.C|rcIe WIFh centrgpp and rad.lusd and deter- 2.3.3 Calculating the sensitivity index
mine the intersections between the circle and the pertur-
bation axes, here the bisectors, By, and B (Fig. 3).
For each axis in directiohe {1, 2, .., D}, this problem
is solved by searching for the compositians andv; —

The methodology for perturbing a composition in the sim-
plex allows to approximate the sensitivity function by means
A k - of the finite difference technique. The sensitivity function can
on the axis that satisfy the conditigm; [la= d (Se€ Ap-  pe frther summarised into a sensitivity index in order to ex-
pendix). The resulting compositions are further called press the sensitivity of to small changes im by means of a

directional vectors because they are necessary 10 trangjngle value. In this section, it is described how the sensitivity
fer the direction of the perturbation axes to the sampled,qey is evaluated at one particular valuexof

compositionx.
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Fig. 2. (a) Representation of the barycentey, phe sampled composition and the bisectors B8 B, and Bs after ILR transformation

and(b) illustration of perturbation in the 2-D Euclidean space with
bisectors I§ B’2 and %
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Sand [%]

Fig. 3. Perturbation in the simplex of a compositiansampled
from the texture triangle with indication of the directional vectors
{vi+,v;_}, the perturbed compositions;,x;_}, the bisectors
B1, B2 and B3 and the translated bisectorg BB/, and B;; illus-
tration of compositional circles at different locations in the texture
triangle.
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indication of the perturbed compositjgns;_} and the translated

In the simplex, a compositiom is sampled uniformly at
random from the sample space. Therefore, a Dirichlet distri-
bution is defined, which is the multivariate generalisation of
the beta distribution and is parametrized by a veetofhe
density function of the Dirichlet distribution is given by

r (Zi’;lai )

l—[D a;i—1
02, T ()

Ip(xia) = i=1%; (6)

with x = (x1, ..., xp) a sample frons”, & = (@1, ..., ap) the
parameter vector anB the dimension of the sample space.
In order to guarantee that the composition is sampled uni-
formly at random, the conditiom = 1 should be fulfilled.
The sampled composition is thereupon perturbed i
different directions following the methodology described in
Sect.2.3.2

After sampling and perturbing, the model outputy is
determined at time stepfor both the sampled composition
x and the perturbed compositions, andx;_. For each di-
rectioni given by the perturbation axes, a forward and back-
ward directional sensitivity function, respectively denoted
as 'V, yi(x) and V,,_yi(x), are calculated using the finite
difference technique:

NnEDvip) —y(x)  yixie) — yi(x)

va+yt(x) R

dp(x ®vit,x) d )
Vo yi(x) & @) —yx dvi-)  y(x) — yr(xi-)
vi- Nt da(x®vi_,x) d
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with ¢ the time step of model output, v;+ the directional
vectors for perturbation in directiohandd the Aitchison
distance (see Ed). Averaging both functions leads to a cen-
tral, directional sensitivity functio®; y;(x), which indicates Data: - a composition: from the sample space”
the average change incaused by opposite changesxirin (Sect.2.3.2;

the direction of perturbation axis — a perturbation factay (Sect.2.3.4;
—a set ofM perturbation directions;

Algorithm 1: Calculate the local sensitivity indek for
a sampled composition

Vin(x) ~ nxdviy) — n(x Svi-) Result sensitivity indexs for y atx
Adn(x Vi1, xDv;-) begin
(xiy) — ylxio) perform the scalar multiplicatiofl+ &) ©x = x4+
=——>5p - (8) (Sect.2.3.2 step 1);
calculate the Aitchison distanef (x, x+) (Sect.2.3.2

As the sensitivity function itself is not useful for sensitivity

. . o . . step 2);
analysis Galtelli et al, 2008h), it is summarised into an om- for Za():h perturbation direction € {1, 2, .., M} do
nidirectional local sensitivity inde$ (by analogy with the determine the directional vectofs; , v; _}
sensitivity index proposed bylill and Tiedemar(2007)): (Sect.2.3.2 step 3);

add the directional vectors foto obtain{x;,x;_}
1M 1 X (Sect.2.3.2 step 4);
Sx) = i Z v Z (Viy(x))? 9) apply the model to determing(x; ) andyt(x;_);
i=1 t=1 approximate the central, directional sensitivity
| functionV; yt(x) (EQ.8)
calculate the omnidirectional local sensitivity indgég)
(Eq.9)

with N the number of time steps in the model output and
M the number of perturbation axes (héve= 3). The sen-
sitivity index is hence a single value that reflects the average onq
response of whenx is perturbed with a fixed factdrin M
different directions, each covering two opposite changes in

x. Itis calculated as the root mean squared difference in the ) o

model output resulting from two oppositely perturbed com- finite Q|ﬁ§rence scheme approx_lmate_s the_ derivative. How-
positions, averaged over the different perturbation directions€Ver if § is taken too small it might give rise to numerical
As such, the sensitivity index can be easily updated wherf!rors. Ifé is taken too large, errors due to model nonlin-
V;yi(x) is calculated for additional perturbation directions, €arities might be introduced in the analysize(Pauw and
i.e. M > 3. In case the model outputis time-independent, Vanrolleghem2006. Therefore, an optimization procedure
i.e. N =1, thensS reduces to the mean absolute difference IS included in the presented SA framework. The basic idea is
in the model output resulting from two oppositely perturbed {0 make both types of error as small as possible by minimiz-

compositions. An overview of the methodology to calculate INg the difference in model sensitivity when inducing oppo-
the sensitivity index is given in Algorithri. site changes in the model input, i.e. the difference between

Note that for D > 3, a large number of points on the the sensitivity functions/,, yi(x) andVy,_yt(x) should be

perturbation (hyper-)sphere will be required to compute the2S Small as possible when perturbing in directioAlthough
sensitivity index. In this case, computation of the sensitiv- S€veral measures can be used to quantify this difference, the

ity function can be simplified by estimating the directional SUm of squared difference between their absolute values is
derivatives based on the ILR coordinates of the sampledselected in this study and is denotedaex):
composition:

=

1 2
v I ACATEAL At Ci(x) = _Z(|Vv,-+yt(x)| — Vo, 3(x)])”. (11)
) =\ o5 g 55 Ni=
1 9% D-1
'(Uii’vzi"“’v*D-l,i)T (10) By taking the absolute value of the sensitivity functions,

we allow that opposite changesanresult in non-opposite,
but similar model responses. Since the sensitivity analysis
exploresM directions on the perturbation circl@/ val-
ues of C;(x) are obtained on which the minimization pro-
cedure needs to be carried out. In order to solve this opti-
mization problem, the maximum value over @ll(x) (with
i€{l,2,.,M}), further calledCmax(x), is used as an ob-
2.3.4 Optimizing the perturbation factor jective function. For the SA problem in this study, it is
chosen to limité to a set of fixed values, such thate
The choice of the perturbation factodetermines the quality {1072,10~4,10~3,1072, 10~} although other intermediate
of the sensitivity function: the smaller its value, the better thevalues could have been chosen as well. An overview of

As such, any directional derivative can be computed if for
each of theD-1 orthogonal axis on the ILR coordinate space,
the gradiendy;/dx* has been determine&gozcue2012.
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for € = 104, this perturbation factor can be discarded as be-

ing optimal since the spread over the different valuesgfx

is very large for this value of. Or stated differently: when

Data: — a composition: from the sample space” & =10~ would be selected as optimal, it would result in a
(Sect.2.3.9; ] very low value ofCmax for only a limited number of textures,
—asetofL perturbation factors (Sect.2.3.4; whereas the majority of the samples would be characterised

Result_ oi)?rer:;fg[e 23:%’;232?20?5;;??3' by a Iarger value o max. These findings are iq correspon-

dence with the frequency distribution of the optirgalalues

Algorithm 2: Optimise the perturbation facta@r for a
sampled compositiosn

begin _ (Fig. 4b), which shows that for the major part (about 65 %) of
apply the model to determing(x); . L ;
the samplesCmayx is minimal when they are perturbed with
for eaché € {&1,&p,..,&1} do 5 .
perform the scalar multiplicatiofl + &) © x = x+ 10~<. For 25 % and 10 % of the samples, the optimal value of
(Sect.2.3.2 step 1); £ is respectively smaller and larger than?0The samples
calculate the Aitchison distanef (x, x+) from the group with an optimaj smaller than 102 show
(Sect.2.3.2 step 2); a relatively heterogeneous distribution in the texture triangle
for each perturbation direction € {1, 2, .., M} do (see Fig.5) with the highest concentration around textures

determine the directional vectofs; ., v; _}
(Sect.2.3.2 step 3);

add the directional vectors toto obtain
{x;y.x;_} (Sect.2.3.2 step 4);

apply the model to determing(x; ;) and

with a clay content above 40% or a sand content between
20 % and 50 %. The samples from the group with an optimal
£ larger than 102 are mainly located around textures with a
sand and clay content of 30 %.

For practical purposes, it is chosen to use a fixed value

yixi-); ; .

app;oximate the sensitivity functiong,, yt(x) of 102 for the perturbation factor, as it would unnecessar-

andVy,_yt(x) (Eq.7); ily increase the complexity of the sensitivity analysis when
| calculateC; (x) (Eqg.11); making & dependent of the sampled texture. Consequently,

deviations from the optimal value are mainly located within
the texture classeday loamandloam(Fig. 5).

. M
determineCmax(x) asr_naGC,' (x);
1=

select the value af for which Cmax(x) is minimal;
end 3.2 ldentification of sensitive regions in the texture
triangle

Identifying sensitive regions in the texture triangle with re-
spect to the estimation of soil parameters or with respect to
the prediction of soil moisture is useful for the model user as
it allows to reduce the uncertainty in the predicted variable.
3 Results and discussion Since standardly available soil information is often limited
to a soil map of the study area and a number of sparsely dis-

The experimental set-up consists of two main steps: in thdfibuted soil texture measurements, the measurement is as-
first step, 100 textures are sampled from the texture triangléumed to be representative for the corresponding soil map
to determine the optimal factgrfor perturbing soil texture. ~ unit. Consequently, the model user attributes the same parti-
In the Second step, 5000 textures are Samp'ed from the te)@le size distribution to all locations fal“ng into that soil map
ture triang'e and are used as input to the hydr0|ogic modelJnit, whereas the soil texture at a location different from the
to evaluate the response of the simulated soil moisture whef€asurement point, but within the same soil map unit, may
texture is perturbed with the optimal perturbation factor.  (largely) deviate from the sampled texture. Although it is as-
sumed that the spatial variability within a homogeneous soll
3.1 Identification of the optimal perturbation factor map unit covers only a minor part of the total variability
in texture that is enclosed within the definition of the cor-
Hundred compositions are sampled from the texture trian+esponding soil type, the discrepancy between the scale of
gle according to a Dirichlet distribution (with =1). For  measurement and the scale of model application might in-
each sampled texture, the perturbation faétas evaluated troduce large uncertainties in the model output. If large un-
for the values if10~°,10~4,10°3,10°2,10 1} by applying  certainties in either the estimated SHPs or the simulated soil
the methodology as described in Algorith2n For eachs, moisture are not acceptable (depending on the objective of
we obtain 100 values af 5% of which the mean, the mini-  the study), the uncertainty about the potential bias in the mea-
mum and the maximum are shown in FHfp. The mean value sured soil texture due to spatial variability should be further
of Cmax clearly shows a minimum faf = 102, which sug-  reduced through additional data collection. If the pattern in
gests that this value is optimal for perturbing a broad rangesensitivity is identified, the following rule of thumb to priori-
of textures. Although the minimum value 6%, is lowest  tize additional data collection can be applied: “If the sampled

the methodology to optimise the perturbation factor for a
sampled composition is given in Algorithh
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Fig. 5. Distribution of the optimal perturbation factgr (100 samples) in the texture triangla) with identification of the USDA soil
classegb).

texture, which is assumed to be representative for a certaibe discarded, unless a high spatial variability in soil texture
soil map unit, is located within a region of high sensitivity exists.

in the texture triangle, then additional texture samples within

the area corresponding to this soil map unit, as delineated 0B 2 1 Sensitivity of soil hydraulic parameters

the soil map, should be taken”. By accounting for the spa-

tial variability, a more accurate estimate of the representativq:ive thousand compositios= (C, Z, L) are sampled from

(most probable) texture for the given soil map um_t can bethe texture triangle according to a Dirichlet distribution (with
formulated and can be used to reduce the uncertainty in the

. . a = 1) and are perturbed with = 10~2. For both the sam-
model qutput. On. the contrary, !f'the §ampled tex‘“Te IS IO'pled and perturbed compositions, the corresponding SHPs
cated within a region of low sensitivity in the texture triangle,

. i ith the PTFsiRawl Brakensi
the discrepancy between the scale of measurement and tﬁaere estimated with the sRawls and Brakensield 989,

scale of model application will have a low impact on the pre- On which the sensitivity functioR; SHRT) with i € {1, 2, 3}

dicted variable, and taking additional samples may thereforc%ahned ngg?hzzgfgg)g S'g‘l'gg:g:g iil%?)l;?l’li?rt}ii (?r)(t :Srpggt]g
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of Ssyp (Fig. 6a—e) reveals that the sensitivity pattern highly 3.2.3 Evaluation of the USDA class as sensitivity region
depends on the parameter under consideration, although the

patterns inSp, and Sy, show a remarkable resemblance. For The objective of this section is to investigate whether a soil
these parameters, the hot spot of high sensitivity is locatednap of a region with indication of the USDA soil classes can
around textures with a clay content of 60-80% and a sande used as a rudimentary tool to set up the texture sampling
content of 20—-40 %. The sensitiviti€g, and S, show a pat-  strategy prior to data collection. As such, the discrepancy be-
tern that is highly dominated by the clay content: an increaseaween the scale of measurement and the scale of model appli-
in the clay content causes an increase (decrease) in the segation within that region is optimally managed with respect
sitivity if the clay content is lower (higher) than 30%. Al- to the uncertainty in the model prediction. For the predic-
though the clay content of the hot spot matchesSiprand  tion in a region that goes together with an USDA soil class
S, the corresponding sand content is different: around 0 %that is attributed a high sensitivity towards soil texture, it is
for the former and around 70 % for the latter. On the con-important to reduce the uncertainty on the textural variabil-
trary, the pattern irf g, is dominated by the sand content: the ity within that region. Obviously, sufficient samples should
higher the sand content, the higher the sensitivity. The ordebe taken to accurately estimate the representative texture. By
of magnitude of the sensitivity index should be interpretedusing the representative texture, a lower model prediction un-
with respect to the corresponding SHP. Therefore, the meauertainty is achieved. Otherwise, if the soil map indicates that
predicted SHP over the entire texture triangle is given as ahe prediction will take place in a region where the soil class
reference in Fig6. Also note that results outside the valid- shows a low sensitivity towards texture, then resources can be
ity zone of the PTFs should be interpreted with care (seesaved and data collection can be limited to a single soil sam-
Sect.2.1.1and Fig.1). This zone is indicated on the con- ple. However, this strategy is only valid under the assumption
tour plots in Fig.6. In summary, the potential uncertainty in that the textural variability within that region is low.

the predicted SHPs due to the discrepancy in scale between In order to associate regions of high and low sensitivity of
measurement and model application highly varies across théhe SHP estimation with the commonly used USDA soil clas-
texture triangle and among the different SHPs, making it verysification, Ssyp is averaged over the samples falling into the
difficult to formulate general guidelines to reduce the uncer-same USDA soil class, further denotedsasp (Table2). For

tainty in the predicted SHPs. s andyr, the soil class corresponding to the highstp is
o _ . clay, whereas foB;, A and K this is respectivelgilt loam,
3.2.2  Sensitivity of soil moisture sandy clay loanandsandy loamwhich are also the classes

. o ) that contain the hot spot of high sensitivity for their respec-
After determining the sensitivity of the estimated SHPs t0 e sHp (Fig.6). However, the hot spot only covers a part

soil texture, the SHPs are used as input to the hydrologiGy ihe entire soil class, such that advising a higher sampling
model TOPLATS (run in spatially distributed mode) in or- density to formulate a representative texture for the corre-
der to simulate the daily soil moisture conteqturing the  ¢ronding soil map units will not always be relevant. Based

year 2006 at the simulation location (see S@ct.9 under 4, these results, we may argue that the USDA classification
Belgian weather conditions (see Sextl.9. The 5000 sam- 5 ony useful as a preliminary indication for the sensitivity

pled textures and their perturbed textures are successively af; sHp prediction because the variation in sensitivity within

tributed to the simulation location on which the correspond-an USDA class is often high. As a consequence, the USDA
ing sensitivity functionsv;6(T) with i € {1,2,3} and sen- g4 map is suboptimal when used as a tool to optimise the
sitivity index Sy are calculated as described in Algorithm 5 hjing strategy with respect to the potential uncertainty
Figure6f shows a contour plot ofy as a function of” and i, the estimated SHPs that is associated with the scaling is-

reveals a rather simple sensitivity pattern. For textures withg ;o These findings call for a refinement of the USDA soil

a clay content lower than 35 9% or higher than 70 %, the sen|asses as they seem to be too rough to accurately describe

sitivity is strongly determined by the clay content. In case yhe 5ol texture. In addition, the definition of soil texture

C < 35%, the textural sensitivity increases with increasing ghqid evolve towards a representation with more than three
values of the clay content, whereas in case 70 % the tex- grain classes.

tural sensitivity decreases with increasing values of the clay By analogy,s, is averaged over each USDA soil class and

content. For soils with a clay content between 35 % and 70 %y, resultingﬁa is shown together with its standard devia-
Se is also highly influenced by the percentage of sand in thejon i Fig. 7. Based on the total range , four sensitivity

soil. Th_e hot spot of high sensitivity is located around tex- c|5sses are defined: low sensitivity<0S, < 0.04), medium
tures with a clay and sand content of 55 % and 45 %, reéspeCsensitivity (004 < Sy < 0.08), high sensitivity (M8 < Sy <

tively. This means that for these measured textures, the p°0.12) and very high sensitivity (02 < S,). The soil class

tential uncertainty ir# that is associated with the scaling is- sandy clayis attributed the highess, and falls into the high
sue will be the highest, but can, however, be reduced througlensitivity class, which is obvious as this class contains the

additional data collection. hot spot of high sensitivity (see Fi§). However, the vari-
ation in sensitivity within that soil class is very large and
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Fig. 6. Contour plot of the sensitivity index across the texture triangle for the estimated soil hydraulic paraf@etg@ds (mean is
0.18m*m~3), 6; (mean is 0.03 MM~3), ¥, (0.16 m),A (mean is 0.49), and lagKs (mean is—6.11ms 1) and for the simulated soil
moisture contert (f). Results outside the validity zone of the PTFs (indicated by a white line) and near the borders of the triangle should be
interpreted with care.
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Table 2. Average sensitivity index within the USDA soil classes, for the different soil hydraulic parameters; the class with the highest average
sensitivity is indicated in boldface, whereas the class with the lowest average sensitivity is in italics.

Soil Class SQS Egr S‘/fb S EKS

Sand 5.84x 104 502x10% 5.02x10%4 7.21x103 1.77x10°6
Loamy Sand 1.3%103 1.44x103 224x1073 2.04x10°2 4.84x10°6
Sandy Loam 4721073 812x10°3 255x102 1.09x 1071 1.07x107°
Sandy Clay Loam 4.18103 5.33x103 2.85x1072 1.47x10°1 5.02x10°6
Sandy Clay 434103 8.02x104 335x102 572x10°2 3.77x10°7
Loam 441x 103 6.41x1073 3.37x102 7.31x102 7.89x10°7
Clay Loam 6.25¢ 1073 4.35x 1073 5.07x 1072 1.00x10"1 2.38x 1077
Silt Loam 6.90x 1073 1.52x102 5.95x1072 1.02x10°1 597x10°7
Silt 6.48x 104 211x103 6.91x103 6.26x103 252x 108
Silty Clay Loam  3.25¢1073 4.79x 1073 2.18x102 6.40x 102 4.46x 1078
Silty Clay 3.22x 1073 1.83x 1073 262x10°2 5.39x102 1.91x10°8
Clay 2.39x 102 580x103 261x101 1.49x101 945x10°8

Sandy Clay] 3.3 Identification of the hydrologic model behaviour
Clay Loam —_—
Clayr
Sandy Clay Loam - 1 The scatterplot in Fig8a shows how the model response
Loam —_—— . . .
Silty Clay Loamt — Sy is related to the average annual soil moisture content
Silty Clay| ——

favg= = >, 6 simulated with TOPLATS, from which it
is clear that very high model sensitivities are only expected
if the simulated soil moisture has a value between 0.2 and
0.4, with a maximum around 0.3. On the contrary, low sen-
‘ ‘ sitivities occur for both very lowé,yg < 0.2) and very high
0 00z oo 00 "5'28 10 oz s 08 ol moisture contentsyg > 0.45). This suggests that the
more extreme (dry or wet) the soil moisture content becomes,
Fig. 7. Average sensitivity indexX, for the 12 USDA soil classes  the less uncertainty in the simulation result is involved when
with indication of the standard deviation and the sensitivity classesthere is a discrepancy between the scale of texture measure-
low (0< S <0.04), medium (04 < Sy < 0.08), high (008 < ment and the scale of model application. Similarly, scatter-
Sp < 0.12) and very high (2 < Sp). plots betweers, and the SHPs (Figb—f) reveal that the sen-
sitivity can only be very high if the SHPs take specific values:
s, Or, Yp, 2 and K should be within the rangi.42, 0.49],
[0.1,0.12], [0.05,0.6], [0.4, 1] and[5 x 10~8,5 x 1079], re-

Silt Loam
Sandy Loamf
Siltr

Loamy Sandf
Sandf +—+—

Low Medium High Very High

{Ill
I

ranges from medium to very high. Also other soil classes

enclose more than one sensitivity class, €lgy and silt, . ; . .
which would require to re(de)fine those soil classes with re_spe_ctlvely. The parameter values for which a maximum n
Sp is recorded, are combined to construct the SMRC that in-

spectto their sen_5|t|_V|ty. Qn the CO”tT‘?“.y' some USDA CI"jlsse‘c\’/olves the highest uncertainty éh The so-called “high sen-
completely fall within a single sensitivity class. The classes

loamy sandandsandtherefore correctly represent a low sen- sitivity” SMRC shows a rather linear behaviour (Ff).that

L ; . is characteristic for fine-textured soils with a low effective
sitivity, whereas the classdsam, silty clay loamand silty o L :

. L ; porosity, i.e 6s — 6;. For the sake of simplicity, it can be said

clay represent a medium sensitivity. This supports the ear-

lier findings to use the USDA soil classification (and hencethat this SMRC corresponds to low valuesgfyr, and,

the USDA soil map) only as a preliminary indication of the and a high value. of. _On th(_a contrary, a_Iow sensitivity of
L the simulated soil moisture is not exclusively related to spe-
model output sensitivity towards textural changes. The dom-_... ;
. o ) ; : cific values of the SHPs, since for a broad range of SHP val-
inant sensitivity class that is associated with the USDA class

. Co : . ues the correspondingy falls into the low sensitivity class.
is then an indication of the sampling density needed to for- o
. . Nevertheless, it is observed that the more the SHP values de-
mulate a representative texture for the given USDA class. For . o : . :
: viate from the specified range that gives rise to a very high
example the clayey soil classes (esgndy clay clay loam

andclay) will require a higher sampling density sensitivity, Sy shifts tqv_va_lrds the Iovy sensitivity.clasg This.

’ means that the sensitivity of the simulated soil moisture is
certainly low in casés, ¥, andA have a high value ané
has a low value. The so-called “low sensitivity” SMRC that
results from this soil parameter combination is characteristic
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chosen to use a fixed value ®fin order not to unnecessar-
ily complicate the sensitivity analysis. However, one should
High sensitivity SMRC be aware that in 10 % of the cases this value is too low and
/ might introduce numerical errors in the sensitivity analysis,

10° ¢

and that in 25% of the cases this value is too high, which
might result in errors due to the nonlinear behaviour of the
hydrologic model. Especially near the borders of the ternary
diagram, deviation of the perturbation factor from its opti-
\ mal value might affect the sensitivity analysis. A perturbation
Low sensitivity SMRC factor of 102 was used to perform a local SA on 5000 dif-
ferent textures, sampled according to a Dirichlet distribution
from the texture triangle. The analysed models are the PTFs
10° | N of Rawls and Brakensiekl985 and the hydrologic model
\ TOPLATS of which the generated outputs are respectively
N the soil hydraulic parameters and the soil moisture content.
N Based on these model applications, the sensitivity index was
S calculated for both model outputs and was evaluated with
respect to the position of the sampled texture in the texture
; triangle.
10, 01 02 03 o024 05 06 o7 The results of the sensitivity analysis were found to be use-
Soil moisture, 6 [m>.m ] ful (i) to reduce the uncertainty on the modelled output when
there is a discrepancy between the scale of measurement and
_Fig. 9.Soi|moisture ret_entio_n curve (SMRC) for which j[he sen_sitiv- the scale of model application and (i) to gain more insight
ity of the simulated 50|I.m0|sture to textural changes is the hlghestimo the behaviour of the applied model, and more specifi-
and the lowest, respectively. cally on how it reacts on changes in the soil texture with re-
spect to its position in the texture triangle. As such, we found
that the simulated soil moisture is most sensitive to soil tex-
ture when the measured clay content is around 55% and the
sand content around 45 %. This means that the potential un-
certainty that is involved with the scaling issue will be the
4 Conclusions highest under these textural conditions. Therefore, when high
uncertainties in the modelled output are not acceptable, it is
Considering the omnipresence of compositional data in theadvised to take one or more additional texture samples within
geosciences, we developed a method to perform a local serthe soil map unit that encloses the original sample such that
sitivity analysis on compositional model inputs. As the dif- a better estimate of the most probable texture can be formu-
ferent parts of the input vary simultaneously, while preserv-lated. Similarly, we identified zones of high sensitivity for the
ing the closed character of the input, this method allows tosoil parameters, showing a high variability in their sensitivity
abandon incorrect practice of OAT-SA. In the presented SApattern. We also investigated whether a soil map with indica-
method, a sensitivity index is calculated based on the finitetion of the USDA soil classes can be used as a tool to opti-
difference technique to approximate the directional deriva-mise the texture sampling strategy by reviewing the USDA
tives of the model output with respect to the compositionalsoil classification with respect to the pattern in model output
model input. Local perturbations of the compositions weresensitivity. The results point out that USDA classes are only
realised by operations in the simplex (for complex SA prob-useful as a rudimentary indication for the sensitivity as they
lems we suggest to implement the alternative approach usindistinguish between high and low sensitivity, but comprise
ILR coordinates) and we relied on the assumption that alla large within-class-variability of the sensitivity. Especially
possible perturbations are defined by a perturbation circlethe clayey soil classesmndy clayclay loamandclayinvolve
Additionally, we supplemented the SA method with a proce- high to very high sensitivities, such that it is advised to ap-
dure to optimise the perturbation factor in order to minimise ply a high(er) sampling density within these soil map units
numerical errors and errors due to model nonlinearities. to calculate the representative texture. Furthermore, we were
The SA method was subsequently applied to a hydrologicable to relateSy to the shape of the soil moisture retention
model to assess the sensitivity of the simulated soil moistureurve and recorded the highest sensitivity when the values of
content to changes in soil texture, for a high number of com-6s, ¥, andA are low and the value df is high. The result-
positions in the texture triangle. In a first step, we found thating curve is characteristic for fine-textured soils with a low
the optimal factor to perturb soil texture is 19 Although effective porosity and shows a rather linear behaviour.
this value was found to be optimal in 65 % of the cases, it was

1
1
1
1
1
1
1
1
1
1

10" |

Matric head, y [m]

A}
1
1
1

for coarse-textured soils with a high effective porosity and
shows a highly nonlinear behaviour.
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Note that all results are specific for the given experimentalTable Al. Coordinates of the directional vectors on bisecter B,
set-up and that extrapolation of the results towards other flonand Bs.
models and soil parameter estimation methods is not justi-

fied as long as the generality of the results is not pointed out. v v_

Moreover, the results should be interpreted in a broader per- By (b1, V24, v20) (V1 V2p, Up)
spective of model uncertainties because optimizing the sam- By  (ogs 010, 0020) (U2 U1ps U2)
pling strategy based on the textural sensitivity is only relevant By (Vo V20 V1a)  (V2hs V2ps V1p)

if model uncertainties related to the soil hydraulic parameter
estimation, e.g. accuracy and reliability of the selected PTFs,
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