Articles | Volume 17, issue 10
https://doi.org/10.5194/hess-17-4079-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-17-4079-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
M. Attwa
Geology Department, Faculty of Science, Zagazig University, 44519 Zagazig, Egypt
Geophysical Engineering Department, Faculty of Engineering, Ankara University, 6200 Ankara, Turkey
T. Günther
Leibniz Institute for Applied Geophysics (LIAG), 30655 Hannover, Germany
Related authors
No articles found.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Tobias Nickschick, Christina Flechsig, Jan Mrlina, Frank Oppermann, Felix Löbig, and Thomas Günther
Solid Earth, 10, 1951–1969, https://doi.org/10.5194/se-10-1951-2019, https://doi.org/10.5194/se-10-1951-2019, 2019
Short summary
Short summary
An active CO2 degassing site in the western Eger Rift, Czech Republic, was investigated with a 6.5 km long geophysical survey using a specific large-scale geoelectrical setup, supported by shallow geoelectrical surveys and gravity measurements. The experiment reveals unusually low resistivities in the sediments and basement below the degassing area of less than 10 Ω and provides a base for a custom geological model of the area for a future 400 m deep research drilling in this area.
Frank Oppermann and Thomas Günther
Geosci. Instrum. Method. Data Syst., 7, 55–66, https://doi.org/10.5194/gi-7-55-2018, https://doi.org/10.5194/gi-7-55-2018, 2018
Short summary
Short summary
We present a new versatile datalogger that can be used remotely for a wide range of applications in geosciences such as environmental and groundwater monitoring or in applied geophysics. The recorded signals will be processed using a new software approach, which will improve the data quality for very poor signal-to-noise ratios. We show this improvement by comparing it with traditional software-algorithm-processing synthetic data sets and real data collected in the field.
Rico Hübner, Thomas Günther, Katja Heller, Ursula Noell, and Arno Kleber
Hydrol. Earth Syst. Sci., 21, 5181–5199, https://doi.org/10.5194/hess-21-5181-2017, https://doi.org/10.5194/hess-21-5181-2017, 2017
Short summary
Short summary
In our study, we used a spatially and temporally high resolved 3-D ERT in addition to matric potential measurements to monitor the infiltration and subsurface water flow on a hillslope with layered slope deposits. We derived some interesting findings about the capillary barrier effect as a main driving factor for the activation of different flow pathways. Thus, the maintenance or breakdown of a capillary barrier has a decisive influence on the precipitation runoff response of of the catchment.
Mathias Ronczka, Kristofer Hellman, Thomas Günther, Roger Wisén, and Torleif Dahlin
Solid Earth, 8, 671–682, https://doi.org/10.5194/se-8-671-2017, https://doi.org/10.5194/se-8-671-2017, 2017
Short summary
Short summary
Pre-investigation for tunnelling below water passages is a challenging task with the main objective of locating fracture zones that lead to low rock quality and thus reduced stability. An inversion approach was tested that combines different geophysical methods to improve the reliability of the results. A fracture zone and previously unknown sedimentary deposits were successfully detected. Synthetic studies pointed out the importance of 3-D effects and model resolution properties.
R. Hübner, K. Heller, T. Günther, and A. Kleber
Hydrol. Earth Syst. Sci., 19, 225–240, https://doi.org/10.5194/hess-19-225-2015, https://doi.org/10.5194/hess-19-225-2015, 2015
L. Beff, T. Günther, B. Vandoorne, V. Couvreur, and M. Javaux
Hydrol. Earth Syst. Sci., 17, 595–609, https://doi.org/10.5194/hess-17-595-2013, https://doi.org/10.5194/hess-17-595-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Solutions for Thermally-driven Reactive Transport and Porosity Evolution in Geothermal Systems (“Reactive Lauwerier Problem”)
Identification, Mapping and Eco-hydrological Signal Analysis for Groundwater-dependent Ecosystems (GDEs) in Langxi River Basin, North China
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides
The Thiem team – Adolf and Günther Thiem, two forefathers of hydrogeology
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation
Flowing wells: terminology, history and role in the evolution of groundwater science
Asymmetric impact of groundwater use on groundwater droughts
New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage
HESS Opinions: The myth of groundwater sustainability in Asia
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Changes in groundwater drought associated with anthropogenic warming
Application of environmental tracers for investigation of groundwater mean residence time and aquifer recharge in fault-influenced hydraulic drop alluvium aquifers
HESS Opinions: Linking Darcy's equation to the linear reservoir
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater
Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan
Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface
Understanding groundwater – students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program
The referential grain size and effective porosity in the Kozeny–Carman model
Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer
Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland
Residence times and mixing of water in river banks: implications for recharge and groundwater–surface water exchange
Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow
Mobilisation or dilution? Nitrate response of karst springs to high rainfall events
Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns
Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed
Teaching hydrogeology: a review of current practice
Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes
Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream
Tidal propagation in an oceanic island with sloping beaches
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Roi Roded, Einat Aharonov, Piotr Szymczak, Manolis Veveakis, Boaz Lazar, and Laura E. Dalton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-307, https://doi.org/10.5194/hess-2023-307, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Common practices in water resources management and geothermal applications involve the injection of hot or cold water into aquifers. The resulting thermal changes may lead to chemical disequilibrium and consequent mineral dissolution/precipitation in the rock void-space. A mathematical model is developed to study the effects of such thermal-fluid injection on the evolution of water composition, aquifer porosity and permeability. The model is then applied to two important case studies.
Mingyang Li, Fulin Li, Shidong Fu, Huawei Chen, Kairan Wang, Xuequn Chen, and Jiwen Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-151, https://doi.org/10.5194/hess-2023-151, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The research on GDEs started earlier, but because there is no good identification and classification method, most of the related research is also concentrated in Europe and Australia. In this study, the lower Yellow River basin in northern China with well-developed karst was selected as the study area, and a four-diagnostic criteria framework for identifying the GDEs based on remote sensing, GIS data dredging and hydrogeological surveys was proposed on the basis of previous studies.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022, https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
Gabriel C. Rau, Timothy C. McMillan, Martin S. Andersen, and Wendy A. Timms
Hydrol. Earth Syst. Sci., 26, 4301–4321, https://doi.org/10.5194/hess-26-4301-2022, https://doi.org/10.5194/hess-26-4301-2022, 2022
Short summary
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Quanrong Wang, Junxia Wang, Hongbin Zhan, and Wenguang Shi
Hydrol. Earth Syst. Sci., 24, 3983–4000, https://doi.org/10.5194/hess-24-3983-2020, https://doi.org/10.5194/hess-24-3983-2020, 2020
Franklin W. Schwartz, Ganming Liu, and Zhongbo Yu
Hydrol. Earth Syst. Sci., 24, 489–500, https://doi.org/10.5194/hess-24-489-2020, https://doi.org/10.5194/hess-24-489-2020, 2020
Short summary
Short summary
We are concerned about the sad state of affairs around groundwater in the developing countries of Asia and the obvious implications for sustainability. Groundwater production for irrigated agriculture has led to water-level declines that continue to worsen. Yet in the most populous countries, China, India, Pakistan, and Iran, there are only token efforts towards evidence-based sustainable management. It is unrealistic to expect evidence-based groundwater sustainability to develop any time soon.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Bin Ma, Menggui Jin, Xing Liang, and Jing Li
Hydrol. Earth Syst. Sci., 23, 427–446, https://doi.org/10.5194/hess-23-427-2019, https://doi.org/10.5194/hess-23-427-2019, 2019
Short summary
Short summary
Groundwater supplies the most freshwater for industrial and agricultural production and domestic use in the arid northwest of China. This research uses environmental tracers to enhance one's understanding of groundwater, including aquifer recharge sources and groundwater mean residence times in the alluvium aquifers. The results provide valuable implications for groundwater resources regulation and sustainable development and have practical significance for other arid areas.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018, https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Shuo Wang, Wenle Xing, and Mengyan Ge
Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, https://doi.org/10.5194/hess-21-4803-2017, 2017
Short summary
Short summary
The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost or seasonal frost are poorly known. We investigated the role of permafrost in controlling groundwater flow and hydrological connections between glaciers and river. The recharge, flow path and discharge of permafrost groundwater at the study site were explored. Two mechanisms were proposed to explain the significantly seasonal variation in interaction between groundwater and surface water.
Bing Zhang, Jing Zhang, and Takafumi Yoshida
Hydrol. Earth Syst. Sci., 21, 3417–3425, https://doi.org/10.5194/hess-21-3417-2017, https://doi.org/10.5194/hess-21-3417-2017, 2017
Short summary
Short summary
Since groundwater is the linkage between climate changes and fresh submarine groundwater discharge, the variations of and relationships among monthly groundwater table, rainfall, snowfall, and climate change events from 1985 to 2015 were analyzed by wavelet coherence to discuss the implications for climate changes. The results show the increase in precipitation and the groundwater table, indicating that fresh submarine groundwater discharge flux may increase under climate change.
Koen Gerardus Zuurbier and Pieter Jan Stuyfzand
Hydrol. Earth Syst. Sci., 21, 1173–1188, https://doi.org/10.5194/hess-21-1173-2017, https://doi.org/10.5194/hess-21-1173-2017, 2017
Short summary
Short summary
The subsurface is increasingly perforated for exploitation of water and energy. This has increased the risk of leakage between originally separated aquifers. It is shown how this leakage can have a very negative impact on the recovery of freshwater during aquifer storage and recovery (ASR) in brackish-saline aquifers. Deep interception of intruding brackish-saline water can mitigate the negative effects and buoyancy of freshwater to some extent, but not completely.
Ulrike Unterbruner, Sylke Hilberg, and Iris Schiffl
Hydrol. Earth Syst. Sci., 20, 2251–2266, https://doi.org/10.5194/hess-20-2251-2016, https://doi.org/10.5194/hess-20-2251-2016, 2016
Short summary
Short summary
Studies show that young people have difficulties with correctly understanding groundwater. We designed a multimedia learning program about groundwater and tested its learning efficacy with pupils and teacher-training students. A novelty is the theory-guided designing of the program on the basis of hydrogeology and science education. The pupils and students greatly benefited from working through the multimedia learning program.
Kosta Urumović and Kosta Urumović Sr.
Hydrol. Earth Syst. Sci., 20, 1669–1680, https://doi.org/10.5194/hess-20-1669-2016, https://doi.org/10.5194/hess-20-1669-2016, 2016
Short summary
Short summary
Calculation of hydraulic conductivity of porous materials is crucial for further use in hydrogeological modeling. The Kozeny–Carman model is theoretically impeccable but has not been properly used in recent scientific and expert literature. In this paper, proper use of the Kozeny-Carman formula is given through presentation of geometric mean grain size in the drilled-core sample as the referential mean grain size. Also, procedures for identification of real effective porosity of porous media are presented.
C.-S. Huang, J.-J. Chen, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 20, 55–71, https://doi.org/10.5194/hess-20-55-2016, https://doi.org/10.5194/hess-20-55-2016, 2016
Short summary
Short summary
Existing solutions for the problem of pumping at a radial collector well (RCW) in unconfined aquifers either require laborious calculation or predict divergent results at a middle period of pumping. This study relaxes the above two limitations to develop a new analytical solution for the problem. The application of the solution is convenient for those who are not familiar with numerical methods. New findings regarding the responses of flow to pumping at RCW are addressed.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Luoma, J. Okkonen, K. Korkka-Niemi, N. Hendriksson, and B. Backman
Hydrol. Earth Syst. Sci., 19, 1353–1370, https://doi.org/10.5194/hess-19-1353-2015, https://doi.org/10.5194/hess-19-1353-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
C. Schmidt, A. Musolff, N. Trauth, M. Vieweg, and J. H. Fleckenstein
Hydrol. Earth Syst. Sci., 16, 3689–3697, https://doi.org/10.5194/hess-16-3689-2012, https://doi.org/10.5194/hess-16-3689-2012, 2012
T. Gleeson, D. M. Allen, and G. Ferguson
Hydrol. Earth Syst. Sci., 16, 2159–2168, https://doi.org/10.5194/hess-16-2159-2012, https://doi.org/10.5194/hess-16-2159-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 16, 649–669, https://doi.org/10.5194/hess-16-649-2012, https://doi.org/10.5194/hess-16-649-2012, 2012
B. Hubinger and S. Birk
Hydrol. Earth Syst. Sci., 15, 3715–3729, https://doi.org/10.5194/hess-15-3715-2011, https://doi.org/10.5194/hess-15-3715-2011, 2011
E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand
Hydrol. Earth Syst. Sci., 15, 2459–2470, https://doi.org/10.5194/hess-15-2459-2011, https://doi.org/10.5194/hess-15-2459-2011, 2011
P.-R. Tsou, Z.-Y. Feng, H.-D. Yeh, and C.-S. Huang
Hydrol. Earth Syst. Sci., 14, 1477–1485, https://doi.org/10.5194/hess-14-1477-2010, https://doi.org/10.5194/hess-14-1477-2010, 2010
Y.-C. Chang, D.-S. Jeng, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1341–1351, https://doi.org/10.5194/hess-14-1341-2010, https://doi.org/10.5194/hess-14-1341-2010, 2010
Cited articles
Abdel Aal, G. Z., Atekwana, E. A., Radzikowski, S., and Rossbach, S.: Effect of bacterial adsorption on low frequency electrical properties of clean quartz sands and iron-oxide coated sands, Geophys. Res. Lett., 36, L04403, https://doi.org/10.1029/2008GL036196, 2009.
Abdel Aal, G. Z., Atekwana, E. A., and Atekwana, E. A.: Effect of bioclogging in porous media on complex conductivity signatures, J. Geophys. Res., 115, G00G07, https://doi.org/10.1029/2009JG001159, 2010.
Attwa, M.: Field application "Data acquisition, processing and inversion", in: Electrical methods "Practical guide for resistivity imaging and hydrogeophysics", edited by: Attwa, M., LAP LAMBERT Academic Publishing GmbH and Co. KG, 70–98, 2012.
Attwa, M. and Günther, T.: Application of spectral induced polarization (SIP) imaging for characterizing the near-surface geology: an environmental case study at Schillerslage, Germany, Australian Journal of Applied Sciences, 6, 693–701, 2012.
Attwa, M., Günther, T., Grinat, M., and Binot, F.: Transimissivity estimation from sounding data of Holocene tidal flat deposits in the North Eastern part of Cuxhaven, Germany: Extended Abstracts: Near Surface 2009 – 15th European Meeting of Environmental and Engineering Geophysics, p. 029, 2009.
Attwa, M., Günther, T., Grinat, M., and Binot, F.: Evaluation of DC, FDEM and SIP resistivity methods for imaging a perched saltwater and shallow channel within coastal tidal sediments, Germany, J. Appl. Geophys., 75, 656–670, 2011.
Bernabe, Y. and Revil, A.: Pore-scale heterogeneity, energy dissipation and the transport properties of rocks, Geophys. Res. Lett., 22, 1529–1532, 1995.
Beyer, W.: Zur Bestimmung der Wasserdruchlässigkeit von Kiesen und Sanden aus der Kornverteilung, Wasserwirtschaft – Wassertechnik (WWT), 6, 165–169, 1964.
Binley, A., Slater, L., Fukes, M., and Cassiani, G.: Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone, Water Resour. Res., 41, W12417, https://doi.org/10.1029/2005WR004202, 2005.
Binley, A., Kruschwitz, S., Lesmes, D., and Kettridge, N.: Exploiting the temperature effects on low frequency electrical spectra of sandstone: a comparison of effective diffusion path lengths, Geophysics, 75, A43–A46, https://doi.org/10.1190/1.3483815, 2010.
Blaschek, R. and Hördt, A.: Numerical modeling of the IP effect at the pore scale, Near Surf. Geophys., 7, 579–588, 2009.
Börner, F. D., Schopper, W., and Weller, A.: Evaluation of transport and storage properties in the soils and groundwater zone from induced polarization measurements, Geophys. Prosp., 44, 583–601, https://doi.org/10.1111/j.1365-2478.1996.tb00167.x, 1996.
Chandra, S., Ahmed, S., Ram, A., and Dewandel, B.: Estimation of hard rock aquifer hydraulic conductivity from geoelectrical measurements: A theoretical development with field application, J. Hydrol., 357, 281–227, https://doi.org/10.1016/j.jhydrol.2008.05.023, 2008.
Chen, J., Kemna, A., and Hubbard, S. S.: A comparison between Gauss-Newton and Markov-chain Monte Carlo-based methods for inverting spectral induced-polarization data for Cole-Cole parameters, Geophysics, 73, F247–F259, 2008.
Chen, J., Hubbard, S. S., Williams, K. H., Flores Orozco, A., and Kemna, A.: Estimating the spatiotemporal distribution of geochemical parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models, Water Resour. Res., 48, W05555, https://doi.org/10.1029/2011WR010992, 2012.
Constable, S. C., Parker, R. L., and Constable, C. G.: Occam's inversion: A practical algorithm for generating smooth models from EM sounding data, Geophysics, 52, 289–300, 1987.
Frohlich, R. K., Fisher, J. J., and Summerly, E.: Electric-hydraulic conductivity correlation in fractured crystalline bedrock: Central Landfill, Rhode Island, USA, J. Appl. Geophys., 35, 249–259, 1996.
Günther, T.: Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements, Ph.D. thesis, Univ. of Mining and Technology, Freiberg, Germany, 150 pp., 2004.
Heigold, P. C., Gilkeson, R. H., Cartwright, K., and Reed, P. C.: Aquifer transmissivity from surficial electrical methods, Ground Water, 17, 338–345, 1979.
Hördt, A., Blaschek, R., Kemna, A., and Zisser, N.: Hydraulic conductivity estimation from induced polarisation data at the field scale–-the Krauthausen case history, J. Appl. Geophys., 62, 33–46, 2007.
Hördt, A., Druiventak, A., Blaschek, R., Binot, F., Kemna, A., Kreye, P., and Zisser, N.: Case histories of hydraulic conductivity estimation with induced polarization at the field scale, Near Surf. Geophys., 7, 529–545, 2009.
Huntley, D.: Relations between permeability and electrical resistivity in granular aquifers, Ground Water, 24, 466–474, 1986.
Khalil, M. H.: Reconnaissance of freshwater conditions in a coastal aquifer: synthesis of 1D geoelectric resistivity inversion and hydrogeological analysis, Near Surf. Geophys., 10, 427–441, 2012.
Kemna, A.: Tomographic inversion of complex resistivity – theory and application, Ph.D. thesis, Ruhr Univ., Bochum, Germany, 176 pp., 2000.
Kemna, A., Münch, H.-M., Titov, K., Zimmermann, E., and Vereecken, H.: Relation of SIP relaxation time of sands to salinity, grain size and hydraulic conductivity: Extended Abstract: Near Surface 2005 – 11th European Meeting of Environmental and Engineering Geophysics, p. 054, 2005.
Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., Williams, K. H., Flores Orozco, A., Haegel, F.-H., Hördt, A., Kruschwitz, S., Leroux, V., Titov, K., and Zimmermann, E.: An overview of spectral induced polarization method for near-surface applications, Near Surf. Geophys., 10, 453–468, https://doi.org/10.3997/1873-0604.2012027, 2012.
Koch, K., Kemna, A., Irving, J., and Holliger, K.: Impact of changes in grain size and pore space on the hydraulic conductivity and spectral induced polarization response of sand, Hydrol. Earth Syst. Sci., 15, 1785–1794, https://doi.org/10.5194/hess-15-1785-2011, 2011.
Kozeny, J.: Über kapillare Leitung des Wassers im Boden, Sitzungsber Akad Wiss Wien, 136, 271–306, 1927.
Kresnic, N.: Hydrogeology and Groundwater Modeling, 2nd Edn., CRC Press, 2007.
Kruschwitz, S., Binley, A., Lesmes, D., and Elshenawy, A.: Textural controls on low-frequency spectra of porous media, Geophysics, 75, 113–123, https://doi.org/10.1190/1.3479835, 2010.
Lesmes, D. and Morgan, F. D.: Dielectric spectroscopy of sedimentary rocks, J. Geophys. Res., 106, 13329–13346, 2001.
Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Ghorbani, A.: Spectral induced polarization of water-saturated packs of glass beads, J. Colloid Interf. Sci., 321, 103–117, https://doi.org/10.1016/j.jcis.2007.12.031, 2008.
Marshall, D. J. and Madden, T. R.: Induced polarization, a study of its causes, Geophysics, 24, 790–816, 1959.
Mazac, O., Cislerova, M., Kelly, W. E., Landa, I., and Venhodova, D.: Determination of hydraulic conductivities by surface geoelectrical methods, edited by: Ward, S. H., Geotechnical and environmental geophysics, Society of Exploration Geophysicists, Tulsa, V2, 125–131, 1990.
Niwas, S. and Singhal, D. C.: Aquifer transimissivity of porous media from resistivity data, J. Hydrol., 82, 143–153, 1985.
Nordsiek, S. and Weller, A.: A new approach to fitting induced-polarization spectra, Geophysics, 73, F235–F-245, 2008.
Olayinka, A. I. and Weller, A.: The inversion of geoelectrical data for hydrogeological applications in crystalline basement areas of Nigeria, J. App. Geophys., 37, 103–115, 1997.
Olhoeft, G. R.: Clay-organic interactions measured with complex resistivity: Expanded Abstracts: Soc. Expl. Geophys 1984 – 54th Annual International Meeting, 356–358, 1984.
Olhoeft, G. R.: Low-frequency electrical properties, Geophysics, 50, 2492–2503, 1985.
Olhoeft, G. R.: Geophysical detection of hydrocarbon and organic chemical contamination, Proc. Symp. on the Application of Geophysics to Engineering and Environmental Problems, 587–594, 1992.
Pape, H., Riepe, L., and Schopper, J. R.: Theory of self-similar network structures in sedimentary and igneous rocks and their investigation with microscopical and physical methods, J. Microscopy, 148, 121–147, 1987.
Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H.: Mineral discrimination and removal of electromagnetic coupling with multifrequency IP, Geophysics, 43, 588–609, 1978.
Ponziani, M., Ngan-Tillard, D. J. M., and Slob, E. C.: A new prototype cell to study electrical and geo-mechanical properties of peaty soils, Eng. Geol., 119, 74–81, 2011.
Purvance, D. and Andricevic, R.: Geoelectrical characterization of the hydraulic conductivity field and its spatial structure at variable scales, Water Resour. Res., 36, 2915–2924, 2000.
Radic, T.: Elimination of cable effects while multichannel SIP measurements: Extended Abstracts: Near Surface 2004 – 10th European Meeting of Environmental and Engineering Geophysics, 2004.
Radic, T., Kretzschmar, D., and Niederleithinger, E.: Improved characterization of unconsolidated sediments under field conditions based on complex resistivity measurements: Extended Abstracts: Near Surface 1998 – 4th European Meeting of Environmental and Engineering Geophysics, 1998.
Revil, A.: Spectral induced polarization of shaly sands: Influence of the electrical double layer, Water Resour. Res., 48, W02517, https://doi.org/10.1029/2011WR011260, 2012.
Revil, A.: Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1 GHz, Water Resour. Res., 49, 306–327, https://doi.org/10.1029/2012WR012700, 2013.
Revil, A. and Cosenza, P.: Comment on "Generalized effective-medium theory of induced polarization" (M. Zhdanov, 2008, Geophysics, 73, F197–F211), Geophysics, 75, X7–X9, 2010.
Revil, A. and Florsch, N.: Determination of permeability from spectral induced polarization in granular media, Geophys. J. Int., 181, 1480–1498, https://doi.org/10.1111/j.1365-246X.2010.04573.x, 2010.
Revil, A., Koch, K., and Holliger, K.: Is it the grain size or the characteristic pore size that controls the induced polarization relaxation time of clean sands and sandstones?, Water Resour. Res., 48, W05602, https://doi.org/10.1029/2011WR011561, 2012a.
Revil, A., Atekwana, E., Zhang, C., Jardani, A., and Smith, S.: A new model for the spectral induced polarization signature of bacterial growth in porous media, Water Resour. Res., 48, W09545, https://doi.org/10.1029/2012WR011965, 2012b.
Revil, A., Skold, M., Hubbard, S. S., Wu, Y., Watson, D. B., and Karaoulis, M.: Petrophysical properties of saprolite from the Oak Ridge Integrated Field Research Challenge site, Tennessee, Geophysics, 78, D21–D40, https://doi.org/10.1190/geo2012-0176.1, 2013a.
Revil, A., Eppehimer J. D., Skold, M., Karaoulis, M., Godinez L., and Prasad, M.: Low-frequency complex conductivity of sandy and clayey materials, J. Colloid Interf. Sci., 398, 193–209, 2013b.
Sass, S.: Applicability of geophysical measuring methods for determination of K values in comparison to conventional measuring methods, Diploma thesis, Leibniz Univ., Hannover, Germany, 2010.
Schön, J. H.: Physical properties of rocks-fundamental and principles of petrophysics, Handbook of geophysical exploration, Seismic exploration, Pergamon Press, 583 pp., 1996.
Seladji, S., Cosenza, P., Tabbagh, A., Ranger, J., and Richard, G.: The effect of compaction on soil electrical resistivity: A laboratory investigation, Eur. J. Soil Sci., 61, 1043–1055, 2010.
Sen, P. N., Scala, C., and Cohen, M. H.: A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads, Geophysics, 46, 781–795, 1981.
Skold, M., Revil, A., and Vaudelet, P.: The pH dependence of induced polarization of silica sands: Experiments and modeling, Geophys. Res. Lett., 38, L12304, https://doi.org/10.1029/2011GL047748, 2011.
Slater, L.: Near surface electrical characterization of hydraulic conductivity: from petrophysical properties to aquifer geometries: a review, Surv. Geophys., 28, 169–197, 2007.
Slater, L. and Lesmes, D.: Electric-hydraulic relationships observed for unconsolidated sediments, Water Resour. Res., 38, 1213, https://doi.org/10.1029/2001WR001075, 2002.
Slater, L., Ntarlagiannis, D., and Wishart, D.: On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures, Geophysics, 71, A1–A5, 2006.
Titov, K., Komarov, V., Tarasov, V., and Levitski, A.: Theoretical and experimental study of time-domain induced polarization in water saturated sands, J. Appl. Geoph., 50, 417–433, 2002.
Titov, K., Tarasov, A., Ilyin, Y., Seleznev, N., and Boyd, A.: Relationships between induced polarization relaxation time and hydraulic properties of sandstone, Geophys. J. Int., 180, 1095–1106, 2010.
Tong, M. and Tao, H.: Experimental study of induced polarization relaxation time spectra of shaly sands, J. Petrol. Sci. Eng., 59, 239–249, 2007.
Tong, M. and Tao, H.: Permeability estimation from complex resistivity measurement of shaly sand reservoir, Geophys. J. Int., 173, 733–739, 2008.
Tong, M., Li., L., Wang, W., and Jiang, Y.: Determining capillary-pressure curve, pore size distribution and permeability from induced polarization of shaly sand, Geophysics, 71, N33–N40, 2006a.
Tong, M., Li., L., Wang, W., and Jiang, Y.: A time-domain induced polarization method for estimating permeability in a shaly sand reservoir, Geophys. Prosp., 54, 623–631, 2006b.
Vinegar, H. J. and Waxman, M. H.: Induced polarization of shaly sands, Geophysics, 49, 1267–1287, 1984.
Vinegar, H. J. and Waxman, M. H.: In-situ method for determining pore size distribution, capillary pressure and permeability, US patent, 4, 644, 283, 1987.
Vinegar, H. J. and Waxman, M. H.: In-situ method for determining formation permeability, US patent, 4, 743, 854, 1988.
Weller, A. and Börner, F. D.: Measurements of spectral induced polarization for environmental purposes, Environ. Geol., 27, 329–334, 1996.
Weller, A. and Slater, L.: Salinity dependence of complex conductivity of unconsolidated and consolidated materials: Comparisons with electrical double layer models, Geophysics, 77, D185–D198, 2012.
Weller, A., Bauerochse, A., and Nordsiek, S.: Spectral induced polarisation – a geophysical method for archaeological prospection in peatlands, Journal of Wetland Archaeology, 6, 105–125, 2006.
Weller, A., Nordsiek, S., and Debschütz, W.: Estimation permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization, Geophysics, 75, E215–E226, 2010a.
Weller, A., Slater, L., Nordsiek, S., and Ntarlagiannis, D.: On the estimation of specific surface per unit pore volume from induced polarization: A robust empirical relation fits multiple datasets, Geophysics, 75, WA105–WA112, 2010b.
Weller, A., Breede, K., Slater, L., and Nordsiek, S.: Effect of changing water salinity on complex conductivity spectra, Geophysics, 76, F315–F327, 2011.
Zanetti, C., Weller, A., Vennetier, M., and Mériaux, P.: Detection of buried tree root samples by using geoelectrical, measurements: a laboratory experiment, Plant Soil, 339, 273–283, 2011.
Zisser, N., Kemna, A., and Nover, G.: Dependence of spectral induced polarization response of sandstone on temperature and its relevance to permeability estimation, J. Geophys. Res., 115, B09214, https://doi.org/10.1029/2010JB007526, 2010a.
Zisser, N., Kemna, A., and Nover, G.: Relationship between low-frequency electrical properties and hydraulic permeability of low-permeability sandstones, Geophysics, 75, E131–E141, 2010b.