Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-947-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-947-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
INSPIRE game: integration of vulnerability into impact-based forecasting of urban floods
Akshay Singhal
Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India
Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Louise Crochemore
Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Isabelle Ruin
Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France
Sanjeev K. Jha
CORRESPONDING AUTHOR
Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India
Related authors
Nibedita Samal, Meenakshi KV, Akshay Singhal, Sanjeev Kumar Jha, and Fabio Oriani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-155, https://doi.org/10.5194/hess-2024-155, 2024
Revised manuscript under review for HESS
Short summary
Short summary
A statistical approach is developed for the first time to generate hourly rainfall from daily records at multiple avalanche sites of mountainous terrain. The approach reproduces complex temporal patterns of past rainfall information in the future by using auxiliary information from nearby sites. The high temporal resolution data produced is reliable and also produces extreme rainfall patterns well. The hourly precipitation data can be used for better prediction of avalanches and landslides.
Nibedita Samal, Meenakshi KV, Akshay Singhal, Sanjeev Kumar Jha, and Fabio Oriani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-155, https://doi.org/10.5194/hess-2024-155, 2024
Revised manuscript under review for HESS
Short summary
Short summary
A statistical approach is developed for the first time to generate hourly rainfall from daily records at multiple avalanche sites of mountainous terrain. The approach reproduces complex temporal patterns of past rainfall information in the future by using auxiliary information from nearby sites. The high temporal resolution data produced is reliable and also produces extreme rainfall patterns well. The hourly precipitation data can be used for better prediction of avalanches and landslides.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Eva Boisson, Bruno Wilhelm, Emmanuel Garnier, Alain Mélo, Sandrine Anquetin, and Isabelle Ruin
Nat. Hazards Earth Syst. Sci., 22, 831–847, https://doi.org/10.5194/nhess-22-831-2022, https://doi.org/10.5194/nhess-22-831-2022, 2022
Short summary
Short summary
We present the database of Historical Impacts of Floods in the Arve Valley (HIFAVa). It reports flood occurrences and impacts (1850–2015) in a French Alpine catchment. Our results show an increasing occurrence of impacts from 1920 onwards, which is more likely related to indirect source effects and/or increasing exposure rather than hydrological changes. The analysis reveals that small mountain streams caused more impacts (67 %) than the main river.
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci., 25, 1189–1209, https://doi.org/10.5194/hess-25-1189-2021, https://doi.org/10.5194/hess-25-1189-2021, 2021
Short summary
Short summary
The Swedish hydrological warning service is extending its use of seasonal forecasts, which requires an analysis of the available methods. We evaluate the simple ESP method and find out how and why forecasts vary in time and space. We find that forecasts are useful up to 3 months into the future, especially during winter and in northern Sweden. They tend to be good in slow-reacting catchments and bad in flashy and highly regulated ones. We finally link them with areas of similar behaviour.
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020, https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
Short summary
This paper aims at quantifying the value of hydroclimatic forecasts in terms of potential economic benefit to end users in the Lake Como basin (Italy), which allows the inference of a relation between gains in forecast skill and gains in end user profit. We also explore the sensitivity of this benefit to both the forecast system setup and end user behavioral factors, showing that the estimated forecast value is potentially undermined by different levels of end user risk aversion.
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
Short summary
How far can we reach in predicting river flow globally, using integrated catchment modelling and open global data? For the first time, a catchment model was applied world-wide, covering the entire globe with a relatively high resolution. The results show that stepwise calibration provided better performance than traditional modelling of the globe. The study highlights that open data and models are crucial to advance hydrological sciences by sharing knowledge and enabling transparent evaluation.
Galateia Terti, Isabelle Ruin, Milan Kalas, Ilona Láng, Arnau Cangròs i Alonso, Tommaso Sabbatini, and Valerio Lorini
Nat. Hazards Earth Syst. Sci., 19, 507–533, https://doi.org/10.5194/nhess-19-507-2019, https://doi.org/10.5194/nhess-19-507-2019, 2019
Short summary
Short summary
First applications of the ANYCaRE experiment revealed that multi-model impact-based outputs help forecasters and civil protection to shape a holistic view of the situation and enhance their confidence in specific emergency activities. This interdisciplinary work is conducted in the frame of the ANYWHERE European project, which aims to provide institutions across Europe with a decision-support tool to better anticipate and respond to extreme weather and climate events.
Sanjeev K. Jha, Durga L. Shrestha, Tricia A. Stadnyk, and Paulin Coulibaly
Hydrol. Earth Syst. Sci., 22, 1957–1969, https://doi.org/10.5194/hess-22-1957-2018, https://doi.org/10.5194/hess-22-1957-2018, 2018
Short summary
Short summary
The output from numerical weather prediction (NWP) models is known to have errors. River forecast centers in Canada mostly use precipitation forecasts directly obtained from American and Canadian NWP models. In this study, we evaluate the forecast performance of ensembles generated by a Bayesian post-processing approach in cold climates. We demonstrate that the post-processing approach generates bias-free forecasts and provides a better picture of uncertainty in the case of an extreme event.
Saif Shabou, Isabelle Ruin, Céline Lutoff, Samuel Debionne, Sandrine Anquetin, Jean-Dominique Creutin, and Xavier Beaufils
Nat. Hazards Earth Syst. Sci., 17, 1631–1651, https://doi.org/10.5194/nhess-17-1631-2017, https://doi.org/10.5194/nhess-17-1631-2017, 2017
Short summary
Short summary
This study describes the development of a model, called MobRISK, for assessing motorists' exposure to road flooding. MobRISK combines sociodemographic, travel-activity and hydrometeorological data in order to simulate the number and the profile of exposed persons to road flooding. The first application of MobRISK in a case study in southern France enabled the identification of the most dangerous road sections based on a spatiotemporal exposure index and the profile of most exposed people.
Louise Crochemore, Maria-Helena Ramos, Florian Pappenberger, and Charles Perrin
Hydrol. Earth Syst. Sci., 21, 1573–1591, https://doi.org/10.5194/hess-21-1573-2017, https://doi.org/10.5194/hess-21-1573-2017, 2017
Short summary
Short summary
The use of general circulation model outputs for streamflow forecasting has developed in the last decade. In parallel, traditional streamflow forecasting is commonly based on historical data. This study investigates the impact of conditioning historical data based on circulation model precipitation forecasts on seasonal streamflow forecast quality. Results highlighted a trade-off between the sharpness and reliability of forecasts.
Louise Crochemore, Maria-Helena Ramos, and Florian Pappenberger
Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, https://doi.org/10.5194/hess-20-3601-2016, 2016
Short summary
Short summary
This study investigates the way bias correcting precipitation forecasts can improve the skill of streamflow forecasts at extended lead times. Eight variants of bias correction approaches based on the linear scaling and the distribution mapping methods are applied to the precipitation forecasts prior to generating the streamflow forecasts. One of the main results of the study is that distribution mapping of daily values is successful in improving forecast reliability.
Related subject area
Subject: Urban Hydrology | Techniques and Approaches: Modelling approaches
Exploring the driving factors of compound flood severity in coastal cities: a comprehensive analytical approach
Enhancing generalizability of data-driven urban flood models by incorporating contextual information
Simulation of spatially distributed sources, transport, and transformation of nitrogen from fertilization and septic systems in a suburban watershed
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Pluvial and compound flooding in a coupled coastal system modeling framework: New York City during post-tropical cyclone Ida (2021)
Beyond Total Impervious Area: A New Lumped Descriptor of Basin-Wide Hydrologic Connectivity for Characterizing Urban Watersheds
An optimized long short-term memory (LSTM)-based approach applied to early warning and forecasting of ponding in the urban drainage system
A deep-learning-technique-based data-driven model for accurate and rapid flood predictions in temporal and spatial dimensions
Impact of urban geology on model simulations of shallow groundwater levels and flow paths
Technical note: Modeling spatial fields of extreme precipitation – a hierarchical Bayesian approach
Intersecting near-real time fluvial and pluvial inundation estimates with sociodemographic vulnerability to quantify a household flood impact index
Forecasting green roof detention performance by temporal downscaling of precipitation time-series projections
Evaluating different machine learning methods to simulate runoff from extensive green roofs
Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods
The impact of the spatiotemporal structure of rainfall on flood frequency over a small urban watershed: an approach coupling stochastic storm transposition and hydrologic modeling
Space variability impacts on hydrological responses of nature-based solutions and the resulting uncertainty: a case study of Guyancourt (France)
Urban surface water flood modelling – a comprehensive review of current models and future challenges
Resampling and ensemble techniques for improving ANN-based high-flow forecast accuracy
Event selection and two-stage approach for calibrating models of green urban drainage systems
Modeling the high-resolution dynamic exposure to flooding in a city region
Drainage area characterization for evaluating green infrastructure using the Storm Water Management Model
Critical scales to explain urban hydrological response: an application in Cranbrook, London
Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns
Patterns and comparisons of human-induced changes in river flood impacts in cities
Scale effect challenges in urban hydrology highlighted with a distributed hydrological model
Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding
Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review
Hydrodynamics of pedestrians' instability in floodwaters
Formulating and testing a method for perturbing precipitation time series to reflect anticipated climatic changes
Using rainfall thresholds and ensemble precipitation forecasts to issue and improve urban inundation alerts
Enhancing the T-shaped learning profile when teaching hydrology using data, modeling, and visualization activities
On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution
Precipitation variability within an urban monitoring network via microcanonical cascade generators
Estimation of peak discharges of historical floods
Indirect downscaling of hourly precipitation based on atmospheric circulation and temperature
Assessing the hydrologic restoration of an urbanized area via an integrated distributed hydrological model
Using the Storm Water Management Model to predict urban headwater stream hydrological response to climate and land cover change
Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data
Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs
Thermal management of an unconsolidated shallow urban groundwater body
Online multistep-ahead inundation depth forecasts by recurrent NARX networks
A statistical analysis of insurance damage claims related to rainfall extremes
Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: a case study of Fuzhou City, China
Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam
Multi-objective optimization for combined quality–quantity urban runoff control
Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach
Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment
Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites
Yan Liu, Ting Zhang, Yi Ding, Aiqing Kang, Xiaohui Lei, and Jianzhu Li
Hydrol. Earth Syst. Sci., 28, 5541–5555, https://doi.org/10.5194/hess-28-5541-2024, https://doi.org/10.5194/hess-28-5541-2024, 2024
Short summary
Short summary
In coastal cities, rainfall and tides contribute to compound flooding. This study quantifies the impacts of rainfall and tides on compound flooding and analyzes interactions between different flood types. Findings show that rainfall generally has a greater effect on flooding than tide levels. The interaction between fluvial and pluvial flooding amplifies the flood disaster, with tide levels having the most significant impact during the interaction phase.
Tabea Cache, Milton Salvador Gomez, Tom Beucler, Jovan Blagojevic, João Paulo Leitao, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 5443–5458, https://doi.org/10.5194/hess-28-5443-2024, https://doi.org/10.5194/hess-28-5443-2024, 2024
Short summary
Short summary
We introduce a new deep-learning model that addresses the limitations of existing urban flood models in handling varied terrains and rainfall events. Our model subdivides a city into small patches and presents a novel approach to incorporate broader terrain information. It accurately predicts high-resolution flood maps across diverse rainfall events and cities (on minute and meter scales) that haven’t been seen by the model, which offers valuable insights for urban flood mitigation strategies.
Ruoyu Zhang, Lawrence E. Band, Peter M. Groffman, Laurence Lin, Amanda K. Suchy, Jonathan M. Duncan, and Arthur J. Gold
Hydrol. Earth Syst. Sci., 28, 4599–4621, https://doi.org/10.5194/hess-28-4599-2024, https://doi.org/10.5194/hess-28-4599-2024, 2024
Short summary
Short summary
Human-induced nitrogen (N) from fertilization and septic effluents is the primary N source in urban watersheds. We developed a model to understand how spatial and temporal patterns of these loads affect hydrologic and biogeochemical processes at the hillslope level. The comparable simulations to observations showed the ability of our model to enhance insights into current water quality conditions, identify high-N-retention locations, and plan future restorations to improve urban water quality.
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024, https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Short summary
A coupled statistical–hydrodynamic model framework is employed to quantitatively evaluate the sensitivity of compound flood hazards to the relative timing of peak storm surges and rainfall. The findings reveal that the timing difference between these two factors significantly affects flood inundation depth and extent. The most severe inundation occurs when rainfall precedes the storm surge peak by 2 h.
Shima Kasaei, Philip M. Orton, David K. Ralston, and John C. Warner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2058, https://doi.org/10.5194/egusphere-2024-2058, 2024
Short summary
Short summary
Coastal-urban areas are highly prone to flooding from rainfall, storm surge, and their combination. We improve a coastal model and use it to quantify flooding from Hurricane Ida in the Jamaica Bay watershed of NYC, creating a flood map and flooded area estimation. Experiments with shifted storm tracks and rainfall timing at high tide show that Ida, already the worst rainfall in NYC, could have been worse. This highlights the area's vulnerability and the need for thorough flood risk analysis.
Francesco Dell'Aira and Claudio I. Meier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1956, https://doi.org/10.5194/egusphere-2024-1956, 2024
Short summary
Short summary
Scientists and engineers need better indices to frame the hydrologic effects of land development. Existing approaches are not able to reflect the interactions due to the spatial arrangement of distinct land patches, which affect how much runoff is generated and how fast it can travel downstream, impacting flood response. Our novel, GIS-based modeling framework explicitly considers these aspects and is applicable to a wide range of problems, including peak-flow predictions in ungauged basins.
Wen Zhu, Tao Tao, Hexiang Yan, Jieru Yan, Jiaying Wang, Shuping Li, and Kunlun Xin
Hydrol. Earth Syst. Sci., 27, 2035–2050, https://doi.org/10.5194/hess-27-2035-2023, https://doi.org/10.5194/hess-27-2035-2023, 2023
Short summary
Short summary
To provide a possibility for early warning and forecasting of ponding in the urban drainage system, an optimized long short-term memory (LSTM)-based model is proposed in this paper. It has a remarkable improvement compared to the models based on LSTM and convolutional neural network (CNN) structures. The performance of the corrected model is reliable if the number of monitoring sites is over one per hectare. Increasing the number of monitoring points further has little impact on the performance.
Qianqian Zhou, Shuai Teng, Zuxiang Situ, Xiaoting Liao, Junman Feng, Gongfa Chen, Jianliang Zhang, and Zonglei Lu
Hydrol. Earth Syst. Sci., 27, 1791–1808, https://doi.org/10.5194/hess-27-1791-2023, https://doi.org/10.5194/hess-27-1791-2023, 2023
Short summary
Short summary
A deep-learning-based data-driven model for flood predictions in temporal and spatial dimensions, with the integration of a long short-term memory network, Bayesian optimization, and transfer learning is proposed. The model accurately predicts water depths and flood time series/dynamics for hyetograph inputs, with substantial improvements in computational time. With transfer learning, the model was well applied to a new case study and showed robust compatibility and generalization ability.
Ane LaBianca, Mette H. Mortensen, Peter Sandersen, Torben O. Sonnenborg, Karsten H. Jensen, and Jacob Kidmose
Hydrol. Earth Syst. Sci., 27, 1645–1666, https://doi.org/10.5194/hess-27-1645-2023, https://doi.org/10.5194/hess-27-1645-2023, 2023
Short summary
Short summary
The study explores the effect of Anthropocene geology and the computational grid size on the simulation of shallow urban groundwater. Many cities are facing challenges with high groundwater levels close to the surface, yet urban planning and development seldom consider its impact on the groundwater resource. This study illustrates that the urban subsurface infrastructure significantly affects the groundwater flow paths and the residence time of shallow urban groundwater.
Bianca Rahill-Marier, Naresh Devineni, and Upmanu Lall
Hydrol. Earth Syst. Sci., 26, 5685–5695, https://doi.org/10.5194/hess-26-5685-2022, https://doi.org/10.5194/hess-26-5685-2022, 2022
Short summary
Short summary
We present a new approach to modeling extreme regional rainfall by considering the spatial structure of extreme events. The developed models allow a probabilistic exploration of how the regional drainage network may respond to extreme rainfall events and provide a foundation for how future risks may be better estimated.
Matthew Preisser, Paola Passalacqua, R. Patrick Bixler, and Julian Hofmann
Hydrol. Earth Syst. Sci., 26, 3941–3964, https://doi.org/10.5194/hess-26-3941-2022, https://doi.org/10.5194/hess-26-3941-2022, 2022
Short summary
Short summary
There is rising concern in numerous fields regarding the inequitable distribution of human risk to floods. The co-occurrence of river and surface flooding is largely excluded from leading flood hazard mapping services, therefore underestimating hazards. Using high-resolution elevation data and a region-specific social vulnerability index, we developed a method to estimate flood impacts at the household level in near-real time.
Vincent Pons, Rasmus Benestad, Edvard Sivertsen, Tone Merete Muthanna, and Jean-Luc Bertrand-Krajewski
Hydrol. Earth Syst. Sci., 26, 2855–2874, https://doi.org/10.5194/hess-26-2855-2022, https://doi.org/10.5194/hess-26-2855-2022, 2022
Short summary
Short summary
Different models were developed to increase the temporal resolution of precipitation time series to minutes. Their applicability under climate change and their suitability for producing input time series for green infrastructure (e.g. green roofs) modelling were evaluated. The robustness of the model was validated against a range of European climates in eight locations in France and Norway. The future hydrological performances of green roofs were evaluated in order to improve design practice.
Elhadi Mohsen Hassan Abdalla, Vincent Pons, Virginia Stovin, Simon De-Ville, Elizabeth Fassman-Beck, Knut Alfredsen, and Tone Merete Muthanna
Hydrol. Earth Syst. Sci., 25, 5917–5935, https://doi.org/10.5194/hess-25-5917-2021, https://doi.org/10.5194/hess-25-5917-2021, 2021
Short summary
Short summary
This study investigated the potential of using machine learning algorithms as hydrological models of green roofs across different climatic condition. The study provides comparison between conceptual and machine learning algorithms. Machine learning models were found to be accurate in simulating runoff from extensive green roofs.
Yang Yang and Ting Fong May Chui
Hydrol. Earth Syst. Sci., 25, 5839–5858, https://doi.org/10.5194/hess-25-5839-2021, https://doi.org/10.5194/hess-25-5839-2021, 2021
Short summary
Short summary
This study uses explainable machine learning methods to model and interpret the statistical correlations between rainfall and the discharge of urban catchments with sustainable urban drainage systems. The resulting models have good prediction accuracies. However, the right predictions may be made for the wrong reasons as the model cannot provide physically plausible explanations as to why a prediction is made.
Zhengzheng Zhou, James A. Smith, Mary Lynn Baeck, Daniel B. Wright, Brianne K. Smith, and Shuguang Liu
Hydrol. Earth Syst. Sci., 25, 4701–4717, https://doi.org/10.5194/hess-25-4701-2021, https://doi.org/10.5194/hess-25-4701-2021, 2021
Short summary
Short summary
The role of rainfall space–time structure in flood response is an important research issue in urban hydrology. This study contributes to this understanding in small urban watersheds. Combining stochastically based rainfall scenarios with a hydrological model, the results show the complexities of flood response for various return periods, implying the common assumptions of spatially uniform rainfall in urban flood frequency are problematic, even for relatively small basin scales.
Yangzi Qiu, Igor da Silva Rocha Paz, Feihu Chen, Pierre-Antoine Versini, Daniel Schertzer, and Ioulia Tchiguirinskaia
Hydrol. Earth Syst. Sci., 25, 3137–3162, https://doi.org/10.5194/hess-25-3137-2021, https://doi.org/10.5194/hess-25-3137-2021, 2021
Short summary
Short summary
Our original research objective is to investigate the uncertainties of the hydrological responses of nature-based solutions (NBSs) that result from the multiscale space variability in both the rainfall and the NBS distribution. Results show that the intersection effects of spatial variability in rainfall and the spatial arrangement of NBS can generate uncertainties of peak flow and total runoff volume estimations in NBS scenarios.
Kaihua Guo, Mingfu Guan, and Dapeng Yu
Hydrol. Earth Syst. Sci., 25, 2843–2860, https://doi.org/10.5194/hess-25-2843-2021, https://doi.org/10.5194/hess-25-2843-2021, 2021
Short summary
Short summary
This study presents a comprehensive review of models and emerging approaches for predicting urban surface water flooding driven by intense rainfall. It explores the advantages and limitations of existing models and identifies major challenges. Issues of model complexities, scale effects, and computational efficiency are also analysed. The results will inform scientists, engineers, and decision-makers of the latest developments and guide the model selection based on desired objectives.
Everett Snieder, Karen Abogadil, and Usman T. Khan
Hydrol. Earth Syst. Sci., 25, 2543–2566, https://doi.org/10.5194/hess-25-2543-2021, https://doi.org/10.5194/hess-25-2543-2021, 2021
Short summary
Short summary
Flow distributions are highly skewed, resulting in low prediction accuracy of high flows when using artificial neural networks for flood forecasting. We investigate the use of resampling and ensemble techniques to address the problem of skewed datasets to improve high flow prediction. The methods are implemented both independently and in combined, hybrid techniques. This research presents the first analysis of the effects of combining these methods on high flow prediction accuracy.
Ico Broekhuizen, Günther Leonhardt, Jiri Marsalek, and Maria Viklander
Hydrol. Earth Syst. Sci., 24, 869–885, https://doi.org/10.5194/hess-24-869-2020, https://doi.org/10.5194/hess-24-869-2020, 2020
Short summary
Short summary
Urban drainage models are usually calibrated using a few events so that they accurately represent a real-world site. This paper compares 14 single- and two-stage strategies for selecting these events and found significant variation between them in terms of model performance and the obtained values of model parameters. Calibrating parameters for green and impermeable areas in two separate stages improved model performance in the validation period while making calibration easier and faster.
Xuehong Zhu, Qiang Dai, Dawei Han, Lu Zhuo, Shaonan Zhu, and Shuliang Zhang
Hydrol. Earth Syst. Sci., 23, 3353–3372, https://doi.org/10.5194/hess-23-3353-2019, https://doi.org/10.5194/hess-23-3353-2019, 2019
Short summary
Short summary
Urban flooding exposure is generally investigated with the assumption of stationary disasters and disaster-hit bodies during an event, and thus it cannot satisfy the increasingly elaborate modeling and management of urban floods. In this study, a comprehensive method was proposed to simulate dynamic exposure to urban flooding considering human mobility. Several scenarios, including diverse flooding types and various responses of residents to flooding, were considered.
Joong Gwang Lee, Christopher T. Nietch, and Srinivas Panguluri
Hydrol. Earth Syst. Sci., 22, 2615–2635, https://doi.org/10.5194/hess-22-2615-2018, https://doi.org/10.5194/hess-22-2615-2018, 2018
Short summary
Short summary
This paper demonstrates an approach to spatial discretization for analyzing green infrastructure (GI) using SWMM. Besides DCIA, pervious buffers should be identified for GI modeling. Runoff contributions from different spatial components and flow pathways would impact GI performance. The presented approach can reduce the number of calibration parameters and apply scale–independently to a watershed scale. Hydrograph separation can add insights for developing GI scenarios.
Elena Cristiano, Marie-Claire ten Veldhuis, Santiago Gaitan, Susana Ochoa Rodriguez, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 22, 2425–2447, https://doi.org/10.5194/hess-22-2425-2018, https://doi.org/10.5194/hess-22-2425-2018, 2018
Short summary
Short summary
In this work we investigate the influence rainfall and catchment scales have on hydrological response. This problem is quite relevant in urban areas, where the response is fast due to the high degree of imperviousness. We presented a new approach to classify rainfall variability in space and time and use this classification to investigate rainfall aggregation effects on urban hydrological response. This classification allows the spatial extension of the main core of the storm to be identified.
Suresh Hettiarachchi, Conrad Wasko, and Ashish Sharma
Hydrol. Earth Syst. Sci., 22, 2041–2056, https://doi.org/10.5194/hess-22-2041-2018, https://doi.org/10.5194/hess-22-2041-2018, 2018
Short summary
Short summary
The study examines the impact of higher temperatures expected in a future climate on how rainfall varies with time during severe storm events. The results show that these impacts increase future flood risk in urban environments and that current design guidelines need to be adjusted so that effective adaptation measures can be implemented.
Stephanie Clark, Ashish Sharma, and Scott A. Sisson
Hydrol. Earth Syst. Sci., 22, 1793–1810, https://doi.org/10.5194/hess-22-1793-2018, https://doi.org/10.5194/hess-22-1793-2018, 2018
Short summary
Short summary
This study investigates global patterns relating urban river flood impacts to socioeconomic development and changing hydrologic conditions, and comparisons are provided between 98 individual cities. This paper condenses and communicates large amounts of information to accelerate the understanding of relationships between local urban conditions and global processes, and to potentially motivate knowledge transfer between decision-makers facing similar circumstances.
Abdellah Ichiba, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, Philippe Bompard, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 22, 331–350, https://doi.org/10.5194/hess-22-331-2018, https://doi.org/10.5194/hess-22-331-2018, 2018
Short summary
Short summary
This paper proposes a two-step investigation to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependency observed within GIS data inputted in urban hydrological models. Then an intensive multi-scale modelling work was carried out to confirm effects on model performances. The model was implemented at 17 spatial resolutions ranging from 100 to 5 m. Results allow the understanding of scale challenges in hydrology modelling.
Per Skougaard Kaspersen, Nanna Høegh Ravn, Karsten Arnbjerg-Nielsen, Henrik Madsen, and Martin Drews
Hydrol. Earth Syst. Sci., 21, 4131–4147, https://doi.org/10.5194/hess-21-4131-2017, https://doi.org/10.5194/hess-21-4131-2017, 2017
Elena Cristiano, Marie-Claire ten Veldhuis, and Nick van de Giesen
Hydrol. Earth Syst. Sci., 21, 3859–3878, https://doi.org/10.5194/hess-21-3859-2017, https://doi.org/10.5194/hess-21-3859-2017, 2017
Short summary
Short summary
In the last decades, new instruments were developed to measure rainfall and hydrological processes at high resolution. Weather radars are used, for example, to measure how rainfall varies in space and time. At the same time, new models were proposed to reproduce and predict hydrological response, in order to prevent flooding in urban areas. This paper presents a review of our current knowledge of rainfall and hydrological processes in urban areas, focusing on their variability in time and space.
Chiara Arrighi, Hocine Oumeraci, and Fabio Castelli
Hydrol. Earth Syst. Sci., 21, 515–531, https://doi.org/10.5194/hess-21-515-2017, https://doi.org/10.5194/hess-21-515-2017, 2017
Short summary
Short summary
In developed countries, the majority of fatalities during floods occurs as a consequence of inappropriate high-risk behaviour such as walking or driving in floodwaters. This work addresses pedestrians' instability in floodwaters. It analyses both the contribution of flood and human physical characteristics in the loss of stability highlighting the key role of subject height (submergence) and flow regime. The method consists of a re-analysis of experiments and numerical modelling.
Hjalte Jomo Danielsen Sørup, Stylianos Georgiadis, Ida Bülow Gregersen, and Karsten Arnbjerg-Nielsen
Hydrol. Earth Syst. Sci., 21, 345–355, https://doi.org/10.5194/hess-21-345-2017, https://doi.org/10.5194/hess-21-345-2017, 2017
Short summary
Short summary
In this study we propose a methodology changing present-day precipitation time series to reflect future changed climate. Present-day time series have a much finer resolution than what is provided by climate models and thus have a much broader application range. The proposed methodology is able to replicate most expectations of climate change precipitation. These time series can be used to run fine-scale hydrological and hydraulic models and thereby assess the influence of climate change on them.
Tsun-Hua Yang, Gong-Do Hwang, Chin-Cheng Tsai, and Jui-Yi Ho
Hydrol. Earth Syst. Sci., 20, 4731–4745, https://doi.org/10.5194/hess-20-4731-2016, https://doi.org/10.5194/hess-20-4731-2016, 2016
Short summary
Short summary
Taiwan continues to suffer from floods. This study proposes the integration of rainfall thresholds and ensemble precipitation forecasts to provide probabilistic urban inundation forecasts. Utilization of ensemble precipitation forecasts can extend forecast lead times to 72 h, preceding peak flows and allowing response agencies to take necessary preparatory measures. This study also develops a hybrid of real-time observation and rainfall forecasts to improve the first 24 h inundation forecasts.
Christopher A. Sanchez, Benjamin L. Ruddell, Roy Schiesser, and Venkatesh Merwade
Hydrol. Earth Syst. Sci., 20, 1289–1299, https://doi.org/10.5194/hess-20-1289-2016, https://doi.org/10.5194/hess-20-1289-2016, 2016
Short summary
Short summary
The use of authentic learning activities is especially important for place-based geosciences like hydrology, where professional breadth and technical depth are critical for practicing hydrologists. The current study found that integrating computerized learning content into the learning experience, using only a simple spreadsheet tool and readily available hydrological data, can effectively bring the "real world" into the classroom and provide an enriching educational experience.
G. Bruni, R. Reinoso, N. C. van de Giesen, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 19, 691–709, https://doi.org/10.5194/hess-19-691-2015, https://doi.org/10.5194/hess-19-691-2015, 2015
P. Licznar, C. De Michele, and W. Adamowski
Hydrol. Earth Syst. Sci., 19, 485–506, https://doi.org/10.5194/hess-19-485-2015, https://doi.org/10.5194/hess-19-485-2015, 2015
J. Herget, T. Roggenkamp, and M. Krell
Hydrol. Earth Syst. Sci., 18, 4029–4037, https://doi.org/10.5194/hess-18-4029-2014, https://doi.org/10.5194/hess-18-4029-2014, 2014
F. Beck and A. Bárdossy
Hydrol. Earth Syst. Sci., 17, 4851–4863, https://doi.org/10.5194/hess-17-4851-2013, https://doi.org/10.5194/hess-17-4851-2013, 2013
D. H. Trinh and T. F. M. Chui
Hydrol. Earth Syst. Sci., 17, 4789–4801, https://doi.org/10.5194/hess-17-4789-2013, https://doi.org/10.5194/hess-17-4789-2013, 2013
J. Y. Wu, J. R. Thompson, R. K. Kolka, K. J. Franz, and T. W. Stewart
Hydrol. Earth Syst. Sci., 17, 4743–4758, https://doi.org/10.5194/hess-17-4743-2013, https://doi.org/10.5194/hess-17-4743-2013, 2013
H. Ozdemir, C. C. Sampson, G. A. M. de Almeida, and P. D. Bates
Hydrol. Earth Syst. Sci., 17, 4015–4030, https://doi.org/10.5194/hess-17-4015-2013, https://doi.org/10.5194/hess-17-4015-2013, 2013
Y. Seo, N.-J. Choi, and A. R. Schmidt
Hydrol. Earth Syst. Sci., 17, 3473–3483, https://doi.org/10.5194/hess-17-3473-2013, https://doi.org/10.5194/hess-17-3473-2013, 2013
J. Epting, F. Händel, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 1851–1869, https://doi.org/10.5194/hess-17-1851-2013, https://doi.org/10.5194/hess-17-1851-2013, 2013
H.-Y. Shen and L.-C. Chang
Hydrol. Earth Syst. Sci., 17, 935–945, https://doi.org/10.5194/hess-17-935-2013, https://doi.org/10.5194/hess-17-935-2013, 2013
M. H. Spekkers, M. Kok, F. H. L. R. Clemens, and J. A. E. ten Veldhuis
Hydrol. Earth Syst. Sci., 17, 913–922, https://doi.org/10.5194/hess-17-913-2013, https://doi.org/10.5194/hess-17-913-2013, 2013
J. J. Lian, K. Xu, and C. Ma
Hydrol. Earth Syst. Sci., 17, 679–689, https://doi.org/10.5194/hess-17-679-2013, https://doi.org/10.5194/hess-17-679-2013, 2013
H. T. L. Huong and A. Pathirana
Hydrol. Earth Syst. Sci., 17, 379–394, https://doi.org/10.5194/hess-17-379-2013, https://doi.org/10.5194/hess-17-379-2013, 2013
S. Oraei Zare, B. Saghafian, and A. Shamsai
Hydrol. Earth Syst. Sci., 16, 4531–4542, https://doi.org/10.5194/hess-16-4531-2012, https://doi.org/10.5194/hess-16-4531-2012, 2012
R. Archetti, A. Bolognesi, A. Casadio, and M. Maglionico
Hydrol. Earth Syst. Sci., 15, 3115–3122, https://doi.org/10.5194/hess-15-3115-2011, https://doi.org/10.5194/hess-15-3115-2011, 2011
Y.-M. Chiang, L.-C. Chang, M.-J. Tsai, Y.-F. Wang, and F.-J. Chang
Hydrol. Earth Syst. Sci., 15, 185–196, https://doi.org/10.5194/hess-15-185-2011, https://doi.org/10.5194/hess-15-185-2011, 2011
I. Andrés-Doménech, J. C. Múnera, F. Francés, and J. B. Marco
Hydrol. Earth Syst. Sci., 14, 2057–2072, https://doi.org/10.5194/hess-14-2057-2010, https://doi.org/10.5194/hess-14-2057-2010, 2010
Yen-Ming Chiang, Li-Chiu Chang, Meng-Jung Tsai, Yi-Fung Wang, and Fi-John Chang
Hydrol. Earth Syst. Sci., 14, 1309–1319, https://doi.org/10.5194/hess-14-1309-2010, https://doi.org/10.5194/hess-14-1309-2010, 2010
Cited articles
Ahlgrimm, M., Forbes, R. M., Morcrette, J.-J., and Neggers, R. A. J.: ARM's Impact on Numerical Weather Prediction at ECMWF, Meteor. Mon., 57, 28.1–28.13, https://doi.org/10.1175/amsmonographs-d-15-0032.1, 2016. a
Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L., Stephens, E., Wetterhall, F., van Andel, S. J., and Pappenberger, F.: Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game, Hydrol. Earth Syst. Sci., 20, 3109–3128, https://doi.org/10.5194/hess-20-3109-2016, 2016. a, b, c
Aubert, A. H., Bauer, R., and Lienert, J.: A review of water-related serious games to specify use in environmental Multi-Criteria Decision Analysis, Environ. Modell. Softw., 105, 64–78, https://doi.org/10.1016/j.envsoft.2018.03.023, 2018. a
Aubert, A. H., Medema, W., and Wals, A. E.: Towards a Framework for Designing and Assessing Game-Based Approaches for Sustainable Water Governance, Water, 11, 869, https://doi.org/10.3390/W11040869, 2019. a, b
Balaganesh, G., Malhotra, R., Sendhil, R., Sirohi, S., Maiti, S., Ponnusamy, K., and Sharma, A. K.: Development of composite vulnerability index and district level mapping of climate change induced drought in Tamil Nadu, India, Ecol. Indic., 113, 106197, https://doi.org/10.1016/j.ecolind.2020.106197, 2020. a
Ballard, S. P., Li, Z., Simonin, D., and Caron, J. F.: Performance of 4D-Var NWP-based nowcasting of precipitation at the Met Office for summer 2012, Q. J. Roy. Meteor. Soc., 142, 472–487, https://doi.org/10.1002/QJ.2665, 2016. a
Bohra, A. K., Basu, S., Rajagopal, E. N., Iyengar, G. R., Das Gupta, M., Ashrit, R., and Athiyaman, B.: Heavy rainfall episode over Mumbai on 26 July 2005: Assessment of NWP guidance, Curr. Sci. India, 90, 1188–1194, 2006. a
Coughlan de Perez, E., van den Hurk, B., van Aalst, M. K., Jongman, B., Klose, T., and Suarez, P.: Forecast-based financing: an approach for catalyzing humanitarian action based on extreme weather and climate forecasts, Nat. Hazards Earth Syst. Sci., 15, 895–904, https://doi.org/10.5194/nhess-15-895-2015, 2015. a
Craven, J., Angarita, H., Corzo Perez, G. A., and Vasquez, D.: Development and testing of a river basin management simulation game for integrated management of the Magdalena-Cauca river basin, Environ. Modell. Softw., 90, 78–88, https://doi.org/10.1016/j.envsoft.2017.01.002, 2017. a
Crochemore, L., Ramos, M. H., Pappppenberger, F., Van Andel, S. J., and Wood, A. W.: An Experiment on Risk-Based Decision-Making in Water Management Using Monthly Probabilistic Forecasts, B. Am. Meteorol. Soc., 97, 541–551, https://doi.org/10.1175/BAMS-D-14-00270.1, 2016. a, b
Crochemore, L., Cantone, C., Pechlivanidis, I. G., and Photiadou, C. S.: How Does Seasonal Forecast Performance Influence Decision-Making? Insights from a Serious Game, B. Am. Meteorol. Soc., 102, E1682–E1699, https://doi.org/10.1175/BAMS-D-20-0169.1, 2021. a
Flood, S., Cradock-Henry, N. A., Blackett, P., and Edwards, P.: Adaptive and interactive climate futures: systematic review of “serious games” for engagement and decision-making, Environ. Res. Lett., 13, 063005, https://doi.org/10.1088/1748-9326/AAC1C6, 2018. a
Forrest, S. A., Kubíková, M., and Macháč, J.: Serious gaming in flood risk management, WIRes Water, 9, e1589, https://doi.org/10.1002/WAT2.1589, 2022. a
Gallopín, G. C.: Linkages between vulnerability, resilience, and adaptive capacity, Global Environ. Chang., 16, 293–303, https://doi.org/10.1016/j.gloenvcha.2006.02.004, 2006. a
Geurts, J. L., Duke, R. D., and Vermeulen, P. A.: Policy Gaming for Strategy and Change, Long Range Plann., 40, 535–558, https://doi.org/10.1016/J.LRP.2007.07.004, 2007. a
Government of Maharashtra: Report of the Fact-Finding Committee (FFC) on Mumbai Flood, government report, Government of Maharashtra, vol. 1, 2006. a
Guido, Z., McMahan, B., Hoy, D., Larsen, C., Delgado, B., Granillo, R. L., and Crimmins, M.: Public Engagement on Weather and Climate with a Monsoon Fantasy Forecasting Game, B. Am. Meteorol. Soc., 104, E249–E256, https://doi.org/10.1175/BAMS-D-22-0003.1, 2023. a
Gupta, K.: Urban flood resilience planning and management and lessons for the future: a case study of Mumbai, India, Urban Water J., 4, 183–194, https://doi.org/10.1080/15730620701464141, 2007. a
Hemingway, R. and Robbins, J.: Developing a hazard-impact model to support impact-based forecasts and warnings: The Vehicle OverTurning (VOT) Model, Meteorol. Appl., 27, e1819, https://doi.org/10.1002/MET.1819, 2020. a
Jenamani, R. K., Bhan, S. C., and Kalsi, S. R.: Observational/forecasting aspects of the meteorological event that caused a record highest rainfall in Mumbai, Current Science, 90, 1344–1362, 2006. a
Kaltenberger, R., Schaffhauser, A., and Staudinger, M.: “What the weather will do” – results of a survey on impact-oriented and impact-based warnings in European NMHSs, Adv. Sci. Res., 17, 29–38, https://doi.org/10.5194/asr-17-29-2020, 2020. a
Kim, H. B., Choi, S., Kim, B., and Pop-Eleches, C.: The role of education interventions in improving economic rationality, Science, 362, 83–86, https://doi.org/10.1126/science.aar6987, 2018. a
Kirkwood, C., Economou, T., Odbert, H., and Pugeault, N.: A framework for probabilistic weather forecast post-processing across models and lead times using machine learning, Philos. T. Roy. Soc. A, 379, 20200099, https://doi.org/10.1098/rsta.2020.0099, 2021. a
Kox, T., Lüder, C., and Gerhold, L.: Anticipation and Response: Emergency Services in Severe Weather Situations in Germany, Int. J. Disast. Risk Sc., 9, 116–128, https://doi.org/10.1007/S13753-018-0163-Z, 2018. a
Lala, J., Bazo, J., Anand, V., and Block, P.: Optimizing forecast-based actions for extreme rainfall events, Climate Risk Management, 34, 100374, https://doi.org/10.1016/J.CRM.2021.100374, 2021. a
Mayer, I. S.: The Gaming of Policy and the Politics of Gaming: A Review, Simulation and Gaming, 40, 825–862, https://doi.org/10.1177/1046878109346456, 2009. a
MCGM: Flood Preparedness Guidelines, Tech. rep., https://dm.mcgm.gov.in/flood-preparedness-guidelines (last access: 10 October 2024), 2022. a
Misra, S., Roberts, P., and Rhodes, M.: Information overload, stress, and emergency managerial thinking, Int. J. Disast. Risk Re., 51, 101762, https://doi.org/10.1016/j.ijdrr.2020.101762, 2020. a
Murthy, C. S., Laxman, B., and Sesha Sai, M. V.: Geospatial analysis of agricultural drought vulnerability using a composite index based on exposure, sensitivity and adaptive capacity, Int. J. Disast. Risk Re., 12, 163–171, https://doi.org/10.1016/j.ijdrr.2015.01.004, 2015. a, b
Næss, L. O., Norland, I. T., Lafferty, W. M., and Aall, C.: Data and processes linking vulnerability assessment to adaptation decision-making on climate change in Norway, Global Environ. Chang., 16, 221–233, https://doi.org/10.1016/j.gloenvcha.2006.01.007, 2006. a
Nanditha, J. S. and Mishra, V.: On the need of ensemble flood forecast in India, Water Security, 12, 100086, https://doi.org/10.1016/j.wasec.2021.100086, 2021. a
Omerkhil, N., Chand, T., Valente, D., Alatalo, J. M., and Pandey, R.: Climate change vulnerability and adaptation strategies for smallholder farmers in Yangi Qala District, Takhar, Afghanistan, Ecol. Indic., 110, 105863, https://doi.org/10.1016/j.ecolind.2019.105863, 2020. a
Papagiannaki, K., Lagouvardos, K., Kotroni, V., and Bezes, A.: Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area, Nat. Hazards Earth Syst. Sci., 15, 1859–1871, https://doi.org/10.5194/nhess-15-1859-2015, 2015. a
Parker, L., Bourgoin, C., Martinez-Valle, A., and Läderach, P.: Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making, PLOS ONE, 14, e0213641, https://doi.org/10.1371/journal.pone.0213641, 2019. a
Poletti, M. L., Silvestro, F., Davolio, S., Pignone, F., and Rebora, N.: Using nowcasting technique and data assimilation in a meteorological model to improve very short range hydrological forecasts, Hydrol. Earth Syst. Sci., 23, 3823–3841, https://doi.org/10.5194/hess-23-3823-2019, 2019. a
Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and Mohamed, S.: Skilful precipitation nowcasting using deep generative models of radar, Nature, 597, 672–677, https://doi.org/10.1038/s41586-021-03854-z, 2021. a
Robbins, J. C. and Titley, H. A.: Evaluating high-impact precipitation forecasts from the Met Office Global Hazard Map (GHM) using a global impact database, Meteorol. Appl., 25, 548–560, https://doi.org/10.1002/met.1720, 2018. a
Rumore, D., Schenk, T., and Susskind, L.: Role-play simulations for climate change adaptation education and engagement, Nat. Clim. Change, 6, 745–750, https://doi.org/10.1038/nclimate3084, 2016. a
Rusca, M., Heun, J., and Schwartz, K.: Water management simulation games and the construction of knowledge, Hydrol. Earth Syst. Sci., 16, 2749–2757, https://doi.org/10.5194/hess-16-2749-2012, 2012. a
Samal, N., Ashwin, R., Singhal, A., Jha, S. K., and Robertson, D. E.: Using a Bayesian joint probability approach to improve the skill of medium-range forecasts of the Indian summer monsoon rainfall, Journal of Hydrology: Regional Studies, 45, 101284, https://doi.org/10.1016/j.ejrh.2022.101284, 2023. a
Sermet, Y., Demir, I., and Muste, M.: A serious gaming framework for decision support on hydrological hazards, Sci. Total Environ., 728, 138895, https://doi.org/10.1016/j.scitotenv.2020.138895, 2020. a
Singhal, A. and Jha, S. K.: Can the approach of vulnerability assessment facilitate identification of suitable adaptation models for risk reduction?, Int. J. Disast. Risk Re., 63, 102469, https://doi.org/10.1016/j.ijdrr.2021.102469, 2021. a, b
Singhal, A., Raman, A., and Jha, S. K.: Potential Use of Extreme Rainfall Forecast and Socio-Economic Data for Impact-Based Forecasting at the District Level in Northern India, Front. Earth Sci., 10, 846113, https://doi.org/10.3389/feart.2022.846113, 2022. a
Singhal, A., Cheriyamparambil, A., Samal, N., and Jha, S. K.: Relating forecast and satellite precipitation to generate future skillful ensemble forecasts over the northwest Himalayas at major avalanche and glacier sites, J. Hydrol., 616, 128795, https://doi.org/10.1016/j.jhydrol.2022.128795, 2023. a
Terti, G., Ruin, I., Kalas, M., Láng, I., Cangròs i Alonso, A., Sabbatini, T., and Lorini, V.: ANYCaRE: a role-playing game to investigate crisis decision-making and communication challenges in weather-related hazards, Nat. Hazards Earth Syst. Sci., 19, 507–533, https://doi.org/10.5194/nhess-19-507-2019, 2019. a, b, c
van den Homberg, M., Monné, R., and Spruit, M.: Bridging the information gap of disaster responders by optimizing data selection using cost and quality, Comput. Geosci., 120, 60–72, https://doi.org/10.1016/j.cageo.2018.06.002, 2018. a
Weis, S. W. M., Agostini, V. N., Roth, L. M., Gilmer, B., Schill, S. R., Knowles, J. E., Blyther, R., Margles Weis, S. W., and Org, S. W.: Assessing vulnerability: an integrated approach for mapping adaptive capacity, sensitivity, and exposure, Climatic Change, 136, 615–629, https://doi.org/10.1007/s10584-016-1642-0, 2016. a
Short summary
A serious game experiment is presented which assesses the interplay between hazard, exposure, and vulnerability in a flash flood event. The results show that participants' use of information to make decisions was based on the severity of the situation. Participants used precipitation forecast and exposure to make correct decisions in the first round, while they used precipitation forecast and vulnerability information in the second round.
A serious game experiment is presented which assesses the interplay between hazard, exposure,...