Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-925-2025
https://doi.org/10.5194/hess-29-925-2025
Research article
 | 
23 Feb 2025
Research article |  | 23 Feb 2025

Assessment of seasonal soil moisture forecasts over the Central Mediterranean

Lorenzo Silvestri, Miriam Saraceni, Bruno Brunone, Silvia Meniconi, Giulia Passadore, and Paolina Bongioannini Cerlini

Related authors

Mediterranean tropical-like cyclone forecasts and analysis using the ECMWF ensemble forecasting system with physical parameterization perturbations
Miriam Saraceni, Lorenzo Silvestri, Peter Bechtold, and Paolina Bongioannini Cerlini
Atmos. Chem. Phys., 23, 13883–13909, https://doi.org/10.5194/acp-23-13883-2023,https://doi.org/10.5194/acp-23-13883-2023, 2023
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025,https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Enhanced evaluation of hourly and daily extreme precipitation in Norway from convection-permitting models at regional and local scales
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Göktürk
Hydrol. Earth Syst. Sci., 29, 2133–2152, https://doi.org/10.5194/hess-29-2133-2025,https://doi.org/10.5194/hess-29-2133-2025, 2025
Short summary

Cited articles

Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L., and Muñoz-Sabater, J.: Soil moisture analyses at ECMWF. Evaluation using global ground-based in situ observations, J. Hydrometeorol., 13, 1442–1460, 2012. a, b
Altissimo, L., DalPrà, A., and Scaltriti, G.: Interprovincial observatory for groundwater protection. Final Report, Amministrazione Provinciale di Vicenza Press, 1999 (in Italian). a, b
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, 2009. a, b, c, d
Bell, R., Spring, A., Brady, R., Huang, A., Squire, D., Blackwood, Z., Sitter, M., and Chegini, T.: xarray-contrib/xskillscore: Metrics for verifying forecasts, xskillscore [code], https://xskillscore.readthedocs.io/en/stable/ (last access: 17 February 2025), 2021. a
Boas, T., Bogena, H. R., Ryu, D., Vereecken, H., Western, A., and Hendricks Franssen, H.-J.: Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach, Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, 2023. a
Download
Short summary
This work demonstrates that seasonal forecasts of soil moisture are a valuable resource for groundwater management in the areas of the Central Mediterranean where longer memory timescales are found. In particular, they show significant correlation coefficients and forecast skill for the deepest soil moisture at 289 cm depth. Wet and dry events can be predicted 6 months in advance, and, in general, dry events are better captured than wet events.
Share