Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-925-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-925-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of seasonal soil moisture forecasts over the Central Mediterranean
Lorenzo Silvestri
CORRESPONDING AUTHOR
Department of Engineering Enzo Ferrari, DIEF, University of Modena and Reggio Emilia, Modena, Italy
Miriam Saraceni
Interuniversity Research Center, CIRIAF, University of Perugia, Perugia, Italy
Bruno Brunone
Department of Civil and Environmental Engineering, DICA, University of Perugia, Perugia, Italy
Silvia Meniconi
Department of Civil and Environmental Engineering, DICA, University of Perugia, Perugia, Italy
Giulia Passadore
Department of Civil, Environmental and Architectural Engineering, ICEA, University of Padova, Padua, Italy
Paolina Bongioannini Cerlini
Department of Physics and Geology, FIS-GEO, University of Perugia, Perugia, Italy
Related authors
Miriam Saraceni, Gregorio Gazzetta, Lorenzo Silvestri, Bruno Brunone, Silvia Meniconi, and Paolina Bongioannini Cerlini
EGUsphere, https://doi.org/10.5194/egusphere-2025-3677, https://doi.org/10.5194/egusphere-2025-3677, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We present a new approach to predict groundwater levels several months ahead by combining climate-based soil moisture forecasts with historical data from monitoring piezometers. Applied in central Italy, the method accurately captured seasonal trends. This forecasting tool can support sustainable water management and planning, especially under increasing climate variability and water scarcity.
Miriam Saraceni, Lorenzo Silvestri, Peter Bechtold, and Paolina Bongioannini Cerlini
Atmos. Chem. Phys., 23, 13883–13909, https://doi.org/10.5194/acp-23-13883-2023, https://doi.org/10.5194/acp-23-13883-2023, 2023
Short summary
Short summary
This study focuses on three medicanes, tropical-like cyclones that form in the Mediterranean Sea, studied by ensemble forecasting. This involved multiple simulations of the same event by varying initial conditions and model physics parameters, especially related to convection, which showed comparable results. It is found that medicane development is influenced by the model's ability to predict precursor events and the interaction between upper and lower atmosphere dynamics and thermodynamics.
Miriam Saraceni, Gregorio Gazzetta, Lorenzo Silvestri, Bruno Brunone, Silvia Meniconi, and Paolina Bongioannini Cerlini
EGUsphere, https://doi.org/10.5194/egusphere-2025-3677, https://doi.org/10.5194/egusphere-2025-3677, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We present a new approach to predict groundwater levels several months ahead by combining climate-based soil moisture forecasts with historical data from monitoring piezometers. Applied in central Italy, the method accurately captured seasonal trends. This forecasting tool can support sustainable water management and planning, especially under increasing climate variability and water scarcity.
Miriam Saraceni, Lorenzo Silvestri, Peter Bechtold, and Paolina Bongioannini Cerlini
Atmos. Chem. Phys., 23, 13883–13909, https://doi.org/10.5194/acp-23-13883-2023, https://doi.org/10.5194/acp-23-13883-2023, 2023
Short summary
Short summary
This study focuses on three medicanes, tropical-like cyclones that form in the Mediterranean Sea, studied by ensemble forecasting. This involved multiple simulations of the same event by varying initial conditions and model physics parameters, especially related to convection, which showed comparable results. It is found that medicane development is influenced by the model's ability to predict precursor events and the interaction between upper and lower atmosphere dynamics and thermodynamics.
Cited articles
Bell, R., Spring, A., Brady, R., Huang, A., Squire, D., Blackwood, Z., Sitter, M., and Chegini, T.: xarray-contrib/xskillscore: Metrics for verifying forecasts, xskillscore [code], https://xskillscore.readthedocs.io/en/stable/ (last access: 17 February 2025), 2021. a
Boas, T., Bogena, H. R., Ryu, D., Vereecken, H., Western, A., and Hendricks Franssen, H.-J.: Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach, Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, 2023. a
Bongioannini Cerlini, P., Meniconi, S., and Brunone, B.: Groundwater supply and climate change management by means of global atmospheric datasets. Preliminary results, Procedia Engineer., 186, 420–427, 2017. a
Bongioannini Cerlini, P., Saraceni, M., Silvestri, L., Meniconi, S., and Brunone, B.: Monitoring the water mass balance variability of small shallow lakes by an ERA5-Land reanalysis and water level measurement-based model. An application to the Trasimeno lake, Italy, Atmosphere, 13, 949, https://doi.org/10.3390/atmos13060949, 2022. a
Bongioannini Cerlini, P., Silvestri, L., Meniconi, S., and Brunone, B.: Performance of three reanalyses in simulating the water table elevation in different shallow unconfined aquifers in Central Italy, Meteorol. App., 30, e2118, https://doi.org/10.1002/met.2118, 2023. a
Brunone, B., Ferrante, M., Romano, N., and Santini, A.: Numerical simulations of one-dimensional infiltration into layered soils with the Richards equation using different estimates of the interlayer conductivity, Vadose Zone J., 2, 193–200, 2003. a
Calì Quaglia, F., Terzago, S., and von Hardenberg, J.: Temperature and precipitation seasonal forecasts over the Mediterranean region: added value compared to simple forecasting methods, Clim. Dynam., 58, 2167–2191, 2022. a
Carrao, H., Naumann, G., Dutra, E., Lavaysse, C., and Barbosa, P.: Seasonal drought forecasting for Latin America using the ECMWF S4 forecast system, Climate, 6, 48, https://doi.org/10.3390/cli6020048, 2018. a
Ceglar, A. and Toreti, A.: Seasonal climate forecast can inform the European agricultural sector well in advance of harvesting, Npj Climate and Atmospheric Science, 4, 42, https://doi.org/10.1038/s41612-021-00198-3, 2021. a
Cerlini, P., Saraceni, M., Orlandi, F., Silvestri, L., and Fornaciari, M.: Phenological response to temperature variability and orography in Central Italy, Int. J. Biometeorol., 66, 71–86, 2022. a
Copernicus Climate Change Service, Climate Data Store: Seasonal forecast daily and subdaily data on single levels, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.181d637e, 2018. a
Costa-Saura, J., Mereu, V., Santini, M., Trabucco, A., Spano, D., and Bacciu, V.: Performances of climatic indicators from seasonal forecasts for ecosystem management: The case of Central Europe and the Mediterranean, Agr. Forest Meteorol., 319, 108921, https://doi.org/10.1016/j.agrformet.2022.108921, 2022. a, b
Crespi, A., Petitta, M., Marson, P., Viel, C., and Grigis, L.: Verification and bias adjustment of ECMWF SEAS5 seasonal forecasts over Europe for climate service applications, Climate, 9, 181, https://doi.org/10.3390/cli9120181, 2021. a
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010), U.S. Geological Survey Open-File Report 2011–1073, 26 pp., https://doi.org/10.5066/F7J38R2N, 2011. a
de Boisséson, E. and Balmaseda, M. A.: Predictability of marine heatwaves: assessment based on the ECMWF seasonal forecast system, Ocean Sci., 20, 265–278, https://doi.org/10.5194/os-20-265-2024, 2024. a
De Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel, C., and Isaksen, L.: A simplified Extended Kalman Filter for the global operational soil moisture analysis at ECMWF, Q. J. Roy. Meteor. Soc., 139, 1199–1213, 2013. a
Dirmeyer, P. A., Halder, S., and Bombardi, R.: On the harvest of predictability from Land States in a Global Forecast Model, J. Geophys. Res.-Atmos., 123, 13111–13127, 2018. a
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021. a
Doummar, J., Kassem, A. H., and Gurdak, J. J.: Impact of historic and future climate on spring recharge and discharge based on an integrated numerical modelling approach: Application on a snow-governed semi-arid karst catchment area, J. Hydrol., 565, 636–649, 2018. a
Esit, M., Kumar, S., Pandey, A., Lawrence, D. M., Rangwala, I., and Yeager, S.: Seasonal to multi-year soil moisture drought forecasting, npj Climate and Atmospheric Science, 4, 16, https://doi.org/10.1038/s41612-021-00172-z, 2021. a, b
Fichefet, T. and Maqueda, M. M.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans, 102, 12609–12646, 1997. a
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Getirana, A., Rodell, M., Kumar, S., Beaudoing, H. K., Arsenault, K., Zaitchik, B., Save, H., and Bettadpur, S.: GRACE improves seasonal groundwater forecast initialization over the United States, J. Hydrometeorol., 21, 59–71, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023. a
Hohenegger, C. and Stevens, B.: The role of the permanent wilting point in controlling the spatial distribution of precipitation, P. Natl. Acad. Sci. USA, 115, 5692–5697, 2018. a
Hohenegger, C., Brockhaus, P., Bretherton, C. S., and Schär, C.: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection, J. Climate, 22, 5003–5020, 2009. a
Humphrey, V., Berg, A., Ciais, P., Gentine, P., Jung, M., Reichstein, M., Seneviratne, S. I., and Frankenberg, C.: Soil moisture–atmosphere feedback dominates land carbon uptake variability, Nature, 592, 65–69, 2021. a
Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, K., Zuo, H., and Monge-Sanz, B. M.: SEAS5: the new ECMWF seasonal forecast system, Geosci. Model Dev., 12, 1087–1117, https://doi.org/10.5194/gmd-12-1087-2019, 2019. a, b, c, d, e, f
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P., Gordon, C., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C.-H., Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K., Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and Yamada, T.: Regions of strong coupling between soil moisture and precipitation, Science, 305, 1138–1140, https://doi.org/10.1126/science.1100217, 2004. a, b
Koster, R. D., Guo, Z., Yang, R., Dirmeyer, P. A., Mitchell, K., and Puma, M. J.: On the nature of soil moisture in land surface models, J. Climate, 22, 4322–4335, 2009. a
Koster, R. D., Chang, Y., Wang, H., and Schubert, S. D.: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America, J. Climate, 29, 7345–7364, 2016. a
Kumar, S., Dirmeyer, P. A., and Kinter III, J.: Usefulness of ensemble forecasts from NCEP Climate Forecast System in sub-seasonal to intra-annual forecasting, Geophys. Res. Lett., 41, 3586–3593, 2014. a
Li, B., Rodell, M., Peters-Lidard, C., Erlingis, J., Kumar, S., and Mocko, D.: Groundwater recharge estimated by land surface models: An evaluation in the conterminous United States, J. Hydrometeorol., 22, 499–522, 2021. a
Lorenzi, V., Banzato, F., Barberio, M. D., Goeppert, N., Goldscheider, N., Gori, F., Lacchini, A., Manetta, M., Medici, G., Rusi, S., and Petitta, M.: Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy), Heliyon, 10, e24663, https://doi.org/10.1016/j.heliyon.2024.e24663, 2024. a
MacLeod, D., Cloke, H., Pappenberger, F., and Weisheimer, A.: Evaluating uncertainty in estimates of soil moisture memory with a reverse ensemble approach, Hydrol. Earth Syst. Sci., 20, 2737–2743, https://doi.org/10.5194/hess-20-2737-2016, 2016. a, b
Madrigal, J., Solera, A., Suárez-Almiñana, S., Paredes-Arquiola, J., Andreu, J., and Sanchez-Quispe, S. T.: Skill assessment of a seasonal forecast model to predict drought events for water resource systems, J. Hydrol., 564, 574–587, 2018. a
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. a
McColl, K. A., Alemohammad, S. H., Akbar, R., Konings, A. G., Yueh, S., and Entekhabi, D.: The global distribution and dynamics of surface soil moisture, Nat. Geosci., 10, 100–104, 2017. a
Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M. P., Nijssen, B., Brekke, L. D., and Arnold, J. R.: An intercomparison of approaches for improving operational seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, 2017. a
Merryfield, W. J., Baehr, J., Batté, L., Becker, E. J., Butler, A. H., Coelho, C. A. S., Danabasoglu, G., Dirmeyer, P. A., Doblas-Reyes, F. J., Domeisen, D. I. V., Ferranti, L., Ilynia, T., Kumar, A., Müller, W. A., Rixen, M., Robertson, A. W., Smith, D. M., Takaya, Y., Tuma, M., Vitart, F., White, C. J., Alvarez, M. S., Ardilouze, C., Attard, H., Baggett, C., Balmaseda, M. A., Beraki, A. F., Bhattacharjee, P. S., Bilbao, R., de Andrade, F. M., DeFlorio, M. J., Díaz, L. B., Ehsan, M. A., Fragkoulidis, G., Gonzalez, A. O., Grainger, S., Green, B. W., Hell, M. C., Infanti, J. M., Isensee, K., Kataoka, T., Kirtman, B. P., Klingaman, N. P., Lee, J., Mayer, K., McKay, R., Mecking, J. V., Miller, D. E., Neddermann, N., Justin Ng, C. H., Ossó, A., Pankatz, K., Peatman, S., Pegion, K., Perlwitz, J., Recalde-Coronel, G. C., Reintges, A., Renkl, C., Solaraju-Murali, B., Spring, A., Stan, C., Sun, Y. Q., Tozer, C. R., Vigaud, N., Woolnough, S., and Yeager, S.: Current and Emerging Developments in Subseasonal to Decadal Prediction, B. Am. Meteorol. Soc., 101, E869–E896, https://doi.org/10.1175/BAMS-D-19-0037.1, 2020. a
Mishra, N., Prodhomme, C., and Guemas, V.: Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe, Clim. Dynam., 52, 4207–4225, 2019. a
Mueller, B. and Seneviratne, S. I.: Hot days induced by precipitation deficits at the global scale, P. Natl. Acad. Sci. USA, 109, 12398–12403, 2012. a
Muñoz Sabater, J.: ERA5-Land hourly data from 1950 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.e2161bac, 2019. a
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a, b, c, d, e
Orth, R., Koster, R. D., and Seneviratne, S. I.: Inferring soil moisture memory from streamflow observations using a simple water balance model, J. Hydrometeorol., 14, 1773–1790, 2013. a
Prodhomme, C., Materia, S., Ardilouze, C., White, R. H., Batté, L., Guemas, V., Fragkoulidis, G., and García-Serrano, J.: Seasonal prediction of European summer heatwaves, Clim. Dynam., 58, 2149–2166, https://doi.org/10.1007/s00382-021-05828-3, 2022. a
Qiao, L., Zuo, Z., Zhang, R., Piao, S., Xiao, D., and Zhang, K.: Soil moisture–atmosphere coupling accelerates global warming, Nat. Commun., 14, 4908, https://doi.org/10.1038/s41467-023-40641-y, 2023. a
Ranasinghe, R., Ruane, A., Vautard, R., Arnell, N., Coppola, E., Cruz, F., Dessai, S., Islam, A., Rahimi, M., Ruiz Carrascal, D., Sillmann, J., Sylla, M., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate change information for regional impact and for risk assessment, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1767–1926, https://doi.org/10.1017/9781009157896.014, 2021. a, b
Robertson, A. W., Kumar, A., Peña, M., and Vitart, F.: Improving and promoting subseasonal to seasonal prediction, B. Am. Meteorol. Soc., 96, ES49–ES53, 2015. a
Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., and Wilson, C. R.: Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE, Hydrogeol. J., 15, 159–166, 2007. a
Saraceni, M., Brunone, B., Silvestri, L., Meniconi, S., and Cerlini, P. B.: A water mass balance-based procedure using ERA5 Land Reanalysis and level observation to reconstruct the past level changes of closed lakes toward future management, J. Hydrometeorol., 26, 49–67, https://doi.org/10.1175/JHM-D-24-0019.1, 2024. a
Silvestri, L., Saraceni, M., and Bongioannini Cerlini, P.: Quality management system and design of an integrated mesoscale meteorological network in Central Italy, Meteorol. Appl., 29, e2060, https://doi.org/10.1002/met.2060, 2022b (data available at: https://apps.arpa.umbria.it/acqua/contenuto/Livelli-Di-Falda, last access: 17 February 2025). a
Taylor, C. M.: Intraseasonal land–atmosphere coupling in the West African monsoon, J. Climate, 21, 6636–6648, 2008. a
Taylor, C. M., Harris, P. P., and Parker, D. J.: Impact of soil moisture on the development of a Sahelian mesoscale convective system: A case-study from the AMMA special observing period, Q. J. Roy. Meteor. Soc., 136, 456–470, 2010. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic press, ISBN 9780123850225, 2011. a
Yuan, X.: An experimental seasonal hydrological forecasting system over the Yellow River basin – Part 2: The added value from climate forecast models, Hydrol. Earth Syst. Sci., 20, 2453–2466, https://doi.org/10.5194/hess-20-2453-2016, 2016. a
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019. a
Short summary
This work demonstrates that seasonal forecasts of soil moisture are a valuable resource for groundwater management in the areas of the Central Mediterranean where longer memory timescales are found. In particular, they show significant correlation coefficients and forecast skill for the deepest soil moisture at 289 cm depth. Wet and dry events can be predicted 6 months in advance, and, in general, dry events are better captured than wet events.
This work demonstrates that seasonal forecasts of soil moisture are a valuable resource for...