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Abstract. It is highly likely that in the near future the
Mediterranean region will experience increased aridity and
hydrological droughts. Therefore, seasonal forecasts of soil
moisture can be a valuable resource for agriculture and for
evaluating the flux in the vadose zone towards shallow un-
confined aquifers. However, their accuracy in this region has
not been evaluated against observations. This study presents
an evaluation of soil moisture in the Central Mediterranean
region (35–50° N, 5–25° E) during the period 2001–2021 us-
ing the seasonal forecast system (SEAS5) of the European
Centre for Medium-Range Weather Forecasts (ECMWF). In
this perspective, standardized anomalies of soil moisture are
compared with observed values in ERA5-Land reanalysis of
ECMWF. In terms of the average magnitude of the forecast
error and the anomaly correlation coefficient, the forecasts
demonstrate good performance only in certain regions of the
domain for the deepest soil layer: Hungary, peninsular Italy,
internal areas of the Balkan Peninsula, Provence, Sardinia,
and Sicily. These regions correspond to those with the largest
memory timescale of soil moisture and do not exhibit a com-
plex orography. The obtained results show that seasonal fore-
casts are useful to detect wet and dry events for the deepest
soil layer in the mentioned regions, with lead times of up to
6 months. In these regions, the area under the relative op-
erating characteristic (ROC) curve can reach values larger
than 0.8. For all soil layers, dry events are generally better
captured than wet events; the best forecast skill, on average,
is obtained for the events where the antecedent condition is

correspondent to the present condition (dry after dry, wet af-
ter wet). To illustrate these features, the case study of the
2012 drought period demonstrates the capacity of the SEAS5
model to forecast such an event for central and northern Italy
with a 6-month lead time. Furthermore, the close correlation
between soil moisture and the observed water table in shal-
low unconfined aquifers in Italy underscores the significant
potential of seasonal soil moisture forecasts for underground
water management applications.

1 Introduction

Soil moisture, starting from the terrestrial surface to the deep-
est soil layers, represents an invaluable parameter that has a
fundamental role in the dynamics of the Earth system (Mc-
Coll et al., 2017). Its variability results from the complex in-
teraction between the atmosphere, vegetation, and soil pro-
cesses. On the terrestrial surface, soil moisture is an essen-
tial component of the Earth surface energy budget, influ-
encing the surface heat fluxes and evapotranspiration from
land to atmosphere (Seneviratne et al., 2010). From the cli-
mate point of view, Mueller and Seneviratne (2012) showed
that the number of hot days is largely determined by a pre-
cipitation deficit and, as a consequence, by small values of
soil moisture. This coupling between atmospheric tempera-
ture and soil moisture is usually defined as soil moisture–
temperature feedback, where drier soils determine a warmer
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atmosphere (Seneviratne et al., 2010). Such feedback has
the potential to exacerbate global warming by altering the
surface heat balance (Qiao et al., 2023). Other studies (Ho-
henegger et al., 2009; Hohenegger and Stevens, 2018; Taylor,
2008; Taylor et al., 2010) concentrated on the reciprocal in-
fluence between soil moisture and precipitation, which is re-
ferred to as the soil moisture–precipitation feedback. A num-
ber of processes may contribute to this feedback, acting both
on a synoptic scale (by modifying synoptic settings and en-
hancing the large-scale transport of water vapor) and locally
(by modifying boundary layer characteristics and influenc-
ing the organization of convection). Nevertheless, it remains
challenging to ascertain an overall sign (positive or negative)
for this feedback. The soil moisture available in the root zone
is essential for vegetation and agriculture. Its values can be
used as indexes for detecting hydrological drought (Spenne-
mann and Saulo, 2015). Through its impact on photosynthe-
sis processes, Humphrey et al. (2021) found that the variabil-
ity in soil moisture in climate model simulations drives 90 %
of the inter-annual variability in the global land carbon up-
take. The deep soil moisture is a fundamental feature with
respect to the flux in the vadose zone towards shallow un-
confined aquifers. For example, Rodell et al. (2007) used the
satellite-observed terrestrial water storage from the Gravity
Recovery and Climate Experiment (GRACE) to determine
the groundwater storage. Later, Getirana et al. (2020) demon-
strated that the initialization of seasonal forecast with such
data improves groundwater forecasts in the USA. In addi-
tion, Li et al. (2021) evaluated groundwater recharge from
different land surface models and found that the seasonal cy-
cle of simulated groundwater storage compared well with in
situ groundwater observations.

Despite its fundamental role, in situ observations of soil
moisture are scarce. Satellite and reanalysis products can
provide a useful alternative to fill this gap. However, direct
satellite observations are possible only for the first few cen-
timeters below the surface (Dorigo et al., 2021). These sur-
face observations can be propagated through the root zone
by filtering operations, empirical models, or land surface
models. Reanalyses offer a great alternative for studying soil
moisture, and they are characterized by significant correla-
tions with in situ observations. Li et al. (2020) compared dif-
ferent reanalyses and found ERA5, the fifth-generation re-
analysis of the European Centre for Medium-Range Weather
Forecasts (ECMWF), to show the highest skill. Also, Bon-
gioannini Cerlini et al. (2017, 2021) showed strong correla-
tion between ERA5 flux and aquifer water table observations.
The same was found by Spennemann and Saulo (2015) be-
tween the Global Land Data Assimilation System (GLDAS)
and multi-satellite soil moisture anomalies. The utility of soil
moisture data from land surface models employed within at-
mospheric general circulation models hinges not on the soil
moisture value itself but on its temporal variations, which
are particularly well represented when compared to observa-
tions (Koster et al., 2009). By analyzing different reanalysis

and land surface models with respect to observational data
in central Italy, Bongioannini Cerlini et al. (2023) found, on
average, the best performances of the ERA5 reanalysis with
respect to other well-established reanalysis. As a further fea-
ture suggesting the use of ERA5, its good performance in
terms of water budget evaluation in closed lakes must be
mentioned (Bongioannini Cerlini et al., 2022; Saraceni et al.,
2024). For these reasons, in this paper ERA5 reanalysis,
and its land component ERA5-Land (Muñoz-Sabater et al.,
2021), will be used as a reference soil moisture condition.

There is high confidence that the Mediterranean region
will suffer from a larger aridity and an increase in hydrologi-
cal droughts (Ranasinghe et al., 2021). Moreover, aridity can
heavily impact the snowmelt recharge of the aquifers in the
mountain ranges of the Mediterranean area, further affecting
hydrological droughts (Lorenzi et al., 2024; Doummar et al.,
2018) as well as vegetation phenology (Cerlini et al., 2022).
In this context of climate change, sub-seasonal to seasonal
(S2S) forecasts are a fundamental tool for adaptation strate-
gies, especially regarding water resources management. The
accuracy of the S2S forecast system relies on the simulation
of the response of the atmosphere to the slowly varying states
of the ocean and land surface (Koster et al., 2004). Johnson
et al. (2019) demonstrate how SEAS5, the seasonal forecast-
ing system of ECMWF, has a particular strength in the pre-
diction of El Niño–Southern Oscillation (ENSO). de Bois-
séson and Balmaseda (2024) found globally useful forecast
skill when predicting the occurrence of marine heat waves
(prolonged period of extremely warm sea surface tempera-
ture) for the two seasons after the forecast initialization date.
Crespi et al. (2021) analyze the forecast skill of SEAS5 for
three key climate variables (temperature, precipitation, and
wind speed) over Europe and found such forecasts useful for
climate services after a proper bias-adjustment method was
applied. Prodhomme et al. (2022) found that seasonal fore-
casts from the SEAS5 system starting from the early May can
provide useful information about the probability of occur-
rence of European summer heat waves. A recent study over
the Mediterranean region by Calì Quaglia et al. (2022) found
that individual seasonal forecasting systems outperform el-
ementary forecasts of precipitation anomalies based on per-
sistence or climatology. However, the added value is not uni-
form over the Mediterranean area. The same inhomogeneity
and potential usefulness of seasonal forecast in the Mediter-
ranean area were found also by Costa-Saura et al. (2022) for
agriculture and forestry. However, the same analysis could
bring different results in regions with marked orographic im-
pact and land–sea contrast such as the Mediterranean re-
gion. Ceglar and Toreti (2021) show that seasonal climate
forecast by SEAS5 provides useful information for decision-
making processes in the European winter-wheat-producing
sector, by analyzing minimum and maximum daily tempera-
ture and daily total precipitation. In particular, drought events
were better predicted than excessive wetness periods. On the
scale of S2S forecasts, soil moisture is one of the most im-
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pactful land parameter and is crucial for the forecast skill
(Koster et al., 2004, 2016; Merryfield et al., 2020; Dirmeyer
et al., 2018). Esit et al. (2021) found that land initialization
contributes to approximately a third of the total soil mois-
ture predictability, while the remaining part is attributable to
ocean conditions. Moreover, they found that the same ini-
tialization can provide limited skill in the precipitation fore-
cast but enough skill in the soil moisture forecast. This re-
sult suggests that skillful seasonal prediction can be made on
drought occurrence focusing on the soil state. This can be
attributed to reduced variability in soil moisture which is an
order of magnitude smaller than that of rainfall. The study
by Kumar et al. (2019) in North America suggested that
this source of predictability is connected to the soil moisture
reemergence process, in which moisture anomalies stored in
the deep soil layer can “reemerge” to the surface, restoring
the earlier root-zone anomaly and providing a year-to-year
soil moisture memory. Spennemann et al. (2017) found that
the seasonal forecast of standardized soil moisture anomalies
(SSMAs) performs better than the forecast of precipitation
using the CFSv2 (Climate Forecast System) in South Amer-
ica. Moreover, the performance was found to be higher for
austral winter than summer and for dry events rather than wet
episodes. This result shows the value of seasonal forecasts of
SSMAs for their use for agricultural drought monitoring. A
recent study by Boas et al. (2023) found that the Commu-
nity Land Model (CLM5), forced by SEAS5 seasonal fore-
casts, satisfactorily reproduces the inter-annual variation of
crop yield and also the high- and low-yield seasons in Ger-
many and Australia. However, a systematic bias of soil mois-
ture was found when comparing with satellite observations.
Most of the above results apply to large continental regions in
North and South America, while in Europe seasonal forecast
performances are mostly evaluated for surface atmospheric
variables. Accordingly, to fill this gap, this paper focuses on
evaluating seasonal forecasts of soil moisture for water re-
sources management, with particular attention to wet and dry
events. The key questions addressed in this study are as fol-
lows:

i Can the seasonal forecast over the Central Mediter-
ranean be used to predict the soil moisture behavior?

ii Does performance vary depending on whether a fore-
cast period is dry or wet?

iii Can we use such information to develop real-time ap-
plications for water resource management?

The paper is structured as follows. Section 2 describes the
study area, the seasonal forecast system, and the reanalysis
data used to validate the forecast. Section 3 provides a de-
scription of methods for evaluating the forecast performance.
Results are reported in Sect. 4, while Sect. 5 examines some
case studies of extreme dry and wet periods. Finally, Sect. 6
summarizes and discusses the main findings of this study.

2 Study area and data

2.1 Study area

This study focuses on the central part of the Mediterranean
region (35–50° N, 5–25° E), as shown in Fig. 1. Such an
area represents a challenge for seasonal forecasts (Doblas-
Reyes et al., 2013) for different reasons. First it is greatly
influenced by climate change, sometimes recognized as a hot
spot. As stated by the sixth IPCC report (Ranasinghe et al.,
2021), in the Mediterranean region there is strong agreement
between regional climate models that precipitation will de-
crease and temperature will increase by the middle–end of
the century for the Representative Concentration Pathway
(RCP8.5) and the Shared Socioeconomic Pathway (SSP5-
8.5) scenarios. Therefore, with high confidence, this area
will suffer from a larger aridity and an increase in hydro-
logical droughts. Second, the complex orography of this re-
gion (the Alps, the Apennines, the Dinaric Alps, and part
of the Atlas mountains) complicates the precipitation fore-
casts (Silvestri et al., 2022a). Finally, additional sources of
uncertainties come from land–sea contrast, atmosphere–sea
interactions, and the complex dynamics of extratropical at-
mospheric circulation.

2.2 Soil moisture reanalysis

ERA5-Land (Muñoz-Sabater et al., 2021) and ERA5 reanal-
ysis itself (Hersbach et al., 2020) are used here as a refer-
ence dataset for soil moisture since it has been shown to have
good performance in representing the observed soil moisture
(Muñoz-Sabater et al., 2021; Li et al., 2020), especially re-
garding its seasonal cycle. ERA5 is produced using the In-
tegrated Forecasting System (IFS) model version CY42R1.
The land surface model is HTESSEL (Balsamo et al., 2009),
which interacts directly with the atmosphere. Soil moisture
is a prognostic variable, and, for this reason, its initial value
is needed to run the model. Precisely, observations in ERA5
are assimilated each 12 h through a four-dimensional varia-
tional (4D-Var) approach. A simplified extended Kalman fil-
ter (De Rosnay et al., 2013) is implemented in IFS to pro-
duce the initial condition for the soil moisture analysis. It
is based on two different sources of observations (Albergel
et al., 2012): the surface observations of temperature and rel-
ative humidity from synoptic stations (SYNOP) measured
at 2 m above ground level (the so-called screen level) and
MetOp-A and MetOp-B Advanced Scatterometer (ASCAT)
soil moisture data from satellites. Screen-level parameters
are indirectly related to soil moisture, while satellites provide
a more direct measurement of the surface soil moisture. Since
the latter source is capable of describing only the top few
centimeters of the soil (Albergel et al., 2012), the root-zone
soil moisture is estimated by propagating this information
downwards by means of the HTESSEL hydrological model.
The high horizontal resolution of ERA5 (0.28° ≈ 31 km), to-
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Figure 1. The study area and its orography as represented by (a) a digital elevation model with 1 km resolution (Danielson and Gesch, 2011,
GMTED) and (b) ERA5 reanalysis with a horizontal resolution of about 31 km (which can be taken as a reference also for SEAS5 system
which has a resolution of about 36 km). Panel (c) is the soil type categories as represented in ERA5-Land. White dots represent water table
observations in the Veneto and Umbria regions analyzed in this paper as case studies. The black rectangular area is used as a reference area
for averaging anomaly correlation coefficients in central Italy.

gether with improved physics and data assimilation methods,
makes this reanalysis one of the most reliable and physically
consistent datasets of global soil moisture. Seasonal forecast
products from SEAS5 come from a different model version,
with different initial conditions, different data assimilation
methods, and different horizontal resolution (see Johnson
et al., 2019, for more details).

ERA5-Land, the land component of ERA5, is produced
by running the HTESSEL hydrological model at a higher
horizontal resolution of 9 km. The static and climatological
fields, like soil type, land–sea mask, and orography, are the
same as ERA5 but interpolated to a higher-resolution grid.
Soil type, which is a relevant parameter for calculating soil
moisture, is shown in Fig. 1c. When moving across differ-
ent grids, the dominant soil type is selected in order to pre-
serve hydraulic properties (Balsamo et al., 2009). This is
true also for the seasonal forecast system SEAS5 (see be-
low). The other difference between ERA5 and ERA5-Land
is the thermodynamic input. In particular, in ERA5-Land the

surface pressure and the temperature are adjusted for the al-
titude through a daily environmental lapse rate obtained by
ERA5 data. As discussed in Muñoz-Sabater et al. (2021),
such a dynamical downscaling of ERA5 implies consistent
improvements for soil moisture especially in the root zone,
when compared to soil moisture observations. Instead, for
the top layer, ERA5-Land slightly improves the ERA5 esti-
mates. The main reasons behind such improvements are due
to a better representation of the soil type, which changes the
saturation level of soil moisture, thus affecting evapotranspi-
ration.

2.3 The seasonal forecasting system (SEAS5)

Seasonal forecasts of monthly mean soil moisture were
taken from the fifth-generation seasonal forecasting system
(SEAS5) of ECMWF (Johnson et al., 2019). In the follow-
ing, we briefly provide a few details on SEAS5, but the
reader is referred to Johnson et al. (2019) for further informa-
tion. SEAS5 is based on Cycle 43r1 of the Integrated Fore-

Hydrol. Earth Syst. Sci., 29, 925–946, 2025 https://doi.org/10.5194/hess-29-925-2025



L. Silvestri et al.: Assessment of seasonal soil moisture forecasts over the Central Mediterranean 929

cast System (IFS) and consists of a coupled system of at-
mospheric, land surface, oceanic, and sea-ice components.
The horizontal resolution of the atmospheric model physics
is about 36 km (O320 grid) with 91 levels in the vertical.
The ocean model is ORCA (0.25°) with 75 levels in the
vertical. Land surface is represented through the HTESSEL
model (Balsamo et al., 2009), while sea ice is treated with
the LIM2 model (Fichefet and Maqueda, 1997). The atmo-
sphere and land surface are initialized using ECWMF op-
erational analyses, while the ocean and sea ice are initial-
ized using OCEAN5 (Zuo et al., 2019), which combines the
ORAS5 historical ocean reanalysis with the OCEAN5-RT
daily ocean analysis. In this paper, SEAS5 hindcasts (or re-
forecasts, that is forecasts produced for the past period be-
tween 2001–2016) and forecasts between 2016–2021, for a
total period of 20 years (2001–2021), are used. There is no
substantial difference between the system set up for hind-
casts (reforecasts) and forecasts. Such a distinction has been
made since the SEAS5 system became operational in 2017,
and the actual forecasts started in that period. Hindcasts are
performed in order to extend the available time period of sea-
sonal forecasts and allow a better calibration. Moreover, the
period until 2016 is used as a reference period for calculating
anomalies and the bias adjustment of forecasts with respect
to observations. Each forecast consists of different members
and lead time months. The SEAS5 reforecasts have 25 mem-
bers, while the forecasts have 51 members. To have a ho-
mogeneous number of members throughout all the analyzed
period, only the first 25 forecast members are considered.
Regarding the lead times, each forecast consists of 7-month
time steps, and it is initialized at the beginning of each month.
In our analysis, all lead times spanning from 1 to 6 months
are considered.

2.4 Water table observations

In this study, we use surface observations of water table as
a direct proxy for dry and wet case study events. We se-
lect two piezometers in two different Italian regions, Umbria
and Veneto, respectively located in the central and northern
part of Italy (white dots in Fig. 1). The piezometers monitor
two different shallow alluvial and unconfined aquifers with a
mean depth of water table below 10 m, whose evolution has
been found to be representative of a large area surrounding
the point observation (Bongioannini Cerlini et al., 2021). In
such unconfined aquifers, the flux in the vadose zone is the
result of the direct interaction between land and atmosphere.
The measurements of the water table elevation are provided
by the regional piezometric network of the Umbria region,
managed by the Regional Environmental Protection Agency
(Agenzia Regionale per la Protezione Ambientale (ARPA))
and by local water management services in Veneto. Daily
water table data have been collected for the last 10 years and
subject to preliminary quality control procedures (see Bon-
gioannini Cerlini et al., 2021, and Silvestri et al., 2022a, for

a detailed description of the quality control procedures), be-
fore calculating their monthly mean and the corresponding
standardized anomalies.

3 Methods

Monthly mean values of the soil moisture, θ , from seasonal
forecasts are validated against monthly mean values of soil
moisture from both ERA5 and ERA5-Land reanalysis. Both
datasets are interpolated over a regular grid of 0.125° of hor-
izontal resolution. The number and the depth of soil layers
in each column are the same in SEAS5, ERA5, and ERA5-
Land: four soil layers at a depth of 7 cm (soil layer 1), 28 cm
(soil layer 2), 100 cm (soil layer 3), and 289 cm (soil layer
4), respectively. The soil type, when passing across differ-
ent grids, is taken as the prevailing soil type in order to pre-
serve soil hydraulic properties (Balsamo et al., 2009). The
evaluation of seasonal forecasts and also the discrimination
of dry and wet periods are performed over the standardized
soil moisture anomaly (SSMA). Following the approach by
Spennemann et al. (2017), the SSMA is calculated at each
grid point (i,j ), month (m, from January to December), year
(y), and soil layer (k) as

SSMAk(i,j,m,y)=
θk(i,j,m,y)− θk(i,j,m)

σθk (i,j,m)
(1)

where · is the time average operator over the whole refer-
ence year, and σ is the standard deviation operator. The time
period considered for the forecast validation spans 20 years
from 2001 to 2021, while the reference time period consid-
ered for evaluating the monthly climatology and standard de-
viation ranges from 2001 to 2016. The same reference period
is also considered for the bias adjustment of seasonal fore-
cast. The method used in this work is the simple mean and
variance adjustment (MVA) method as described by Man-
zanas et al. (2019). Each member mean and variance over
each grid point is bias-adjusted with respect to the ERA5 ob-
servation mean and variance over the period 2001–2016, in
the following form:

θ ′k(l,m,y,n)=
(
θk(l,m,y,n,)− θ̂k(l,m)

)σobs(m)

σf(l,m)

+ θobs
k (m), (2)

where l is the forecast lead time, m is the forecast month, n
is the index representing each ensemble member, θ̂k(l,m) is
the ensemble and time average of forecasts for each lead time
and month over the reference period, σf(l,m) is the standard
deviation of the complete ensemble for each lead time and
month over the reference period, θobs

k is the time average of
all observation for the considered month over the reference
period, and σobs(m) is the standard deviation of all obser-
vations for the considered month over the reference period.
The bias adjustment is computed for each forecast lead time
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(l, from 1 to 6 months). In this way, the bias and variance
adjustment take into account both the forecast month and
the forecast lead time, which has been found to be benefi-
cial in previous work by Kumar et al. (2014). Although the
simplest among different methods, Manzanas et al. (2019)
demonstrated that MVA methods represent a good compro-
mise between computational cost and performance. This is
particularly relevant, since the final aim of this study is to
develop real-time applications for climate services. The final
effect of the bias adjustment on the forecast ensemble mean
is shown in Fig. 2, where the Umbria reference grid point
(see Fig. 1) is shown as an example.

In order to analyze the variability in soil moisture and to
compare it across different soil layers, we compute the mem-
ory timescale of each layer as the e-folding time of the tem-
poral autocorrelation function. The autocorrelation is eval-
uated by calculating the Spearman correlation coefficient,
shifting the time series by a temporal lag that is between
0 and 365 d. The corresponding time when the correlation
coefficient becomes lower than e−1 is taken as the memory
timescale of that grid point and soil layer. This timescale is
evaluated by considering ERA-Land daily mean soil mois-
ture data over all the domain. An example of this proce-
dure for the Umbria reference point is reported in Fig. 3. As
expected, the deeper the soil layer, the longer the memory
timescale. This behavior can be observed for all grid points
of the study domain, as will be shown later in Sect. 4.1. A
further interesting feature is pointed out by the autocorrela-
tion structure. Precisely, after an initial decay (as expected),
the autocorrelation shows a rebound with a secondary statis-
tically significant maximum at a lag of approximately 300–
350 d. Such a rebound could be indicative either of the sea-
sonal cycle or of the reemergence of soil moisture anomalies
as hypothesized by Kumar et al. (2019). However this behav-
ior is not representative of all regions and therefore merits
further explorations in future research.

The performance of SSMA forecasts is evaluated through
three different metrics, two deterministic and one proba-
bilistic. First, the average magnitude error of SSMA en-
semble mean is evaluated trough the root-mean-squared er-
ror (RMSE). This metric, by definition, puts greater influ-
ence on large errors than smaller errors. The RMSE is com-
monly used in both weather forecast performance assessment
(Robertson et al., 2015; Johnson et al., 2019) and seasonal
streamflow forecasting (Mendoza et al., 2017; Yuan, 2016).
Successively, the anomaly correlation coefficient (ACC) is
used to measure the correspondence between forecasted and
observed ensemble mean SSMA. The ACC is the most
widely used skill metric for evaluating the skill of determin-
istic forecast (Doblas-Reyes et al., 2013; Mishra et al., 2019;
Johnson et al., 2019; Costa-Saura et al., 2022), and it is not
sensitive to forecast bias. Then, the ability of SEAS5 ensem-
ble system to discriminate between different event type is
measured by the area under the relative operating character-
istic (ROC) curve (Wilks, 2011; Madrigal et al., 2018; Carrao

et al., 2018). An example of the procedure for the evaluation
of the ROC curve is reported in Fig. 4 for the Umbria refer-
ence point. In particular, dry and wet events have been de-
fined as those with the SSMA being smaller or larger than 1,
respectively (see Fig. 4a). An ensemble (probabilistic) fore-
cast will have a certain probability of detecting that event.
Using a set of increasing probability thresholds, we build a
contingency table (true and false positive, true and false neg-
ative). Then we calculate the true positive rate (or probability
of detection) and the false positive rate (or false alarm rate)
for each probability bin. The ROC curve is obtained by plot-
ting the true positive rate against the false positive rate as
shown in Fig. 4b for the different probability bins. For each
probability bin, the true positive rate should be larger than the
false alarm rate, otherwise the forecast is not useful. There-
fore, the area under the ROC curve can be used as a score
to evaluate the usefulness of a forecast. The diagonal line in
Fig. 4b indicates no skill (ROC area close to 0.5), while the
perfect forecast would have a ROC area equal to 1. Each met-
ric has been evaluated for the different forecast lead times.
The first two metrics (RMSE and ACC) are evaluated by con-
sidering the ensemble mean SSMA values, while the latter
(ROC) is evaluated by considering all the ensemble mem-
bers. All metrics calculations rely on the xskillscore Python
package (https://github.com/xarray-contrib/xskillscore, last
access: 17 February 2025).

4 Results

In this section, the obtained results are analyzed in terms of
soil moisture variability and forecast performance metrics.

4.1 Soil moisture variability

The monthly mean soil moisture variability for each soil
layer is shown in Fig. 5. Both ERA5 and ERA5-Land
datasets are reported in order to highlight the differences be-
tween these datasets. Along with the soil moisture reanalysis
products, the unbiased version of SEAS5 is also reported at
the following lead times: 1 month (L1), 3 months (L3), and 6
months (L6). The box plot represents the spread of soil mois-
ture in both time (i.e., soil moisture variations across differ-
ent years for the same month) and space (i.e., soil moisture
variations across all the domain grid points).

Figure 5 shows that there is a strong seasonal cycle in the
upper layers (Fig. 5a–c) and a weak seasonal cycle in the
deepest soil layer (Fig. 5d), where the median values of soil
moisture exhibit very small variations across the year. Re-
garding the median values, ERA5 differs from ERA5-Land.
In particular, ERA5 has smaller values of soil moisture with
respect to ERA5-Land. This may be related to the differ-
ent thermodynamic input and soil properties, which modify
the evapotranspiration contribution, as discussed in Muñoz-
Sabater et al. (2021). The need for a bias adjustment of
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Figure 2. Soil moisture time series over Umbria for (a) soil layer 1, (b) soil layer 2, (c) soil layer 3, and (d) soil layer 4. Different lines
represent ERA5-Land reanalysis (solid black line), SEAS5 seasonal forecast without bias adjustment at a lead time of 1 month (dashed gray
line), and SEAS5 seasonal forecast with mean and variance bias adjustment at a lead time of 1 month (SEAS5-MVA, dashed black line).

the seasonal forecast is evident in Fig. 5: the median val-
ues are not always aligned with the soil moisture reanalysis,
especially during the autumn season (September, October,
November) for the three uppermost soil layers. In the deepest
soil layer, the bias is smaller and homogeneous throughout
the year but still present. The spread of soil moisture across
all domain points and years, measured as the difference be-
tween the 75th percentile and the 25th percentile, consis-
tently varies across the months in the three uppermost soil
layers, and it reaches its maximum variations during summer
and autumn seasons. Conversely, it remains almost constant
throughout the year for the deepest soil layer. In general,
the magnitude of the spread and its variability seem to be
well represented by the seasonal forecasting system. Finally,
moving across different forecast lead times, the largest bias
can be found as the lead time increases, whereas the spread
in general remains constant. The most important result from
Fig. 5 regards the smaller variability in soil moisture in the
deepest layer, with respect to that of the surface layers. As
expected, the dynamics of the deepest soil layer is slower

than the three uppermost layers, and this may be important
for a seasonal forecasting system where slowly varying vari-
ables can be a source of predictability (Kumar et al., 2019).
In the following, we will use ERA5-Land as the main prod-
uct for comparing with forecasts. However, all the analysis
has also been done for ERA5 reanalysis in order to confirm
that results are not significantly affected by the choice of the
reanalysis system.

To confirm such results and show the different dynamics
of the soil layers across the whole of the Central Mediter-
ranean region, Fig. 6 provides the memory timescale, as eval-
uated from ERA5-Land daily mean soil moisture. The mem-
ory timescale in the first soil layer (Fig. 6a) is between 1 and
2 months, with minimum values of 5 d over complex oro-
graphic regions (Alps and Dinaric Alps), where fast oscil-
lations of soil moisture occur, and maximum values of 64 d
over the other regions. In general, the memory timescale in-
creases for all regions as we move toward the deepest soil
layer, even though in some areas it also remains below 40 d.
In soil layer 2, the maximum values of the memory timescale
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Figure 3. Memory timescale over the Umbria region for the dif-
ferent soil layers: soil layer 1 (dotted line), soil layer 2 (dashed–
dotted line), soil layer 3 (dashed line), soil layer 4 (solid line). The
temporal correlation refers to the time series shown in Fig. 2. The
dashed gray line represents the threshold e−1 and the corresponding
e-folding time (the time when correlation is lower than this thresh-
old) represents the memory timescale of each soil layer.

are around 3 months, with some regions in the Alps and the
Dinaric Alps still exhibiting values as low as 6 d. In soil layer
3, minimum values equal to 2 weeks are still present in the
Alps, while maximum values even larger than 6 months ap-
pear in the northern part of Africa. Finally, in soil layer 4, the
minimum timescale is 1 month in some regions of the Alps,
while the maximum values can also exceed the entire year
(white areas in Fig. 6d). There is a marked variability in the
soil moisture timescale in the fourth layer which exhibits a
close connection to the orography of the domain (Fig. 1b).
Complex orographic areas, with the exception of few regions
such the northern Africa, usually exhibit a smaller memory
timescale than the flat areas.

4.2 Root-mean-squared error (RMSE)

The RMSE of the seasonal forecasts ensemble mean SSMA
over all soil layers is shown in Fig. 7 for lead times 1, 3, and
6 months. In all cases, the average magnitude error is almost
larger than 1 standard deviation of soil moisture (1 SSMA)
over soil layer 1 and soil layer 2 (Fig. 7a and d). This error
remains almost constant over different forecast lead times.

Going towards the deepest soil layers and considering a
lead time of 1 month, the RMSE decreases over certain re-
gions (Provence in France, central and northern Italy, Hun-
gary, and Romania), with values below 0.75, while it largely
increases in other regions like the Alps, southeastern Sicily,
Sardinia, and Tunisia (Fig. 7l). The same distribution of av-
erage errors also characterizes lead times of 3 and 6 months,
even if there is a slight increase in the RMSE over all regions.

As a result, the accuracy of seasonal predictions increases for
the deeper soil layers. This can be attributed to the slower dy-
namics of the deep soil layers as shown in Fig. 6.

4.3 Anomaly correlation coefficient (ACC)

Figure 8 shows the ACC between forecasted and observed
SSMAs. As found for the RMSE, the ACC only reaches sig-
nificant values (as indicated by black dots in Fig. 8) above 0.8
(shaded contours in Fig. 8) on the deepest soil layer and over
certain regions like central and northern Italy, some parts of
France, Croatia, and Hungary (Fig. 8l). At a lead time of
6 months, some regions like central and northern Italy and
Bavaria still exhibit high correlation values (Fig. 8n). On the
other hand, no correlation is found for the upper soil layers at
3 and 6 months’ lead time (Fig. 8b, c, e, f, h, i). This absence
of correlation is also present at the deepest soil layer in the
Alps, Sardinia, the southwestern coast of Italy, and Tunisia,
where the correlation coefficient become negative (Fig. 8n).
At 6 months’ lead time, the correlation also disappears for
the whole western coast of the Balkan Peninsula (Fig. 8n),
where there are positive values at 1 and 3 months’ lead time
(Fig. 8l and m, respectively).

Figure 9 shows the average ACC for all forecast months
and lead times. The first column shows values averaged over
the whole domain, while the second column shows values
averaged over central Italy (black squared shown in Fig. 1).
Whether averaging either over all the domain or only over
central Italy, the correlation is only evident in the deepest
soil layer (SSMA4) considered. With regard to the corre-
lation of SSMA4 forecasts with observations, the domain-
average ACC is always below 0.8, while it increases above
0.8 over central Italy. In general, the highest correlations are
found in the autumn (SON) season, while the lowest are dur-
ing the winter (DJF) season. In areas with a high correlation,
like central Italy, the most correlated target months are be-
tween April and October, with a minimum in December and
January.

4.4 Relative operating characteristic (ROC)

The ability of the seasonal forecasts to discriminate between
dry and wet events is examined trough the area under the
ROC curve. In this paper, a wet and dry event is considered
the one in which the SSMA is above or below 1, respectively.
A ROC area larger than 0.5 means that forecasts can give
more information than climatology alone, thereby indicating
the potential usefulness of the forecasts. Figure 10 shows the
ROC area for dry events for the first three soil layers at a
lead time of 1, 3, and 6 months, respectively. As also found
for the RMSE and ACC, it is evident that the forecast be-
comes more effective going towards the deepest soil layers.
Values larger than 0.8 concern only SSMA2 and SSMA3 and
some regions (i.e., central and northern Italy, internal areas
of Hungary). The values in question exhibit a decline as the
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Figure 4. Example of estimation of ROC curve over Umbria (white dot in Fig. 1): (a) the time series of SSMA4 over soil layer 4 as observed
by ERA5-Land (red line) and forecasted by the 25 members of S2S bias-corrected ensemble at a lead time of 1 month (S2S-MVA (LEAD1),
black lines). Dry (SSMA4< 1) and wet (SSMA4> 1) events are highlighted by red and blue shading, respectively, and (b) the ROC curve
for the time series is shown in (a) for dry events (red line) and wet events (blue line). The value of the area under the ROC curve is reported
in the legend.

Figure 5. Box plot of monthly mean soil moisture values for all the land grid points (land percentage> 75 %) for ERA5 (white), ERA5-Land
(gray), SEAS5-L1 (lead time of 1 month, red), SEAS5-L3 (lead time of 3 months, yellow), and SEAS5-L6 (lead time of 6 months, cyan): (a)
soil layer 1 (7 cm), (b) soil layer 2 (28 cm), (c) soil layer 3 (100 cm), and (d) soil layer 4 (289 cm).
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Figure 6. Memory timescale of daily mean ERA5-Land soil moisture over the period 2001–2020 for the Central Mediterranean for (a) soil
layer 1 (7 cm), (b) soil layer 2 (28 cm), (c) soil layer 3 (100 cm), and (d) soil layer 4 (289 cm). The timescale is reported in days and
corresponds to the time in which the temporal autocorrelation becomes lower than e−1. Land regions where color shading is absent are
regions where the memory timescale exceeds 1 year. Red contour line indicates where the memory timescale corresponds to 40 d.

forecast lead time increases. This trend reaches its maximum
at a lead time of 6 months, at which point no skill is evident
in any region or soil layer. The sole exception to this is found
in some regions of southern Europe, e.g., Apulia and Sicily,
and northern Africa. The same behavior is observed for wet
events but with smaller values of ROC area, indicating that
wet events are less predictable than dry events (not shown).
From Fig. 10 it is evident that the seasonal forecast for the
upper three layers is only useful in certain regions like the
central and northern part of Italy and some internal areas of
Hungary and only for shorter lead times. There are also some
areas which exhibit no skill at all, neither at different layers
nor for different lead times: the southwestern coast of Italy,
the southern part of the Balkan Peninsula, and the Alps.

The picture changes for the deepest layer, soil layer 4, as
shown in Fig. 11. At a lead time of 1 month, dry and wet peri-
ods show a similar spatial distribution of ROC area but with
dry events (Fig. 11a) having larger values than wet events
(Fig. 11b). Areas with no skill are still present, and they are
very similar to those listed above for the other soil layers: the

southwestern coast of Italy, the Alps, Tunisia, and the south-
ern portion of the Balkan Peninsula. There are also regions,
like Sicily and Sardinia, where the ROC area is larger than
0.5 for dry events, but it turns into values smaller than 0.5 for
wet events.

When examining a lead time of 6 months, there are some
areas where the seasonal forecasts are still very useful and
exhibit large ROC area: Provence, the southeastern coast of
Italy, central and northern Italy, and internal areas of the
Balkan Peninsula. Instead, other areas lose their predictabil-
ity, such as the Adriatic coast of the Balkan Peninsula or the
Alps.

4.5 Sensitivity to soil moisture preconditions

In order to better understand the system’s predictive ability to
different soil moisture conditions, we study whether the fore-
cast performance varies with varying antecedent soil mois-
ture preconditions. In Sect. 4.1, we demonstrated that the
memory timescale of soil moisture in the deepest soil layer
is, on average, approximately 3 months. Consequently, we
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Figure 7. RMSE of standardized soil moisture anomalies (SSMAs) averaged over the whole analyzed period (2001–2021). Rows show
different soil layer: (a, b, c) soil layer 1 (7 cm); (d, e, f) soil layer 2 (28 cm); (g, h, i) soil layer 3 (100 cm); (l,m,n) soil layer 4 (289 cm).
Columns show the same statistics for the forecast values at different forecast lead times (1, 3, and 6 months).

will consider the soil moisture antecedent condition to be that
which was 3 months earlier. In order to have a larger number
of events, differently from the previous section, we will con-
sider dry events and wet events as those where the SSMA was
lower than −0.5 and higher than 0.5, respectively. The dry
precondition is considered to be present when the antecedent
SSMA is negative, while a wet precondition is verified when
the SSMA is positive. An example of event selection for the
Umbria reference point is reported in Fig. 12.

After the event selection, we calculate the area under the
ROC curve for each grid point, following the procedure al-
ready used for dry and wet events in Sect. 4.4. The results are
reported in Fig. 13 for the deepest soil layer and considering
only the forecast at a lead time of 1 month.

As expected, most of the predictive ability of the system
comes from the memory of the deepest soil layer itself, since
the area under the ROC curve is larger on average for the

events where the antecedent condition corresponds to the
present condition (dry after dry, wet after wet). When the
system is in transition from a dry period to a wet period, only
few regions exhibit values of the area under the ROC curve
larger than 0.7: some regions of central and northern Italy,
internal regions of the Balkan Peninsula, and the Hungary re-
gion. In particular, the Hungary region (the Great Hungarian
Plain) seems to have large values of the score for all event
types. Regarding the wet after dry period, the score is also
relevant for the southeastern coast of Italy and Wallachia in
Romania.
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Figure 8. Anomaly correlation coefficient (ACC) of standardized soil moisture anomalies (SSMAs) averaged over the whole analyzed period
(2001–2021). Rows show different soil layers: (a, b, c) soil layer 1 (7 cm), (d, e, f) soil layer 2 (28 cm), (g, h, i) soil layer 3 (100 cm), and (l,
m, n) soil layer 4 (289 cm). Columns show the same statistics at different forecast lead times (1, 3, and 6 months). Significant correlation (p
value< 0.05) is marked with black dots.

5 Links with groundwater levels: the 2012–2013 dry
and wet periods

In this section, we show a possible application of seasonal
forecasts of soil moisture for groundwater management. Fig-
ure 14a shows the water table level observations (expressed
as standardized anomalies with respect to their mean and
standard deviation) in two different locations of Italy, the
Umbria and Veneto region, in the central and northern part
of Italy, respectively (Fig. 1). The monitored aquifers are se-
lected to be shallow (depth smaller than 10 m) and uncon-
fined in order to be directly influenced by atmospheric con-
ditions rather than other groundwater processes (Bongioan-
nini Cerlini et al., 2021). From such observations we only
detect three dry periods (in 2007, 2012, and 2017) where the
standardized anomalies of the water table level were less than

−1 for both regions. On the other hand, wet periods in the
water table observations, where values larger than 1 are ob-
served, seem to happen more frequently.

The water shortage in 2007, 2012, and 2017 in different
regions of Italy is an indication of the synoptic-scale char-
acter of such drought periods. The variability in water table
level is well captured by the variability in deep soil moisture
as extracted from ERA5 reanalysis, as shown in Fig. 14b. In
2007, 2012, and 2017, negative anomalies are also observed
for SSMA4 in both the analyzed piezometers, with the 2017
anomaly being weaker with respect to the others. In the anal-
ysis below, we focus on the 2012 dry period and the follow-
ing wet period in order to test the ability of seasonal forecasts
to predict such events. Figure 15a, b, and c show the spa-
tial distribution of SSMA4 over the Central Mediterranean
in June 2012, December 2012, and June 2013, respectively.
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Figure 9. Area averaged anomaly correlation coefficient (ACC) for each target month (x axis) and for different lead times (y axis). Average
values are computed over the whole domain (a, c, e, g) and central Italy (b, d, f, h, black squared areas reported in Fig. 1a). Rows show
different soil layers: first layer (SSMA1, 7 cm depth), second layer (SSMA2, 28 cm depth), third layer (SSMA3, 100 cm depth), and fourth
layer (SSMA4, 289 cm depth).

These periods are taken as a reference for the start of the dry
period, the end of the dry period, and the start of the wet
period, as observed in Fig. 14b for northern–central Italy.

June 2012 is characterized by a large negative anomaly
over all the domain expect for the Alps, Sicily, Tunisia,
and the Adriatic coast of the Balkan Peninsula. Seasonal
forecasts for lead time 1 month predict smaller negative
anomalies over central Italy and the Balkan Peninsula while
largely underestimating the positive anomalies over the
Alps (Fig. 15d). The forecast slightly improves in northern
Italy and Balkan Peninsula going to lead times of 3 and

6 months (Fig. 15g and l), while it gets worse for Sicily and
Tunisia. December 2012 shows a similar spatial distribution
of SSMA4 except for larger positive anomalies on the Alps,
the southwestern coast of Italy, and the southwestern coast of
the Balkan Peninsula (Fig. 15b). Also, the amplitude of neg-
ative anomalies of SSMA4 decreases in central and north-
ern Italy. The seasonal forecasts perform well in central and
northern Italy, on the southeastern coast of Italy, in Sicily,
and in Provence for all lead times (Fig. 15e–h–m). However,
the large increase in positive anomalies over the Alps, the
western coast of the Balkan Peninsula, and the Tyrrhenian
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Figure 10. Area under the ROC curve averaged over all dry events during 2001–2021 for (a, d, g) soil layer 1 (7 cm), SSMA1; (b, e, h) soil
layer 2 (28 cm), SSMA2; and (c, f, i) soil layer 3 (100 cm), SSMA3. Different rows concern different lead times.

coast of Italy was not detected. The larger negative SSMA4
in the internal regions of the Balkan Peninsula was also not
detected. The wet period of June 2013 especially involved the
northern part of the domain, with large positive anomalies of
SSMA4 (Fig. 15c). Seasonal forecasts show a good perfor-
mance in general, especially in central and northern Italy at a
lead time of 1 month (Fig. 15f), while they tend to underesti-
mate such a positive anomaly at larger lead times, especially
over Hungary (Fig. 15i–n).

6 Discussion and conclusions

This study provides a first assessment of seasonal forecast of
soil moisture for the Central Mediterranean region. The sea-
sonal model analyzed in this study is SEAS5, whereas the
reanalysis is ERA5-Land, both produced by the ECMWF.
ERA5-Land is considered a reference dataset for soil mois-
ture observations. A total of 25 member seasonal forecasts

with lead times from 1 to 6 months have been analyzed from
2001 to 2021, by considering the hindcast period 2001–2016
for climatology. In this reference period, the standardized
soil moisture anomaly (SSMA) was evaluated, and the fore-
casts were bias-adjusted through the mean-variance adjust-
ment method. Then, the root-mean-squared error (RMSE)
and the anomaly correlation coefficient (ACC) were evalu-
ated for SSMA for all soil layers considered in ERA5-Land.
To test the ability of the forecast to discriminate between dry
and wet events, the relative operating characteristic (ROC)
area has been calculated. Finally, a case study of the dry and
wet periods during 2012–2013 was studied in detail, to show
the potential usefulness of the seasonal model. The outcomes
of the research can be summarized as follows.

As indicated by the RMSE, the average magnitude of the
forecast errors decreases as we go deeper into the soil. Only
in the deepest soil layer at 289 cm depth can the RMSE reach
values below 0.5, even for a lead time of 6 months. How-
ever, this is only valid over certain regions like central and
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Figure 11. Area under the ROC curve averaged over all dry (a, c, d) and wet (b, d, g) events during 2001–2021 for the deepest layer, soil
layer 4 (289 cm), SSMA4; different rows are for different lead times.

northern Italy, Hungary, some internal regions of the Balkan
Peninsula, and the Provence region. The RMSE remains too
high in other regions, even when only considering the deep-
est layer. Significant values of the ACC, with values larger
than 0.8, can be found over the mentioned regions even at a
lead time of 6 months. The analyzed performance depends on
the memory timescale of the soil layer: the higher the mem-
ory timescale, the higher the forecast performance. The main
physical factors affecting the spatial variability in memory
timescale are various: soil depth, orographic complexity, lo-
cal climatology (e.g., soil aridity, mean precipitation), and
soil hydraulic properties. In general, we found better fore-
cast performance in the deepest soil layer and in regions with

low orographic complexity, corresponding to regions with
larger memory timescale. This is in agreement with previ-
ous studies on the spatial variability in soil moisture mem-
ory. For example, MacLeod et al. (2016) found a large sen-
sitivity of soil moisture memory to soil hydraulic parameters
(e.g., Brunone et al., 2003) and found a longer memory in
the deepest soil layers. The dependence on soil depth was
ascribed to the smallest influence of the throughfall precip-
itation, which is partly absorbed by evapotranspiration be-
fore penetrating into the deepest soil layers. Moreover, Orth
et al. (2013) analyzed the influence of altitude, topography,
and dryness index on soil moisture memory timescales, find-
ing that memory timescales decrease with elevation and in-
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Figure 12. Example of event selection based on soil moisture pre-conditions over the Umbria reference point for ERA5-Land SSMA in the
deepest layer, soil layer 4 (289 cm). Dry periods are considered those with SSMA <−0.5, while wet periods are those with SSMA > 0.5.
A period is considered to happen after a dry period when the SSMA evaluated 3 months earlier is negative (SSMA< 0), while a period is
considered to happen after a wet period when the SSMA evaluated 3 months earlier is positive (SSMA> 0). The result of such a selection
is reported with the following lines: entire time series (solid gray line), dry period after a dry period (solid red line), dry period after a wet
period (dotted red line), wet period after a dry period (dotted blue line), and wet period after a wet period (solid blue line).

Figure 13. Area under the ROC curve for the deepest layer, soil layer 4 (289 cm), SSMA4, and for the forecast lead time of 1 month, as
averaged over all (a) dry after dry events, (b) dry after wet events, (c) wet after dry events, and (d) wet after wet events.
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Figure 14. The correspondence between standardized anomalies of the water table elevations from a piezometric network and SSMA4 from
ERA5-Land reanalysis for two points of the Mediterranean region, (a) Umbria region and (b) Veneto region, as shown in Fig. 1.

crease with topography (measured by a topographic index
which is a function of the slope) and aridity. Our study identi-
fied comparable signals in the Central Mediterranean. How-
ever, further investigations are required to ascertain which
factors (soil properties, altitude, orographic complexity, cli-
mate) are most influential in shaping the soil moisture mem-
ory in a given region. Such an investigation could inform a
more robust modeling approach, incorporating additional pa-
rameter uncertainty into the forecasting system, which may
ultimately enhance the skill of seasonal forecasts (MacLeod
et al., 2016). The ability of seasonal forecasts to detect wet
and dry events exhibits a large variability within the domain.
However, a ROC larger than 0.8 can also be found in certain
regions for the deepest soil layer for a lead time of 6 months.
This indicates that in those regions, like Provence, central
and northern Italy, the southeastern coast of Italy, and the
internal regions of the Balkan Peninsula, seasonal forecasts
can be used to detect such events in advance. The area un-
der the ROC curve for dry and wet events in the two up-
permost soil layers is about 0.5 when lead times exceeding
3 months are considered. This suggests that seasonal fore-
casting is not a reliable method for predicting the evolution
of upper soil moisture beyond 3 months. A small ROC area
for dry and wet events is found at a lead time of 6 months,
especially in mountainous regions (Alps and Dinaric Alps),
confirming the spatial variability already found for RMSE
and ACC indicators. In general, for all soil layers, dry events
are generally better captured than wet events. From a wa-
ter management point of view, this indicates that information
provided by seasonal forecasts on soil moisture should be

trusted more for supporting drought-risk management rather
than flood-risk management. The most useful forecasts are
produced for events where the antecedent and present con-
ditions are aligned (e.g., dry after dry, wet after wet). This
further validates the significance of soil moisture memory
and soil moisture pre-condition for the predictability of the
system.

In the areas with large correlation coefficients, larger cor-
relations are found between April and October, while a min-
imum correlation is found in December and January. Such
a feature is of great relevance in terms of water resources
management as the critical period is late spring and sum-
mer, when the water demand is the largest in the year for
both agriculture and civil activities. As an example, the case
study of 2012 drought period shows how the SEAS5 model
is able to predict such an event for central and northern Italy
6 months in advance. Moreover, the strict connection be-
tween the deepest soil moisture and the water table of shal-
low unconfined aquifer in Italy highlights the large potential
usefulness of seasonal forecasts of soil moisture for water
management purposes. A local water management service,
especially located in the most effective areas, could monitor
the forecasted soil moisture anomalies across all soil layers,
as publicly provided by the Copernicus Climate Data Store.
The seasonal forecasting system can provide a probability
of either a wet, dry, or normal month at different lead times,
thus assisting in the decision-making process for the manage-
ment of drought or flood risks. Moreover, groundwater mod-
els or simpler methods such as those in Bongioannini Cer-
lini et al. (2021) could be run, starting from forecasted soil
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Figure 15. Spatial distribution of observed ERA5-Land (a, b, c) and forecasted SSMA4 anomalies (d–n) during the analyzed case studies:
first column for the dry period of June 2012, second column for the dry period of December 2012, and third column for the wet period of
June 2013. Panels (d), (e), and (f) concern a forecast lead time of 1 month; (g), (h), and (i) a lead time of 3 months; and (l), (m), and (n) a
lead time of 6 months.

moisture products for monitoring groundwater levels in un-
confined aquifers. In this case, when using these data in very
local application, an evaluation of the influence of irrigation
input could be of great importance. However, the volume of
water used for irrigation – a critical quantity towards water
resources management – is a data that is very difficult to find
for a number of reasons. One of the most important is the
poor measuring instrumentation installed in irrigation sys-
tems. Consequently, it is difficult to estimate the contribu-

tion to soil moisture. The irrigation volume being equal, the
dispersion towards the aquifer depends on the type of irriga-
tion practiced. Maximum dispersion occurs in flowing sys-
tems, whereas in the case of drop irrigation in pressurized
networks, dispersion can be considered negligible. For the
Veneto irrigation systems, due to the extreme relevance of
aquifers, reliable quantitative assessments are available (Al-
tissimo et al., 1999; Rinaldo et al., 2010). These irrigation
systems, active for the entire year, are supplied by surface
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water and are of the flowing type with unlined channels in
70 % of the cases. Groundwater withdrawals are carried out
by water utilities for drinking water use. On the basis of the
data provided by the land reclamation consortia and water
utilities, it is shown that the entity of dispersion of the irri-
gation systems, minus withdrawals for drinking water use,
is comparable to that of effective rainfall (Altissimo et al.,
1999; Rinaldo et al., 2010). In the Umbria region, even if
analogous documentation is not available, the same situation
can be assumed. However, since in this study the analysis is
focused on the soil moisture anomaly, the contribute of the ir-
rigation volume is not effective, as it is almost constant over
the year. Conversely, in cases where irrigation was only ac-
tive in a few months, its effect should be taken into account
provided that data availability allows. To refine the proposed
approach, two possible paths can be followed in future re-
search. The first is to use different seasonal forecasting mod-
els and different reanalysis and observation products (e.g.,
MERRA-2 (Gelaro et al., 2017) and GLEAMv3 (Martens
et al., 2017)). The second path is to analyze the behavior
of the autocorrelation function of soil moisture anomalies
across different soil layers in more detail. This would evalu-
ate the role of the seasonal cycle and the reemergence of soil
moisture as hypothesized by Kumar et al. (2019). Then, this
would allow us to compare the seasonal forecast performance
with that obtained by memory-prediction models, following
the approach proposed by Esit et al. (2021).
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