Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3727-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-3727-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unsupervised image velocimetry for automated computation of river flow velocities
Matthew T. Perks
CORRESPONDING AUTHOR
School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, United Kingdom
Borbála Hortobágyi
School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, United Kingdom
UMR5600 EVS, CNRS, ENS Lyon, Lyon, France
Nick Everard
UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
Susan Manson
Flood and Coastal Risk Management, Environment Agency, Crosskill House, Mill Lane, Beverley, United Kingdom
Juliet Rowland
Environment Agency, Manley House, Kestrel Way, Exeter, UK
Andrew Large
School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, United Kingdom
Andrew J. Russell
School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, United Kingdom
Related authors
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021, https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary
Short summary
The rise of new technologies such as drones (unmanned aerial systems – UASs) has allowed widespread use of image velocimetry techniques in place of more traditional, usually slower, methods during hydrometric campaigns. In order to minimize the velocity estimation errors, one must stabilise the acquired videos. In this research, we compare the performance of different UAS video stabilisation tools and provide guidelines for their use in videos with different flight and ground conditions.
Chloe Leach, Tom Coulthard, Andrew Barkwith, Daniel R. Parsons, and Susan Manson
Geosci. Model Dev., 14, 5507–5523, https://doi.org/10.5194/gmd-14-5507-2021, https://doi.org/10.5194/gmd-14-5507-2021, 2021
Short summary
Short summary
Numerical models can be used to understand how coastal systems evolve over time, including likely responses to climate change. However, many existing models are aimed at simulating 10- to 100-year time periods do not represent a vertical dimension and are thus unable to include the effect of sea-level rise. The Coastline Evolution Model 2D (CEM2D) presented in this paper is an advance in this field, with the inclusion of the vertical coastal profile against which the water level can be altered.
Cited articles
Ansari, S., Rennie, C., Jamieson, E., Seidou, O., and Clark, S.: RivQNet: Deep Learning Based River Discharge Estimation Using Close-Range Water Surface Imagery, Water Resour. Res., 59, e2021WR031841, https://doi.org/10.1029/2021WR031841, 2023. a
Bahmanpouri, F., Eltner, A., Barbetta, S., Bertalan, L., and Moramarco, T.: Estimating the Average River Cross-Section Velocity by Observing Only One Surface Velocity Value and Calibrating the Entropic Parameter, Water Resour. Res., 58, e2021WR031821, https://doi.org/10.1029/2021WR031821, 2022. a
Bradley, A. A., Kruger, A., Meselhe, E. A., and Muste, M. V. I.: Flow measurement in streams using video imagery, Water Resour. Res., 38, 51-1–51-8, https://doi.org/10.1029/2002WR001317, 2002. a
Brevis, W., Niño, Y., and Jirka, G.: Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry, Exp. Fluids, 50, 135–147, 2011. a
Cao, Y., Wu, Y., Yao, Q., Yu, J., Hou, D., Wu, Z., and Wang, Z.: River Surface Velocity Estimation Using Optical Flow Velocimetry Improved With Attention Mechanism and Position Encoding, IEEE Sens. J., 22, 16533–16544, https://doi.org/10.1109/JSEN.2022.3186972, 2022. a
Chiu, C. L.: Velocity Distribution in Open Channel Flow, J. Hydraul. Eng., 115, 576–594, https://doi.org/10.1061/(ASCE)0733-9429(1989)115:5(576), 1989. a
Dal Sasso, S., Pizarro, A., Samela, C., Mita, L., and Manfreda, S.: Exploring the optimal experimental setup for surface flow velocity measurements using PTV, Environ. Monit. Assess., 190, 460, https://doi.org/10.1007/s10661-018-6848-3, 2018. a
Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913–921, https://doi.org/10.5194/hess-13-913-2009, 2009. a
Dramais, G., Le Coz, J., Camenen, B., and Hauet, A.: Advantages of a mobile LSPIV method for measuring flood discharges and improving stage–discharge curves, J. Hydro-Environ. Res., 5, 301–312, https://doi.org/10.1016/j.jher.2010.12.005, 2011. a
Elias, M., Eltner, A., Liebold, F., and Maas, H.-G.: Assessing the Influence of Temperature Changes on the Geometric Stability of Smartphone- and Raspberry Pi Cameras, Sensors, 20, 643, https://doi.org/10.3390/s20030643, 2020. a, b
Eltner, A., Sardemann, H., and Grundmann, J.: Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery, Hydrol. Earth Syst. Sci., 24, 1429–1445, https://doi.org/10.5194/hess-24-1429-2020, 2020. a
Eltner, A., Bressan, P. O., Akiyama, T., Gonçalves, W. N., and Marcato Junior, J.: Using deep learning for automatic water stage measurements, Water Resour. Res., 57, e2020WR027608, https://doi.org/10.1029/2020WR027608, 2021. a
Fekete, B. M. and Vörösmarty, C. J.: The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements, IAHS Publications, 309, 129–136, 2007. a
Fleit, G. and Baranya, S.: An improved particle image velocimetry method for efficient flow analyses, Flow Meas. Instrum., 69, 101619, https://doi.org/10.1016/j.flowmeasinst.2019.101619, 2019. a
Fletcher, R.: A modified Marquardt subroutine for nonlinear least squares fitting, Atomic Energy Research Establishment, Harwell, England, AERE-R.6799, 1971. a
Fujita, I., Muste, M., and Kruger, A.: Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications, J. Hydraul. Res., 36, 397–414, 1998. a
Fujita, I., Watanabe, H., and Tsubaki, R.: Development of a non-intrusive and efficient flow monitoring technique: The space-time image velocimetry (STIV), International Journal of River Basin Management, 5, 105–114, 2007. a
Fulford, J. M. and Sauer, V. B.: Comparison of velocity interpolation methods for computing open-channel discharge, in: Selected papers in the hydrologic sciences, Water Supply Paper, 2290, edited by: Subitsky, S. Y., U.S. Geological Survey, Reston, VA, 139–144, https://pubs.usgs.gov/wsp/wsp2290/ (last access: 12 August 2025), 1986. a, b
Getmapping: EDINA Aerial Digimap Service: High Resolution (12.5 cm) Vertical Aerial Imagery [JPG geospatial data], Scale 1:250, Tiles: sx7465, sx7466, sx7565, sx7566, https://digimap.edina.ac.uk (last access: 18 July 2025), 2022. a
Hauet, A., Morlot, T., and Daubagnan, L.: Velocity profile and depth-averaged to surface velocity in natural streams: A review over alarge sample of rivers, in: E3s web of conferences, EDP Sciences, vol. 40, 06015, https://doi.org/10.1051/e3sconf/20184006015, 2018. a
Herschy, R. W.: Streamflow measurement, CRC Press, London, ISBN 9781482265880, https://doi.org/10.1201/9781482265880, 2014. a, b
ISO 24578:2021: Hydrometry – Acoustic Doppler profiler – Method and application for measurement of flow in open channels from a moving boat, Standard, International Organization for Standardization, Geneva, CH, https://www.iso.org/standard/70758.html (last access: 12 August 2025), 2001. a
Jodeau, M., Hauet, A., Paquier, A., Le Coz, J., and Dramais, G.: Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions, Flow Meas. Instrum., 19, 117–127, 2008. a
Jolley, M. J., Russell, A. J., Quinn, P. F., and Perks, M. T.: Considerations When Applying Large-Scale PIV and PTV for Determining River Flow Velocity, Frontiers in Water, https://doi.org/10.3389/frwa.2021.709269, 2021. a
Kalal, Z., Mikolajczyk, K., and Matas, J.: Forward-backward error: Automatic detection of tracking failures, in: 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010, 2756–2759, https://doi.org/10.1109/ICPR.2010.675, 2010. a
Khalid, M., Pénard, L., and Mémin, E.: Optical flow for image-based river velocity estimation, Flow Meas. Instrum., 65, 110–121, 2019. a
Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Le Coz, J., Westerberg, I. K., Belleville, A., Sevrez, D., Sikorska, A. E., Petersen-Øverleir, A., Reitan, T., Freer, J., Renard, B., Mansanarez, V., and Mason, R.: A Comparison of Methods for Streamflow Uncertainty Estimation, Water Resour. Res., 54, 7149–7176, https://doi.org/10.1029/2018WR022708, 2018. a
Kidson, R. and Richards, K. S.: Flood frequency analysis: assumptions and alternatives, Progress in Physical Geography: Earth and Environment, 29, 392–410, https://doi.org/10.1191/0309133305pp454ra, 2005. a
Kim, J., Kim, D., Son, G., and Kim, S.: Accuracy analysis of velocity and water depth measurement in the straight channel using ADCP, Journal of Korea Water Resources Association, 48, 367–377, 2015. a
Kim, Y., Muste, M., Hauet, A., Krajewski, W. F., Kruger, A., and Bradley, A.: Stream discharge using mobile large-scale particle image velocimetry: A proof of concept, Water Resour. Res., 44, W09502, https://doi.org/10.1029/2006WR005441, 2008. a
Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., and Camenen, B.: Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers, J. Hydrol., 394, 42–52, https://doi.org/10.1016/j.jhydrol.2010.05.049, 2010. a, b
Leitão, J. P., Peña-Haro, S., Lüthi, B., Scheidegger, A., and de Vitry, M. M.: Urban overland runoff velocity measurement with consumer-grade surveillance cameras and surface structure image velocimetry, J. Hydrol., 565, 791–804, https://doi.org/10.1016/j.jhydrol.2018.09.001, 2018. a, b
Levesque, V. A. and Oberg, K. A.: Computing discharge using the index velocity method, US Department of the Interior, US Geological Survey, https://pubs.usgs.gov/tm/3a23/ (last access: 18 July 2025), 2012. a
Lewis, Q. W., Lindroth, E. M., and Rhoads, B. L.: Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging, J. Hydrol., 560, 230–246, https://doi.org/10.1016/j.jhydrol.2018.03.008, 2018. a
Lucas, B. D. and Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision, in: Proceedings of the 7th International Joint Conference on Artificial Intelligence – Volume 2, IJCAI'81, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 674–679, http://dl.acm.org/citation.cfm?id=1623264.1623280 (last access: 18 July 2025), 1981. a, b
Masafu, C., Williams, R., Shi, X., Yuan, Q., and Trigg, M.: Unpiloted Aerial Vehicle (UAV) image velocimetry for validation of two-dimensional hydraulic model simulations, J. Hydrol., 612, 128217, https://doi.org/10.1016/j.jhydrol.2022.128217, 2022. a
McMillan, H., Seibert, J., Petersen-Overleir, A., Lang, M., White, P., Snelder, T., Rutherford, K., Krueger, T., Mason, R., and Kiang, J.: How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications, Water Resour. Res., 53, 5220–5228, https://doi.org/10.1002/2016WR020328, 2017. a
Messerli, A. and Grinsted, A.: Image georectification and feature tracking toolbox: ImGRAFT, Geosci. Instrum. Method. Data Syst., 4, 23–34, https://doi.org/10.5194/gi-4-23-2015, 2015. a, b
Moramarco, T. and Singh, V. P.: Formulation of the Entropy Parameter Based on Hydraulic and Geometric Characteristics of River Cross Sections, J. Hydrol. Eng., 15, 852–858, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000255, 2010. a
Muste, M., Fujita, I., and Hauet, A.: Large-scale particle image velocimetry for measurements in riverine environments, Water Resour. Res., 44, W00D19 https://doi.org/10.1029/2008WR006950, 2008. a
Nord, G., Safdar, S., Hasanyar, M., Eze, K. O., Biron, R., Freche, G., Denis, H., Legout, C., Hauet, A., and Esteves, M.: Streamflow Monitoring at High Temporal Resolution Based on Non-Contact Instruments and Manually Surveyed Bathymetry in a River Prone to Bathymetric Shifts, Water Resour. Res., 61, e2024WR037536, https://doi.org/10.1029/2024WR037536, 2025. a
Pearce, S., Ljubičić, R., Peña-Haro, S., Perks, M., Tauro, F., Pizarro, A., Dal Sasso, S., Strelnikova, D., Grimaldi, S., Maddock, I., Paulus, G., Plavšić, J., Prodanović, D., and Manfreda, S.: An Evaluation of Image Velocimetry Techniques under Low Flow Conditions and High Seeding Densities Using Unmanned Aerial Systems, Remote Sensing, 12, 232, https://doi.org/10.3390/rs12020232, 2020. a, b, c
Peña-Haro, S., Carrel, M., Lüthi, B., Hansen, I., and Lukes, R.: Robust Image-Based Streamflow Measurements for Real-Time Continuous Monitoring, Frontiers in Water, 3, 766918, https://doi.org/10.3389/frwa.2021.766918, 2021. a, b, c, d
Perks, M., Pitman, S., Bainbridge, R., Diaz-Moreno, A., and Dunning, S.: An evaluation of low-cost terrestrial lidar sensors for assessing hydrogeomorphic change, Earth and Space Science, 11, e2024EA003514, https://doi.org/10.1029/2024EA003514, 2024. a
Perks, M. T.: KLT-IV v1.0: image velocimetry software for use with fixed and mobile platforms, Geosci. Model Dev., 13, 6111–6130, https://doi.org/10.5194/gmd-13-6111-2020, 2020. a, b
Perks, M. T.: User input files for River Dart image velocimetry analysis, Newcastle University [data set], https://doi.org/10.25405/data.ncl.19762027, 2024a. a, b
Perks, M. T.: Video frame rate analysis, Newcastle University [data set], https://doi.org/10.25405/data.ncl.19762216, 2024b. a, b
Perks, M. T.: Historical flow gauging data acquired at Austin's Bridge, River Dart (UK) by the Environment Agency, Newcastle University [data set], https://doi.org/10.25405/data.ncl.28741436, 2025a. a, b
Perks, M. T.: KLT-IV: Image velocimetry software for use with fixed and mobile platforms (v1.03), Zenodo [software], https://doi.org/10.5281/zenodo.16101408, 2025b. a
Perks, M. T.: CatchmentSci/Unsupervised-image-based-velocimetry-for-automated-computation-of-river-discharge: Release v1.0 (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.16101702, 2025c. a
Perks, M. T.: Surface alpha coefficients following analysis of aDcp transects, Newcastle University [data set], https://doi.org/10.25405/data.ncl.19762237, 2025d. a
Perks, M. T., Russell, A. J., and Large, A. R. G.: Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs), Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, 2016. a, b
Pizarro, A., Dal Sasso, S. F., and Manfreda, S.: Refining image-velocimetry performances for streamflow monitoring: Seeding metrics to errors minimization, Hydrol. Process., 34, 5167–5175, 2020a. a
Pizarro, A., Dal Sasso, S. F., Perks, M. T., and Manfreda, S.: Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow, Hydrol. Earth Syst. Sci., 24, 5173–5185, https://doi.org/10.5194/hess-24-5173-2020, 2020b. a
Pumo, D., Alongi, F., Ciraolo, G., and Noto, L. V.: Optical methods for river monitoring: A simulation-based approach to explore optimal experimental setup for LSPIV, Water, 13, 247, https://doi.org/10.3390/w13030247, 2021. a
Ran, Q.-h., Li, W., Liao, Q., Tang, H.-l., and Wang, M.-y.: Application of an automated LSPIV system in a mountainous stream for continuous flood flow measurements, Hydrol. Process., 30, 3014–3029, https://doi.org/10.1002/hyp.10836, 2016. a
Shi, J. and Tomasi, C.: Good features to track, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 21–23 June 1994, 593–600, https://doi.org/10.1109/CVPR.1994.323794, 1994. a, b, c
Stumpf, A., Augereau, E., Delacourt, C., and Bonnier, J.: Photogrammetric discharge monitoring of small tropical mountain rivers: A case study at Rivière des Pluies, Réunion Island, Water Resour. Res., 52, 4550–4570, https://doi.org/10.1002/2015WR018292, 2016. a
Tauro, F., Piscopia, R., and Grimaldi, S.: Streamflow Observations From Cameras: Large-Scale Particle Image Velocimetry or Particle Tracking Velocimetry?, Water Resour. Res., 53, 10374–10394, https://doi.org/10.1002/2017WR020848, 2017. a
Tauro, F., Selker, J., van de Giesen, N., Abrate, T., Uijlenhoet, R., Porfiri, M., Manfreda, S., Caylor, K., Moramarco, T., Benveniste, J., Ciraolo, G., Estes, L., Domeneghetti, A., Perks, M. T., Corbari, C., Rabiei, E., Ravazzani, G., Bogena, H., Harfouche, A., Brocca, L., Maltese, A., Wickert, A., Tarpanelli, A., Good, S., Alcala, J. M. L., Petroselli, A., Cudennec, C., Blume, T., Hut, R., and Grimaldi, S.: Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle, Hydrolog. Sci. J., 63, 169–196, https://doi.org/10.1080/02626667.2017.1420191, 2018a. a
Tauro, F., Tosi, F., Mattoccia, S., Toth, E., Piscopia, R., and Grimaldi, S.: Optical Tracking Velocimetry (OTV): Leveraging Optical Flow and Trajectory-Based Filtering for Surface Streamflow Observations, Remote Sensing, 10, 2010, https://doi.org/10.3390/rs10122010, 2018b. a, b, c
The MathWorks Inc.: Camera Calibrator: 9.4 (R2022b), The MathWorks Inc. [software], https://www.mathworks.com (last access: 1 June 2023), 2022. a
Thielicke, W. and Sonntag, R.: Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab, Journal of Open Research Software, 9, 12, https://doi.org/10.5334/jors.334, 2021. a, b
Tosi, F., Rocca, M., Aleotti, F., Poggi, M., Mattoccia, S., Tauro, F., Toth, E., and Grimaldi, S.: Enabling image-based streamflow monitoring at the edge, Remote Sensing, 12, 2047, https://doi.org/10.3390/rs12122047, 2020. a
Turnipseed, D. P. and Sauer, V. B.: Discharge measurements at gaging stations, Tech. Rep., US Geological Survey, https://doi.org/10.3133/tm3A8, 2010. a
Vyas, J. K., Perumal, M., and Moramarco, T.: Non-contact discharge estimation at a river site by using only the maximum surface flow velocity, J. Hydrol., 638, 131505, https://doi.org/10.1016/j.jhydrol.2024.131505, 2024. a
Wang, J., Chen, Y., Yao, G., and Li, N.: Adaptive river flow measurement method based on spatiotemporal image velocimetry and optical flow, Water Sci. Technol., 89, wst2024038, https://doi.org/10.2166/wst.2024.038, 2024. a
Short summary
Accurate river flow measurements are essential for understanding river processes. This study evaluates the freely available software KLT-IV for automatic river surface velocity measurement. Analysing over 11 000 videos and comparing them with 274 traditional flow measurements, we find strong correlations (r² = 0.95–0.97) between KLT-IV and traditional methods. KLT-IV effectively estimates river flow with high accuracy, making it a valuable tool for autonomous water resource management.
Accurate river flow measurements are essential for understanding river processes. This study...