Articles | Volume 29, issue 15
https://doi.org/10.5194/hess-29-3727-2025
https://doi.org/10.5194/hess-29-3727-2025
Research article
 | 
14 Aug 2025
Research article |  | 14 Aug 2025

Unsupervised image velocimetry for automated computation of river flow velocities

Matthew T. Perks, Borbála Hortobágyi, Nick Everard, Susan Manson, Juliet Rowland, Andrew Large, and Andrew J. Russell

Related authors

A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations
Robert Ljubičić, Dariia Strelnikova, Matthew T. Perks, Anette Eltner, Salvador Peña-Haro, Alonso Pizarro, Silvano Fortunato Dal Sasso, Ulf Scherling, Pietro Vuono, and Salvatore Manfreda
Hydrol. Earth Syst. Sci., 25, 5105–5132, https://doi.org/10.5194/hess-25-5105-2021,https://doi.org/10.5194/hess-25-5105-2021, 2021
Short summary

Cited articles

Ansari, S., Rennie, C., Jamieson, E., Seidou, O., and Clark, S.: RivQNet: Deep Learning Based River Discharge Estimation Using Close-Range Water Surface Imagery, Water Resour. Res., 59, e2021WR031841, https://doi.org/10.1029/2021WR031841, 2023. a
Bahmanpouri, F., Eltner, A., Barbetta, S., Bertalan, L., and Moramarco, T.: Estimating the Average River Cross-Section Velocity by Observing Only One Surface Velocity Value and Calibrating the Entropic Parameter, Water Resour. Res., 58, e2021WR031821, https://doi.org/10.1029/2021WR031821, 2022. a
Bouguet, J. Y.: Pyramidal implementation of the Lucas Kanade feature tracker, Intel Corporation, Microprocessor Research Labs, https://robots.stanford.edu/cs223b04/algo_tracking.pdf (last access: 18 July 2025), 2000. a, b
Bradley, A. A., Kruger, A., Meselhe, E. A., and Muste, M. V. I.: Flow measurement in streams using video imagery, Water Resour. Res., 38, 51-1–51-8, https://doi.org/10.1029/2002WR001317, 2002. a
Brevis, W., Niño, Y., and Jirka, G.: Integrating cross-correlation and relaxation algorithms for particle tracking velocimetry, Exp. Fluids, 50, 135–147, 2011. a
Download
Short summary
Accurate river flow measurements are essential for understanding river processes. This study evaluates the freely available software KLT-IV for automatic river surface velocity measurement. Analysing over 11 000 videos and comparing them with 274 traditional flow measurements, we find strong correlations (r² = 0.95–0.97) between KLT-IV and traditional methods. KLT-IV effectively estimates river flow with high accuracy, making it a valuable tool for autonomous water resource management.
Share