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Abstract. Accurate, long-term measurements of river flow
are imperative for understanding and predicting a broad
range of fluvial processes. Modern technological advances
are enabling the development of new solutions that are tai-
lored to manage water resources and hazards in a variety
of flow regimes. This study appraises the potential of freely
available image velocimetry software (KLT-IV) to provide
automatic determination of river surface velocity in an un-
supervised workflow. In this research, over 11 000 videos
are analysed, and these are compared with 1-D velocities
derived from 274 flow gauging measurements obtained us-
ing standard operating procedures. This analysis was under-
taken at a complex monitoring site with a partial view of the
channel and river flows spanning nearly 2 orders of mag-
nitude. Following image velocimetry analysis, two differing
approaches are adopted to produce outputs that are represen-
tative of the depth-averaged and cross-section-averaged flow
velocities. These approaches include the utilisation of theo-
retical flow field distributions to extrapolate beyond the field
of view and an index-velocity approach to relate the image-
based velocities to a section-averaged (1-D) velocity. Anal-
ysis of the section-averaged velocities obtained using KLT-
IV, compared to traditional flow gauging, yields highly sig-
nificant linear relationships (r2

= 0.95–0.97). Similarly, the
index-velocity approach enables KLT-IV surface velocities
to be precisely related to the section-averaged velocity mea-
surements (r2

= 0.98). These data are subsequently used to
estimate river flow discharge. When compared to reference

flow gauging data, r2 values of 0.98 to 0.99 are obtained (for
a linear model with intercept of 0 and slope of 1). KLT-IV of-
fers an attractive approach for conducting unsupervised flow
velocity measurements in an operational environment where
autonomy is of paramount importance.

1 Introduction

Accurate hydrological data are fundamental to enable ad-
vances in understanding the physical processes occurring
in river systems (e.g. sediment entrainment, transport, and
channel change), to drive hydraulic models that predict the
extent of floods, and to provide flood warnings to the pub-
lic (McMillan et al., 2017; Tauro et al., 2018a). However,
classical approaches for the determination of key hydrolog-
ical variables such as river discharge are costly to main-
tain and require investment of significant resources (Fekete
and Vörösmarty, 2007). In the absence of measuring struc-
tures (e.g. weirs, flumes), continuous time series of flow dis-
charge are most commonly generated through acquisition of
episodic, paired observations of river stage and flow dis-
charge, from which a stage–discharge relation can be com-
puted with continuous discharge data being subsequently
generated as a function of river stage (Kiang et al., 2018). As
part of this workflow, velocity measurements are often car-
ried out using an acoustic Doppler current profiler (aDcp) or
current meter (Herschy, 2014). However, there is demand for
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lower-cost solutions and for the development of techniques
that are more readily applicable in periods of high flow
when the use of standard approaches may not be possible
or may induce elevated uncertainty (Kidson and Richards,
2005; Di Baldassarre and Montanari, 2009).

One approach that has gained interest in recent years is
the computation of water surface velocity through image-
processing techniques and its subsequent conversion into a
mean section velocity (Jolley et al., 2021). Measurements
of surface velocity can be achieved through the application
of existing algorithms that may be broadly categorised as
follows: particle tracking velocimetry (PTV) (Brevis et al.,
2011; Tauro et al., 2017), large-scale particle image ve-
locimetry (LSPIV) (Fujita et al., 1998; Muste et al., 2008), or
space–time image velocimetry (STIV) (Fujita et al., 2007).
These techniques were initially employed to acquire flow
measurements from fixed stations (Bradley et al., 2002;
Hauet et al., 2008; Stumpf et al., 2016) or temporary ground
stations (Jodeau et al., 2008; Kim et al., 2008; Dramais et al.,
2011). These have subsequently been applied to imagery ac-
quired from uncrewed aerial systems (e.g. Lewis et al., 2018;
Masafu et al., 2022) and mobile phones (e.g. DischargeApp;
Peña-Haro et al., 2021).

More recently, optical flow algorithms have been success-
fully applied as a means of computing surface velocities from
fixed cameras (Tauro et al., 2018b; Lin et al., 2019; Khalid
et al., 2019) and uncrewed aerial systems (Perks et al., 2016;
Eltner et al., 2020). These computer vision algorithms, e.g.
the Kanade–Lucas–Tomasi algorithm (Lucas and Kanade,
1981; Tomasi and Kanade, 1991; Shi and Tomasi, 1994), au-
tomatically identify pixels that are distinct from their neigh-
bours, and these distinct features can be iteratively tracked
through a sequence of images. These approaches are compu-
tationally very efficient and capable of performing analysis
up to 2 orders of magnitude faster than traditional LSPIV and
PTV approaches (Tauro et al., 2018b). Benchmarking stud-
ies have found these algorithms to produce velocity measure-
ments comparable to current meter data (Tauro et al., 2018b)
and aDcp data (Pearce et al., 2020) and to produce more re-
liable measurements than traditional image velocimetry ap-
proaches in the laboratory and field when using thermal cam-
eras and thermal tracers (Lin et al., 2019).

However, regardless of the tracking algorithm adopted,
the application of image velocimetry in a continuous, auto-
mated, and unsupervised workflow for the purpose of sensing
river flows continues to pose a challenge. Generally, in order
to ensure high-quality measurements under all conditions,
image-based approaches benefit from a homogeneous distri-
bution of tracers on the water surface, which is seldom the
case when sensing complex natural fluvial systems. But more
specifically, each approach requires parameterisation which
can be difficult to define for all flow and environmental con-
ditions to which the system may be exposed. For example, in
the case of LSPIV, frame extraction rates and interrogation
and search areas should be appropriately defined for opti-

mal performance, and whilst the latter have been improved
through the application of spatio-temporally adaptive search
areas (Fleit and Baranya, 2019) and multiple passes and de-
forming windows (e.g. Thielicke and Sonntag, 2021), they
are still a critical consideration. Similarly, despite recent ad-
vances in the development of STIV, the automatic detection
of the main orientation of texture in instances of low-quality
space–time images (STIs) remains problematic (Wang et al.,
2024).

There are, however, notable exceptions in the develop-
ment and application of automated and unsupervised work-
flows for sensing river flow velocities using image sequences.
Hauet et al. (2008) deployed an experimental LSPIV-based
system for 23 months on the Iowa River and produced exem-
plary results by analysing image pairs acquired at 1 s inter-
vals with constant interrogation and search areas. Ran et al.
(2016) subsequently deployed an automated Raspberry Pi-
based LSPIV system for continuous monitoring of flood flow
measurements in a mountainous catchment where spot veloc-
ity measurements indicated errors of generally less than 8 %.
More recently, another cross-correlation-based approach was
presented by Photrack AG. Their system (DischargeKeeper)
was shown to be capable of acquiring continuous image ve-
locimetry results with a high degree of accuracy in three
specific case studies (Peña-Haro et al., 2021). The applica-
tion of optical flow algorithms in the context of continuous
and automated velocimetry workflows has also garnered in-
terest due to their relative insensitivity to parameterisation
(e.g. Pearce et al., 2020; Tosi et al., 2020). This approach
was used by Hutley et al. (2023), where they presented their
computer vision stream gauging (CVSG) system which uses
the Farneback algorithm to solve the optical flow equation
for determining surface flow fields. In an application of the
CVSG system to the Tyenna River (Q≈ 1–20 m3 s−1) with
measurements made at a distance of 5.9 to 7.3 m from the
camera, results were strong under all conditions (with Nash–
Sutcliffe efficiency (NSE) values of between 0.91–0.97).
However, in their deployment on the larger Paterson River
(Q≈ 0–600 m3 s−1) with measurements made at a distance
of 0 to 22.5 m from the camera, surface flow fields were,
in some instances, poorly resolved. Hutley et al. (2023) at-
tributed this to challenging water surface textures, the dis-
tance from the camera to the water surface, and the chan-
nel cross-section approaching the eye level of the camera
at higher observed flows. Several of these issues are likely
to be intermittently present during continuous deployments
of camera systems for sensing flow fields, and appropriate
methods for mitigating these are required. In the case of both
Peña-Haro et al. (2021) and Hutley et al. (2023), challenges
that resulted in the flow field being poorly resolved are coun-
tered through the application of algorithms that over time
“learn” the shape of surface velocity profiles for a specific
site, with this being subsequently applied to any instances of
missing data in the sensed cross-section.

Hydrol. Earth Syst. Sci., 29, 3727–3743, 2025 https://doi.org/10.5194/hess-29-3727-2025



M. T. Perks et al.: Unsupervised image velocimetry 3729

Similarly to Hutley et al. (2023), in the research paper we
present here, we encounter challenges in the automated sens-
ing of water surface velocities across the full range of flow
conditions observed (flow discharge of 1.7 to 145 m3 s−1).
Through application of a computer-vision-based workflow
implemented within KLT-IV (Perks, 2020), we assess the po-
tential for the automatic determination of river flow veloci-
ties in a complex setting where there is a partial view of the
river channel. In order to achieve this, we have the following
research objectives: (i) to examine how 1-D velocity mea-
surements derived from traditional flow gauging techniques
compare with measurements obtained using KLT-IV, (ii) to
examine and quantify the effects of data-driven fitting ap-
proaches on subsequent section-averaged velocity estimates,
and (iii) to assess whether an index-velocity approach can
be applied to convert distributed surface velocities obtained
using KLT-IV to a section-averaged velocity.

2 Methods

2.1 Experimental site

The site of the field experiment takes place at Austins Bridge
on the River Dart (50.479247° N, 3.761540° W; Fig. 1). A
river flow gauging station was established at this location
by the Environment Agency in 1958, and it represents the
longest flow gauging record in the River Dart catchment. At
this location, the upstream contributing area is 247.6 km2.
With an altitudinal range of 24–602 m, the catchment is char-
acterised by steep relief. The catchment responds rapidly to
rainfall inputs and has a long-term annual rainfall total of
1771 mm. At the experimental site, the channel width is ap-
proximately 25 m under normal flow conditions. It is a pre-
dominantly alluvial channel, with some exposed bedrock, in-
cluding a bedrock step which acts as the downstream con-
trol. Geodetic surveys undertaken in 2010, 2018, and 2020
indicate that the cross-section was stable during the time pe-
riod of the experiment. Between 2010–2018 there was 5 %
variation in the cross-sectional area across the full range of
flows experienced, with negligible change between 2018–
2020. The average (Q50) flow is 7 m3 s−1, with a median an-
nual maxima flood (QMED) of 231 m3 s−1. The maximum
gauged flow of 273.5 m3 s−1 was measured in January 1984,
but the largest estimated flow on record occurred in Decem-
ber 1979, with an estimated peak discharge of 550 m3 s−1

(UK CEH, 2024).

2.2 Reference data

Whilst the flow gauging record at the experimental site began
in 1959, the channel geometry and downstream control were
modified by the 1979 flood. Therefore, for the purposes of
this study we exclude reference flow measurements that were
acquired prior to 1980. The reference data consist of river
flow measurements (Q) that were made using a variety of ap-

Figure 1. Location of the field experiment on the River Dart at
Austins Bridge (red circle). River network and flow direction are
shown by the blue lines and arrows, respectively. Aerial imagery
provided by Getmapping: EDINA Aerial Digimap Service (2022).
Inset map shows the monitoring location in the context of the UK.

proaches (Perks, 2025a). Of the 303 gauging measurements
made between 1980–2018, 274 were obtained at the same
stage as when a video was recorded (±0.01 m). Of these 274
measurements, 25 used an aDcp (stationary or moving-boat
method), with the remainder using a combination of me-
chanical and digital impeller-type devices (e.g. OTT C31).
Non-aDcp measurements were acquired using a single-point
measurement at either 0.5D (22 %), 0.6D (78 %), or the sur-
face (< 1 %), with subsequent application of the velocity–

https://doi.org/10.5194/hess-29-3727-2025 Hydrol. Earth Syst. Sci., 29, 3727–3743, 2025



3730 M. T. Perks et al.: Unsupervised image velocimetry

area method. These data were collected by either wading in-
stream (46 %) or deploying the measuring device from the
permanent cableway present (54 %). Wading measurements
were made in the stage range of 0.243–0.544 m, which is
equivalent to a discharge range of 1.3–4.6 m3 s−1. Beyond
these low flows and up to the peak gauged stage of 2.27 m
(equivalent to a flow rate of 145 m3 s−1), the cableway was
used for gauging. The lower end of the gauged range rep-
resents flow conditions that approximate the long-term 95 %
exceedance value, whereas the highest flows analysed are of
greater magnitude than the long-term 1 % exceedance value
(UK CEH, 2024). For comparison with the 1-D flow esti-
mates obtained with KLT-IV, we convert the reference Q
value to a 1-D reference velocity [Ua] by dividingQ over the
cross-sectional area, which is calculated from stage measure-
ments at the time of gauging and geodetic cross-section sur-
veys. The 1-D velocities (Ua) determined from the 274 En-
vironment Agency gauging measurements range from 0.12
to 2.33 m s−1, with a median of 0.39 m s−1. River flows with
lower velocities are more frequently gauged than are periods
of higher velocity, resulting in the gauged data being posi-
tively skewed (skewness value of 1.2). Of the gauged flows,
24 % have Ua in excess of 1 m s−1 and 5 % have Ua in ex-
cess of 2 m s−1. This is indicative of the challenges associ-
ated with acquiring flow gauging data using standard operat-
ing procedures under high-flow conditions.

2.3 Image acquisition

The image acquisition hardware consists of an obliquely
mounted HikVision DS-2CD2T42WD-I8 6 mm IP camera
connected via Ethernet cable to a Raspberry Pi model 3B.
The camera is located on the true right bank at a height of
4.75 and 2.55 m above the water surface at the minimum and
maximum observed river stage, respectively. The camera is
mounted at an oblique angle of 77° from nadir. Despite the
adoption of an oblique camera angle, the camera does not ob-
serve between 4.6 and 8.6 m of the water surface (in the near
distance). This accounts for between 21 %–26 % of the cross-
section across the full range of flow conditions observed in
this study (Fig. 2). The images are acquired at a resolution
of 1920× 1080 px at a rate of 19.99± 0.5 Hz (95 % confi-
dence interval; Perks, 2024b). The image sequences are of
10 s duration and collected at 15 min intervals. In this analy-
sis we utilise videos obtained during daylight hours between
March 2018 and March 2019. Low-light and nighttime im-
agery (determined when infrared sensing was triggered) was
removed due to inconsistent visibility of surface features.
The first 3 s of each recording was eliminated from the anal-
ysis as the associated frames experienced compression and
frame rate issues.

2.4 Image calibration

Prior to image analysis, a site-specific camera model was de-
veloped to mathematically describe intrinsic parameters (e.g.
focal length, lens distortion) and external parameters (e.g. lo-
cation and orientation) (Messerli and Grinsted, 2015; Perks
et al., 2016). This was required to enable transformation from
image coordinates to geographic coordinates. Within KLT-IV
the user must provide the following: (i) the surveyed location
of ground control points (GCPs), (ii) initial estimates of the
camera location [x,y,z] and orientation, and (iii) the known
height of the water surface being sensed. The user may also
provide the intrinsic parameters of the camera if known.
In order to calculate the intrinsic parameters of the camera
model (i.e. radial and tangential distortion coefficients, cam-
era focal length, and image centre parameters), geometric
calibration was conducted using an 841× 1189 mm checker-
board pattern and the Camera Calibrator App within MAT-
LAB 2019b (The MathWorks Inc., 2022). A total of 40 im-
ages were used in this process, which resulted in a mean
re-projection error of 0.61 px. The pixel coordinates of nine
GCPs across the camera’s field of view were obtained from
imagery acquired by the HikVision camera, and the geo-
graphical coordinates of the GCPs were determined through
acquisition of a high-spatial-resolution point cloud using a
Leica MS50 multi-station. The dynamic nature of the water
surface elevation over time is taken into account by automat-
ically setting the water surface representation (zm[x,y] ). This
was achieved through the definition of the water surface ele-
vation from the point cloud at the time of the survey (Sinitial),
the river stage at the time of survey (hinitial), and continuous
river stage measurements performed using a float and coun-
terweight shaft encoder at 15 min intervals (h):

zm[x,y] = Sinitial+ (h−hinitial). (1)

The camera location [x,y,z] and view direction [yaw,
pitch, roll] were initially estimated using the point-cloud sur-
vey. These characteristics were then defined as free parame-
ters and optimised to minimise the square projection error of
the GCPs using a modified Levenberg–Marquardt algorithm
(Fletcher, 1971; Messerli and Grinsted, 2015).

2.5 Image processing

Prior to image velocimetry analysis, image sequences were
orthorectified using the optimised camera model described in
Sect. 2.4 and exported with a pixel size of 0.01 m× 0.01 m.
Subsequently, these were subject to pre-processing to en-
hance the visibility of surface features. Specifically, high-
frequency components of the orthorectified imagery were en-
hanced through application of a high-pass filter with a ker-
nel size of 32 px× 32 px. This was achieved by calculating
a low-passed version of the original image and subtracting it
from the original (Thielicke and Sonntag, 2021). Additional
inputs were also defined including the region of interest to
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Figure 2. Schematic illustrating the monitoring station setup and the camera’s partial view of the river cross-section. Cross-section data are
presented up to the maximum observed river level. Dashed red lines illustrate the camera’s field of view. The image presented is an orthophoto
produced from footage acquired on 29 December 2018 at 13:00 GMT, when the flow discharge was ≈ 12 m3 s−1 and section-averaged flow
velocity was≈ 0.54 m s−1. Vectors represent the direction and velocity of (a) only those features that pass through the cross-section of interest
and (b) all tracked features within the region of interest. Vectors coloured black are trajectories that have been filtered. In the application of
theoretical flow field distributions (a; Sect. 2.6.1), surface velocity data are converted to a depth-averaged velocity before being binned into
one of 20 equal-width cells, enabling the cell-averaged velocity to be obtained. Blue dashes represent the spatial extent of the detected surface
features, and extrapolation of the flow field is required beyond this extent. The foundation of the velocity index approach (b; Sect. 2.6.2) is
that the average surface velocity from across the field of view can be linearly related to the 1-D velocity.

ensure that areas of the image containing on screen display
information (e.g. timestamp) and areas consisting of artificial
noise (e.g. tree branches) were excluded from the analysis.
The primary flow direction was also defined to enable both
the primary and the secondary components to be computed.

The workflow for image velocimetry analysis consists of
the automatic detection of naturally occurring surface wa-
ter features using a minimum-eigenvalue algorithm (Shi and
Tomasi, 1994). Features were subsequently tracked from
frame to frame using a MATLAB implementation of the
Kanade–Lucas–Tomasi algorithm (Lucas and Kanade, 1981;
Tomasi and Kanade, 1991; Shi and Tomasi, 1994; Perks,
2020). The adopted approach tracks windows of features
of 31 px× 31 px in size, from which an affine motion field
is generated to assign velocities to different points within
the window. Instances with pixel motion of lengths greater
than the pre-defined window size are handled through the
use of pyramid levels (Bouguet, 2000). This approach ef-
fectively down-samples the original image by a factor of 2

between each pyramid level; three pyramid levels were used
in our analysis. The lowest pyramid level provides an ini-
tial estimate of the pixel displacement using the coarsest im-
agery. This is then refined in a recursive fashion through the
pyramid levels up to the original image resolution (Bouguet,
2000).

Evaluation of feature tracking success is achieved through
implementation of a forward–backward error propagation
scheme. Firstly, forward trajectories are computed and stored
based on apparent feature movement from the first to the last
frame in the sequence. These trajectories are then compared
with those derived by backward-tracking the feature from the
last to the first frame in the sequence. If the difference be-
tween the trajectories exceeds 1 px, the trajectory is consid-
ered incorrect and removed from analysis (Kalal et al., 2010).

Features are tracked over a period of 0.50 s (10 frames),
from which the start and finish positions (in metric units)
are stored. These are converted to displacement rates (m s−1)
and broken down into their downstream and secondary ve-
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locity components. Two post-processing approaches are im-
plemented to filter spurious vectors, namely the removal of
(i) vectors that deviate from the user-defined flow line by
≥ 45° and (ii) vectors with a (user-defined) displacement of
< 0.1 m s−1. The former acts to filter those vectors that are
likely spurious based on their direction, whereas the latter
filters objects that are close to being stationary. These typi-
cally represent objects located on the channel margins or re-
flections on the water surface (e.g. bank-side reflections ob-
served in Fig. 2b).

2.6 Experimentation

Upon the reconstruction of the surface velocity field, it is
common for these observations to be converted to data that
describe the depth-averaged velocity at multiple points in the
cross-section. This forms the basis for the widely adopted
velocity–area method of flow discharge calculation (Her-
schy, 2014). However, when applying image velocimetry
techniques in natural fluvial settings, it may not be possible
for equidistant velocity measurements to be extracted from
across the full channel width (e.g. Peña-Haro et al., 2021;
Hutley et al., 2023). Gaps in measurements can be caused by
variability in lighting, inhomogeneous tracer distribution, re-
duced pixel resolution of the far field, or the field of view fail-
ing to capture the active channel width (as evident in Fig. 2a).
Several approaches have been adopted to account for these
failings, which commonly involve either interpolation be-
tween cells of missing data or extrapolation beyond the ob-
servations through utilisation of theoretical flow field distri-
butions (Leitão et al., 2018; Le Coz et al., 2010; Fulford and
Sauer, 1986). Conversely, an alternative approach for con-
verting the information contained within the surface velocity
flow field to a flow velocity that is representative of the cross-
section is through the development of empirical relationships
between observed and reference observations (e.g. adoption
of an index-velocity approach (Levesque and Oberg, 2012)
or application of entropy theory (Chiu, 1989; Moramarco
and Singh, 2010; Bahmanpouri et al., 2022; Vyas et al.,
2024; Nord et al., 2025)). Here we test these two distinct ap-
proaches, which are described in the following sections and
conceptualised in Fig. 3.

2.6.1 Utilisation of theoretical flow field distributions

In order to interpolate between and extrapolate beyond the
extent of the surface velocity field, one of several assump-
tions about the flow field may be employed. Here we adopt
three approaches: an assumption that the Froude number is
constant within a cross-section (Le Coz et al., 2010; Ful-
ford and Sauer, 1986) and the adoption of quadratic and cu-
bic polynomials (Leitão et al., 2018). To apply the constant-
Froude-number approach, linear regression between cell
depth and cell average velocity was performed with the
model intercept constrained to zero. For cells with miss-

ing data, velocities were estimated by multiplying the cell
depth with the slope of the linear function. Where quadratic
or cubic polynomials were used to estimate velocities in
cells with missing data, data fitting was performed using
the paired measurements of distance along the section- and
cell-averaged velocity, with the addition of velocity values
of zero at the channel boundaries. Cells in the section with
missing values were subsequently estimated using the ob-
tained quadratic or cubic polynomial function. Upon appli-
cation of these techniques, average velocities for 20 cells of
equal width were established (Fig. 2a). This was then con-
verted to a depth-averaged velocity using a conversion fac-
tor (α) of 0.87. This site-specific value was obtained follow-
ing analysis of 60 aDcp transects acquired between 2009 and
2018 (Perks, 2025d). Subsequently, the average cell veloc-
ity is multiplied by the cell area to give the unit discharge of
each cell from which the flow discharge estimate at the cross-
section of interest is obtained. This discharge value is divided
by the wetted cross-sectional area to provide the image-based
section-averaged (or 1-D) velocity (Uxs).

Our analysis focuses on the comparison between Uxs and
the section-averaged (1-D) velocities derived from refer-
ence observations Ua . A total of 274 reference observa-
tions were made at the same stage as when videos were
acquired (±0.01 m), spanning the flow discharge range of
1.27–145 m3 s−1. To calculate the (1-D) velocities derived
from reference flow gauging measurements, we simply di-
vide the measured discharge by expected cross-sectional area
based on a combination of the measured river stage and
geodetic surveys. This approach is adopted even in the case
where aDcp gauging measurements act as the reference flow
data due to the potential for bias in cross-section measure-
ments from aDcp data (discussed in Sect. 4.2). For each
of the reference measurements, videos acquired at the same
river stage (±0.01 m) are selected, and the medians of the 1-
D velocities Ũxs are used for further analysis. Additionally,
a comparison between the KLT-IV depth-averaged velocities
and SonTek RiverSurveyor M9 aDcp velocities is presented
for eight flow gauging measurements. The choice of video
to compare with the aDcp gauging data was based on the
selection of Uxs that corresponds most closely with Ũxs for
the same flow stage as when the aDcp data were acquired
(±0.01 m).

2.6.2 Index velocity

Using a combination of traditional flow gauging measure-
ments and KLT-IV-derived velocities, relationships between
the mean surface velocity from across the camera’s field of
view (index velocity, U s) and the reference velocity (Ua) can
be generated. This was initially calculated for the calibration
period (March–June 2018) and then applied and tested for
the validation period (July 2018–March 2019). During these
time periods, videos were selected for analysis that were ac-
quired at river levels coinciding with those of the available
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Figure 3. Schematic diagram illustrating the workflow of the data analysis as described in Sect. 2.6. ∗ Analysis settings are described in
Sect. 2.3–2.5. Items within the red box relate to the methods presented in Sect. 2.6.1, and items in the blue box are related to Sect. 2.6.2.
† Derivation of river stage measurements in the local coordinate system are shown in Eq. (1). ‡ Results are presented in Sect. 3.1. § Results
are presented in Sect. 3.2.

flow gauging measurements (±0.01 m). During the calibra-
tion period, 214 reference observations were made at the
same stage as when videos were acquired, spanning the flow
discharge range of 1.58–105 m3 s−1. During the validation
period, 274 reference observations were made at the same
stage as when videos were acquired, spanning the flow dis-
charge range of 1.27–145 m3 s−1. For each video, U s was
calculated and the median for each river level correspond-
ing to a reference flow gauging measurement was computed
[Ũs]. The derived Ũs values were compared with Ua through
the application of least-squares regression between the two
variables (Sect. 3.2).

Given the required calibration step, the sensitivity of the
calibration to the number of Ua observations is evaluated.
The number of measurements used in the calibration (n)
ranged from 1–50. For each simulation a random 1-D ref-
erence velocity Ua was selected. Simultaneously, one U s
value, obtained at the same river stage as when the refer-
ence gauging took place, was also sampled with replace-
ment. For each pairing, the difference between U s and Ua
is calculated, and the mean percent difference [Dk] is cal-
culated as the number of flow gauging measurements is it-
eratively increased (n= 1 : 50). These simulations were exe-

cuted 100 000 times to account for the effects of sample size.

Dk =
1
n

n∑
i=1

(U si −Uai )/Uai · 100 (2)

Values of the samples selected for each step of the cali-
bration (n= 1–50) are conditioned by the frequency distri-
bution of the gauging data, with the likelihood of sampling a
particular value being dependent on its frequency in the pop-
ulation. Inevitably, few flow gauging measurements are ob-
tained at the highest flow magnitudes, with the median of the
gauged discharge values being 6 m3 s−1. Therefore, the cali-
bration sample protocol reflects the distribution of the actual
flow gauging record.

3 Results

3.1 Velocity reconstruction

When we consider the relationships between Ũxs and Ua ,
we can identify strong linear relationships (r2

= 0.95–0.96),
with the linear models having intercepts ranging from −0.01
to 0.032 and slopes ranging from 1.029 to 1.091 (Fig. 4).
The model coefficients presented indicate that atUa values>
0.59 m s−1, the constant-Froude-number approach produces
velocity estimates in closest agreement with the reference ve-
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locity (Fig. 4c). At Ua values < 0.59 m s−1, the quadratic
function performs objectively better than the constant-
Froude-number approach but by no more than 0.03 m s−1.
The performance of the quadratic model (Fig. 4a) and cubic
model (Fig. 4b) for interpolation and that of extrapolation
of missing data within the cross-section are comparable. For
each of the fitting methods adopted, Ũxs generally underes-
timates relative to Ua . However, this relationship is not con-
stant, with some variability observed. Taking the constant-
Froude-number approach as an example, at reference veloci-
ties of between 0.12 and 0.5 m s−1, 1-D estimates differ from
the reference values by +12.5 %, by −20 % between 0.5 and
1.0 m s−1, and by −10 % between 1.0 and 2.0 m s−1, and
they differ by −0.8 % for reference velocities in excess of
2.0 m s−1.

Comparison of velocity profiles generated by SonTek
RiverSurveyor M9 aDcp to those produced using KLT-IV
provides further insight into the variation between mod-
ern hydrometric methods (ISO 24578:2021) and the image-
based approach. Overall, the mean absolute percentage error
of the 1-D velocity estimates derived from the available Son-
Tek M9 aDcp data and IV outputs is 9.8 %, with the aDcp
and KLT-IV profiles being most similar under high-flow con-
ditions (Q= 48–101 m3 s−1; Fig. 5a–b). For most examples,
the area of the cross-section most proximal to the camera
(distance of 10–20 m from left bank) generally closely cor-
responds to the aDcp data. However, there are exceptions to
this. Under the highest-flow conditions (shown in Fig. 5a–b),
the velocities in the near field of the imagery are not recon-
structed accurately, with overestimations of up to 50 % (in
the case of panel a) and underestimations of up to 75 % (in
the case of panel b). In addition, whilst we observe that the
constant-Froude-number extrapolation procedure works well
in the majority of cases (Fig. 5a–e), there are significant over-
estimations in the far field of the imagery observed under
low-flow conditions (Q= 3–7 m3 s−1; Fig. 5f–h). Potential
sources of these errors are discussed in Sect. 4.3.

3.2 Application of index velocity

The hydrological conditions observed during the calibration
period led to the retention of 214 flow gauging measurements
that were acquired at the same river stage (±0.01 m) as the
videos. This serves as a calibration dataset to enable the par-
tial view of the camera to be accounted for. As a consequence
of (i) the camera’s field of view failing to capture the entire
cross-section and (ii) surface velocities being reconstructed
as opposed to the depth-averaged velocities, it was initially
hypothesised that U s 6= Ua . To first explore the nature of this
relationship, the deviation between U s and Ua is simulated.
When only one Ua value is used to calibrate U s , the data
indicate that U s overestimates relative to Ua by 26 %; how-
ever, there is a great deal of variability in the outcome, with
the IQR spanning 36 % (Fig. 6). As the number of Ua values
used in the calibration increases, the variability is reduced,

with the median percentage difference becoming stabilised
when eight flow gauging measurements are used. In this sce-
nario, the median output corresponds closely to that when
50 flow gauging measurements are used (27.4 % vs. 26.7 %).
This analysis indicates that U s has a tendency to overesti-
mate relative to Ua and that the relationship between these
two variables is influenced by the number of flow gauging
measurements that are used to predict the relationship.

This overestimation of U s relative to Ua is further high-
lighted when all 214 reference velocity measurements (Ua)
are compared with the median of the distributed velocity
measurements for the same river stage Ũs . In this instance, a
strong linear relationship (r2

= 0.96; p < 0.001) can be ob-
served (Fig. 7a). However, Ũs overestimates relative to Ua
by 16 % on average. The calculation of the offset between
Ũs and Ua is subsequently applied to the Ũs measurements
obtained during the validation period (n= 274), resulting
in a much closer correspondence between the two variables
(r2
= 0.98; p < 0.001, Fig. 7b). This finding indicates that

the applied transformation developed during the calibration
period holds true beyond that period with an acceptable level
of uncertainty.

4 Discussion

4.1 Application

Whilst this article has examined the inter-comparability of
1-D velocities obtained by image-based approaches and ref-
erence measurements made via a variety of methods (e.g.
current flow meter, aDcp), the utility of 1-D measurements
obtained by image velocimetry techniques is likely to be
in the development or refinement of stage–discharge rat-
ing curves. When we utilise the velocity data obtained by
either the constant-Froude-number assumption or the dis-
tributed index-velocity approach, we are able to generate dis-
charge estimates that are broadly comparable with those gen-
erated by the standard Environment Agency flow gauging
approaches (Fig. 8). When the relationship between image-
based and reference gauging data is evaluated using a lin-
ear model with intercept of 0 and slope of 1, the coefficient
of determination (r2) values for the constant-Froude-number
assumption and the distributed index-velocity approach are
0.98 and 0.99, respectively, with root mean squared error
(RMSE) values of 4.57 and 4.05 m3 s−1, respectively, and
a percent bias (PBIAS) of 5.5 % and 3.4 %, respectively
(Fig. 8b). The particular utility of this approach is that im-
age velocimetry analysis can be conducted in an autonomous
environment following camera calibration, with inputs of a
water level time series that correspond to the time of video
acquisitions. However, additional information such as the
cross-section geometry and an estimate of α to convert wa-
ter surface to depth-averaged flow velocities or information
relating the surface velocity from across the image with a
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Figure 4. Relationship between the image-based 1-D flow velocity (Ũxs) and 1-D flow velocity derived from Environment Agency flow gaug-
ing measurements (Ua). Interpolation between and extrapolation beyond observed cross-section velocities is achieved using (a) a quadratic
function, (b) a cubic function, and (c) a constant-Froude-number assumption. Red dots are used to show the Ũa values that are plotted in
Fig. 5.

https://doi.org/10.5194/hess-29-3727-2025 Hydrol. Earth Syst. Sci., 29, 3727–3743, 2025



3736 M. T. Perks et al.: Unsupervised image velocimetry

Figure 5. A selection of cross-section velocities illustrating the deviation between the SonTek aDcp velocity magnitudes (grey circles) and
KLT-IV-generated velocities for a range of flow conditions. Measured velocities are shown by the filled red circles, whereas estimates based
on the constant-Froude-number assumption are shown by the open red circles. Error bars illustrate the standard deviation of stationary aDcp
measurements. Flow discharge measurements for the aDcp transects along with the percent difference between discharge reported by aDcp
and the reconstructed discharge using KLT-IV are presented in each subplot.

section-averaged velocity is also required. When it is consid-
ered that the reference data used represent significant efforts
of hydrometry teams to make field measurements in a range
of challenging conditions between 1980–2018 and that the
imagery used in this analysis was acquired for under 1 year
and autonomously analysed in an unsupervised workflow, we

can begin to identify the potential gains that wider employ-
ment of these techniques in appropriate environments may
bring.
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Figure 6. Results of Monte Carlo simulations, where the number of
paired selections of Ua and U s are varied to determine their influ-
ence on the calibration of the KLT-IV approach.

4.2 Uncertainties in reference datasets

The comparisons conducted here have involved the compu-
tation of 1-D velocities using the observed Q divided by
the cross-sectional area at the time of observation based on
geodetic survey measurements. Our analysis indicates that
over an 8-year period (2010–2018), the cross-section across
the full range of flows varied by 5 %. There is therefore a
degree of uncertainty concerning the stability of the cross-
section across the time period for which reference gaug-
ing measurements were obtained (1980–2018). Any vari-
ability will have a direct influence on the reference 1-D
velocities calculated. In addition, the wetted cross-section
area calculated through the combination of geodetic sur-
vey and stage measurements has previously been found to
differ from aDcp-derived cross-sectional areas, with cross-
section-averaged depths being underestimated by between
6 %–9.5 % (Kim et al., 2015). In the present study, the mean
percentage error between these cross-section measurement
methods is 7 % (12.5 % for RDI StreamPro, 5 % for SonTek
RiverSurveyor M9) ±10 % (95 % CI), which should be ac-
knowledged as a potential source of uncertainty. In addition,
given that the reference velocities used in this analysis have
been acquired from as early as 1980, there are inherent un-
certainties in the acquisition methods adopted that cannot be
quantified.

4.3 Uncertainties in image analysis

Analysis of the aDcp transects enabled the computation
of an α value relating surface velocity measurements to a

Figure 7. Bi-plot and linear fit between KLT-IV-derived velocity
measurements [Ũa] and reference velocity measurements [Ua] dur-
ing (a) the calibration period and (b) validation period. The solid
line represents the linear fit between variables, with the 1 : 1 line
also shown (dashed line).

depth-averaged velocity. Analysis shows this value to be
0.87± 0.07 (95 % CI), a value within the expected range for
unmodified channels consisting of a gravel bed (Turnipseed
and Sauer, 2010). Given that this value is anticipated to vary
as a function of water depth or relative roughness, it is of
interest that no clear relationship between stage and α is ob-
served. This complexity exemplifies the importance of ac-
knowledging the role of α in uncertainty assessments (Hauet
et al., 2018).
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Figure 8. (a) Stage–discharge plots for the River Dart at Austins Bridge (UK) following analysis of imagery acquired over a 1-year period
(shown in the red and blue) and developed using conventional flow gauging techniques between 1980–2018 (grey). (b) Comparison between
image-based discharge estimates and reference discharge estimates with 1 : 1 line shown.

The videos analysed here are of 10 s duration, of which
the first 3 s was discarded due to frame rate and compression
issues. This is a relatively short period of time for analysis to
be undertaken, with research illustrating the potential bene-
fits of analysing longer-duration videos (Pumo et al., 2021),
especially under poor seeding conditions (Dal Sasso et al.,
2018). Furthermore, if longer-duration videos are available,
it may be possible to limit analysis to the image sequences
with optimal seeding characteristics, which can lead to po-
tential gains in accuracy (Pizarro et al., 2020a, b).

Determination of the intrinsic parameters of the HikVision
DS-2CD2T42WD-I8 6 mm IP camera used in this study was
achieved in controlled laboratory conditions prior to deploy-
ment. Whilst determining these parameters can reduce the
degrees of freedom during the camera model optimisation
process, it should be noted that the coefficients describing
the lens are not necessarily stable. An assessment performed
by Elias et al. (2020) found that the intrinsic parameters of
low-cost cameras were prone to vary as a function of temper-
ature. When imagery was acquired from cold (i.e. immedi-
ately after switching on the device), projection of 2-D image
coordinates to 3-D object space resulted in significant errors
of up to 0.1 m at a distance of 10 m. However, the study also
found that when imagery was acquired following a warm-
up period, errors were greatly reduced (0.01–0.02 m at a dis-
tance of 10 m). Whilst the HikVision DS-2CD2T42WD-I8
6 mm IP camera used in this study may have similar traits to
those investigated by Elias et al. (2020), the camera received
power from a mains outlet continuously, therefore minimis-
ing temperature-related errors during the initialisation pro-
cess.

Determination of the external orientation parameters
(EOPs) of the camera at the site of the experiment was
achieved by optimising a camera model based on the dis-
tribution of GCPs surveyed at the time of installation. Our
study assumes that the location of these GCPs is stable (in
image space) throughout the experiment with no camera
movement either within a single video capture or between
video captures. To assess the stability of the camera orienta-
tion between the start and the end of the monitoring period
(March 2018–January 2019), the pixel locations of clearly
visible points (corners of stage boards located on the far
bank) were manually extracted. Pixel locations of these fea-
tures were found to be consistent between the video captures
(between 1–2 px). These pixel offsets approximate 1–3 cm
in real-world distances, which is within the general uncer-
tainty of the registration process. In instances where place-
ment of permanent GCPs allow, updating the camera model
for each video acquisition would enable a time series of plat-
form poses to be generated (e.g. Perks et al., 2024) and move-
ment of the platform to be accounted for (e.g. Eltner et al.,
2021). However, identification of targets with changeable vi-
sual appearance over time would need to be addressed in an
unsupervised workflow. In terms of the stability of image se-
quences within a single video, the impacts of small frame-to-
frame movements as a consequence of environmental con-
ditions (e.g. wind) may have an impact on the quality of
velocimetry reconstruction, and we do not seek to quantify
these effects here. Our method of analysing multiple videos
for a given flow stage and adopting the median of the 1-D ve-
locity estimates for comparison purposes seeks to minimise
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the effects of outliers that may be generated as a result of
adverse external environmental conditions.

In the generation of orthophotos which are subsequently
analysed to determine feature displacement, an assumption
is made that the water surface is planar. Under normal flow
conditions, this assumption is valid. However, under high-
flow conditions, surface waves of considerable height (�
10 cm) develop, resulting in variable water surface elevations
throughout the domain. Given the perspective of the camera,
these surface undulations may result in biased flow veloc-
ity estimates due to part of the downstream component being
registered as normal to the main flow line or alternatively part
of the normal component being registered as contributing to
the downstream flow rate.

Given the requirement for this analysis to be unsupervised
and automated, image enhancement was limited to applica-
tion of a high-pass filter only. Given the wide range of envi-
ronmental and lighting conditions across the 1-year monitor-
ing period, the visibility of the water surface and associated
tracers differed throughout. The choice of this procedure was
to maximise the visibility of potential tracers; however, this
also comes at the risk of enhancing noise locally. In some in-
stances, such as when the riverbed is visible under low-flow
conditions, additional image enhancement procedures would
be beneficial, e.g. background subtraction. The choice of pre-
processing procedures is dependent on the challenges that
one is trying to resolve. Therefore, implementation within
an automated workflow is non-trivial, and the development
of methods for generalisation is worthy of further research.

A final assumption of the image-based approach is the
presence of a stable channel cross-section and downstream
control at the experimental site. Whilst there is evidence for
significant geomorphic change at this site (in 1979), one of
the reasons for this location being selected was due to the
stability of the cross-section over the intervening years. This
is indirectly evidenced by the presence of a stable flow rating
curve (UK CEH, 2024). Furthermore, as reported, our anal-
ysis of repeat surveys in 2010, 2018, and 2020 indicates that
the cross-section changed by no more than 5 % across the
full range of flows experienced. However, at monitoring lo-
cations where the cross-section is unstable, error assessments
should be conducted.

4.4 Outlook

Recent research has illustrated the precision of optical flow
methods for reconstructing flow dynamics and highlighted
their relative insensitivity to parameterisation (Pearce et al.,
2020). This has naturally led to application of these tech-
niques becoming increasingly widespread for the purposes
of obtaining dense surface flow fields, with their adoption
into continuous monitoring workflows now becoming es-
tablished (e.g. Hutley et al., 2023). However, a significant
challenge in the application of these methods within unsu-
pervised workflows is the presence of environmental noise,

which leads to either a reduction in successfully tracked trac-
ers or the presence of successfully tracked features that can-
not readily be related to the depth-averaged flow. Generally
this is presented as (i) noise that impacts the quality of the
imagery and visibility of the water surface (e.g. inhomoge-
neous lighting of the water surface, bright spots on the cam-
era lens, precipitation), (ii) the water surface texture lack-
ing sufficient detail to enable dense flow fields to be estab-
lished, and (iii) environmental factors that influence the qual-
ity of the measurements (e.g. tracking of features affected
by the presence of standing waves or wind-induced effects).
In the research presented here, we have not sought to ad-
dress these issues directly. However, to improve robustness
of the outputs, further analysis could be undertaken to iden-
tify and apply appropriate seeding density metrics to evalu-
ate the quality of entire videos, eliminate poorly seeded im-
age sequences from analysis, or focus analysis on specific
cross-sections within the imagery to improve the quality of
reconstructions. Alternatively, the influence of optical noise
may be reduced through application of dynamic weighting
across the image scene (e.g. Cao et al., 2022). Furthermore,
utilisation of surrogate information (e.g. wind speed and di-
rection) may be used to identify time periods where wind
shear may have significant effects on the apparent surface
velocities, allowing corrections to be established and applied
where required. The potential for optical flow methods to be
improved through application of deep learning models is also
significant. Ansari et al. (2023) provided evidence for a range
of convolutional neural network (CNN) optical flow models
(collectively termed RivQNet) to improve flow reconstruc-
tions in challenging environmental conditions. Further re-
finement and training of these methods may offer significant
performance benefits.

5 Conclusions

In this study, we investigate the potential for an open-source
toolbox (KLT-IV) to reconstruct the surface flow field of
the River Dart (UK) for the purposes of estimating section-
averaged (1-D) velocity in an unsupervised and autonomous
workflow. Given the partial view of the channel that is visible
from the camera sensing system (73 % of the channel width
under normal flow conditions), application of appropriate
data-fitting methods or the establishment of index-based ap-
proaches was required to interpolate within and extrapolate
beyond the field of view. Following image acquisition over a
period of 1 year and following analysis of over 11 000 videos,
we can draw the following conclusions:

1. Highly significant linear relationships (r2
= 0.95–0.97)

are established between reference 1-D velocities and
those computed using KLT-IV in conjunction with data-
fitting techniques. The intercept of these models ranges
from −0.01 to 0.032, and slopes range from 1.029 to
1.091 (Fig. 4).
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2. The mean absolute percentage error in 1-D velocities
(using the constant-Froude-number assumption) rela-
tive to those errors produced using a SonTek RiverSur-
veyor M9 aDcp is 9.8 % (Fig. 5).

3. An index-velocity approach is developed which relates
the mean of the observed flow field to the reference
1-D velocity. The form of this relationship was estab-
lished during a calibration period spanning March to
June 2018, and this was subsequently applied and tested
for a validation period (July 2018 to March 2019). In the
validation period, a highly significant linear relationship
(r2
= 0.98) was obtained between the mean values of

the flow field and the reference 1-D velocities (Fig. 7).

4. We use the best-performing data-fitting approach and
index-based approach to estimate flow discharge at the
monitoring site. When these are compared with the ref-
erence data obtained by the Environment Agency, r2

values of 0.98 to 0.99 are obtained (for a linear model),
with a percentage bias of between 3.4 % and 5.5 %
(Fig. 8).

5. We identify uncertainties in both the reference datasets
and the image-based analysis that may be of signifi-
cance. For example, in the case of the reference data,
we identify a bias in aDcp-based cross-section measure-
ments relative to those made using geodetic surveys of
7 %; and in the case of the image-based analysis, we
identify an α of 0.87± 0.07 (95 % CI) following anal-
ysis of aDcp profiles. However, this does not vary in a
systematic way, which may influence the resulting con-
versions from surface velocity to a depth-averaged ve-
locity.

6. This approach is well suited to being used in operational
and real-time settings. This is due to the relatively few
parameters that must be defined following initial set-up.
In the present analysis all parameters are kept constant
and not varied as a function of river stage. However,
a thorough assessment of the dependency of flow field
reconstructions with varying environmental and hydro-
geomorphic conditions remains a research gap.
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