Articles | Volume 28, issue 4
https://doi.org/10.5194/hess-28-801-2024
https://doi.org/10.5194/hess-28-801-2024
Research article
 | 
20 Feb 2024
Research article |  | 20 Feb 2024

Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management

Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
How to account for irrigation withdrawals in a watershed model
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024,https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023,https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Bingyi Zhou, Guohua Fang, Xin Li, Jian Zhou, and Huayu Zhong
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-228,https://doi.org/10.5194/hess-2023-228, 2023
Revised manuscript accepted for HESS
Short summary
Process-based three-layer synergistic optimal allocation model for complex water resource systems considering reclaimed water
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-160,https://doi.org/10.5194/hess-2023-160, 2023
Revised manuscript accepted for HESS
Short summary
The precision of satellite-based net irrigation quantification in the Indus and Ganges basins
Søren J. Kragh, Rasmus Fensholt, Simon Stisen, and Julian Koch
Hydrol. Earth Syst. Sci., 27, 2463–2478, https://doi.org/10.5194/hess-27-2463-2023,https://doi.org/10.5194/hess-27-2463-2023, 2023
Short summary

Cited articles

Arunyanart, N., Limsiri, C., and Uchaipichat, A.: Flood hazards in the Chi River Basin, Thailand: impact management of climate change, Appl. Ecol. Env. Res., 15, 841–861, https://doi.org/10.15666/aeer/1504_841861, 2017. a
Bader, B. and Yan, J.: eva: Extreme value analysis with goodness-of-fit testing, CRAN [code], https://CRAN.R-project.org/package=eva (last access: 10 May 2023), 2020. a
Bhakar, S., Bansal, A. K., Chhajed, N., and Purohit, R.: Frequency analysis of consecutive days maximum rainfall at Banswara, Rajasthan, India, J. Eng. Appl. Sci., 1, 64–67, 2006. a, b
Bridhikitti, A., Ketuthong, A., Prabamroong, T., Li, R., Li, J., and Liu, G.: How do sustainable development-induced land use change and climate change affect water balance? A case study of the Mun River Basin, NE Thailand, Water Resour. Manag., 37, 2737–2756, 2023. a
Busababodhin, P. and Kaewmun, A.: Extreme Values Statistics, The Journal of KMUTNB, 25, 315–324, 2015. a
Download
Short summary
This study examines the impact of extreme rainfall events on flood risk management in Thailand's Chi watershed. By analyzing historical data, we identified regions, notably Udon Thani and Chaiyaphum, with a high risk of flash flooding. To aid in flood risk assessment, visual maps were created. The study underscores the importance of preparing for extreme rainfall events, particularly in the context of climate change, to effectively mitigate potential flood damage.