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Abstract. Extreme rainfall events in the Chi watershed of
northeastern Thailand have significant implications for the
safe and economic design of engineered structures and effec-
tive reservoir management. This study investigates the char-
acteristics of extreme rainfall events in the watershed and
their implications for flood risk management. We apply ex-
treme value theory to historical maximum cumulative rain-
fall data for consecutive rainy days from 1984 to 2022. The
generalized Pareto distribution (GPD) was used to model the
extreme rainfall data, with the parameters estimated using
maximum likelihood estimation (MLE) and linear moment
estimation (L-ME) methods based on specific conditions.
The goodness-of-fit tests confirm the suitability of the GPD
for the data, with p values exceeding 0.05. Our findings re-
veal that certain regions, notably Udon Thani, Chaiyaphum,
Maha Sarakham, Tha Phra Agromet., Roi Et, and Sisaket
provinces, show the highest return levels for consecutive 2 d
(CONS-2) and 3d (CONS-3) rainfall. These results under-
score the heightened risk of flash flooding in these regions,
even with short periods of continuous rainfall. Based on our
findings, we developed 2D return level maps using the Q-
geographic information system (Q-GIS) program, providing
a visual tool to assist with flood risk management. The study
offers valuable insights for designing effective flood manage-
ment strategies and highlights the need for considering ex-

treme rainfall events in water management and planning. Fu-
ture research could extend our findings through spatial corre-
lation analysis and the use of copula functions. Overall, this
study emphasizes the importance of preparing for extreme
rainfall events, particularly in the era of climate change, to
mitigate potential flood-related damage.

1 Introduction

The distribution of rainfall and atmospheric fluctuations are
directly impacted by changes in climate, which have signif-
icant implications for water resource management and hy-
drology. The northeastern region of Thailand is particularly
susceptible to frequent flooding, which is often caused by a
combination of local conditions, natural variations, and hu-
man actions. Unfortunately, this issue shows no signs of abat-
ing, and it continues to escalate in severity. In the northeast-
ern region of Thailand, there is an agricultural area of over
63 x 10° rai (1rai =1600m?). However, a significant pro-
portion of this area continues to face challenges such as wa-
ter scarcity, drought, and occasional natural disasters during
heavy rainy seasons.
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Over the past three decades, water shortages have affected
57 provinces (or 75 % of the country), 525 districts (or 60 %
of the total districts), 3321 sub-districts (or 46 % of the total),
and 24 900 villages (or 33 % of the total villages) in Thailand,
causing extensive damage. On average, 9.71 million people
suffer from drought annually, representing about 15 % of the
total population. Additionally, an average of 2.571 million
rai of farmland is damaged each year, leading to an aver-
age loss of 661 head of livestock. The total cost of damage
amounts to THB 656.62 million (or USD 17.57 million) per
year. Moreover, the northeastern region has witnessed seven
major floods in the years 1983, 1995, 1996, 2002, 2006,
2010, and 2011. These events resulted in substantial harm
to both human life and property, posing challenges in accu-
rately evaluating their impact and the overall cost of the in-
curred damage (Gale and Saunders, 2013; Singkran, 2017;
Meteorological, 2021). Gale and Saunders (2013) identified
the causes of the major floods that occurred in Thailand in
2011 and presented forecasts for future flooding. Their re-
search indicates that unless flood defenses and management
practices are improved, there is a high likelihood of more
flooding occurring within the next two to three decades.

According to the Thai Meteorological Department’s re-
port in 2006 (Meteorological, 2021), flood conditions in the
Chi watershed occur infrequently during each year. Various
studies have also indicated that the area is prone to frequent
flooding (Kunitiyawichai et al., 2011; Arunyanart et al.,
2017). Flooding in the Chi watershed takes on many different
forms, including but not limited to overflowing riverbanks
in provinces such as Chaiyaphum, Khon Kaen, and Roi Et;
wild water flows in Chaiyaphum, Khon Kaen, and Roi Et;
and mudslides in Kalasin and Chaiyaphum provinces. The
watershed has also experienced severe flooding in various
areas, such as Roi Et, Kalasin, and Khon Kaen Provinces.
The Chi watershed is susceptible to flooding due to several
factors. First, heavy rainfall resulting from the influence of
the southwest and northwest monsoons and depressions from
the South China Sea often occurs in the watershed area. Sec-
ond, the upstream area of the watershed, where the Chi River
originates, is characterized by mountainous terrain with steep
slopes and has experienced significant deforestation. Third,
the lower part of the watershed, particularly in Roi Et and
Ubon Ratchathani provinces, is a plain where multiple rivers
converge and is the point where the Chi River meets the Mun
River before flowing into the Mekong River. This creates
drainage issues for the watershed area. Fourth, water man-
agement in large reservoirs poses a challenge during the rainy
season, as some years require significant amounts of water to
be drained due to the high levels of annual rainfall and wa-
ter discharge from nearby reservoirs (Meteorological, 2021).
Given these challenges, effective water management during
the flooding and drought seasons is critical. Numerous stud-
ies have applied mathematical and statistical theories to ad-
dress these issues, such as those conducted by Bhakar et al.
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(2006), Noymanee and Theeramunkong (2019), Suksawang
(2012), Hung et al. (2009), and Dutta et al. (2003).

It is well known that floods occur on average every sev-
eral years, as supported by numerous studies. In this con-
text, Coles (2001) introduced the concept of extreme value
theory, which focuses on studying the maximum and min-
imum occurrences in a data set. These extreme values are
typically located at the tail of the distribution and are often
disregarded in analysis or modeling due to their perceived
complexity and low number. However, extreme value the-
ory provides a framework to better understand and model
such events. Extreme analysis is a method employed to as-
sess the severity of natural phenomena, encompassing factors
such as maximum-minimum rainfall, temperature extremes,
maximum—minimum wind speeds, and more. In their stud-
ies, Busababodhin and Kaewmun (2015), Pangaluru et al.
(2018), and Wang and Xuan (2020) developed an extreme
value model to analyze the probability of extreme events us-
ing data from Thailand. They also explored methods for se-
lecting the most suitable extreme value model and determin-
ing return periods and return levels. Bhakar et al. (2006) stud-
ied the analysis of the frequency of 1 d maximum rainfall and
2-5d consecutive maximum rainfall at Banswara district in
southern Rajasthan of India. Three distributions, i.e., the nor-
mal, log-normal, and Gumbel distributions, were used in the
analysis for this data and compared with the chi-square value,
and the results showed that the Gumbel distribution was the
best fit for the region and it was taken for the return level
associated with return periods varying from 2 to 100 years.
Several studies have investigated the frequency of maximum
consecutive days of rainfall and they support the use of ex-
treme value distribution. These studies employed maximum
likelihood estimation (MLE) and verified model suitability
using tests such as the Kolmogorov—Smirnov (K-S) test and
Anderson-Darling (AD) test. Examples of these studies in-
clude Kwaku and Duke (2007), Patel et al. (2011), Manikan-
dan and Kumar (2015), and Sabarish et al. (2017).

The current study aimed to fill the research gap by examin-
ing the consecutive days of maximum rainfall data for Thai-
land. This data set was chosen due to the frequent occurrence
of flooding caused by continuous heavy rainfall. To the best
of our knowledge, no previous studies have been conducted
on this specific type of data in Thailand. In this study, we
aimed to identify critical areas along the Chi watershed and
evaluate their severity for use in planning, resolving flood-
ing, and pre-evaluating damage. To achieve this, we applied
the non-stationary (NS) generalized Pareto distribution (NS-
GPD) models on the maximum cumulative rainfall data ob-
served for consecutive rainy days (CONS) of 2, 3, 4, 5, 6,
and 7d at 18 stations along the Chi watershed in the north-
eastern region of Thailand. Section 2 provides an overview
of the data and climatology of the Chi watershed in Thai-
land. Section 3 describes the materials and methods used
in the study, including the NS GPD modeling, which con-
sidered five models. In Sect. 4, the results of the study are

https://doi.org/10.5194/hess-28-801-2024



T. Phoophiwfa et al.: Employing the generalized Pareto distribution 803

0°0" 40°0'E 80°0'E 120°0'E 160°0’E 160°0'W 120°0'W
7 ~ .
Jogekhal _ % Legend
[ ] Provincial boundary
) [ chi watershed boundary
[ ’48353 ” Udon Thani R.eservoir [
g Loei ¥a8350 @Gs35+ Sakon Na River g
453000 Stations

Nong Bua Lam Phu

e

60°0'S

R Khon Kaen

Phetchabun

48381

4838‘

@ Low-effect indirect station
@ High-effect indirect station
@ Direct stations

VY

60°0'S

Kalasin Mukdahan

48382 4%0 {N 7
() ,
s

48383

Phichit ‘
» 48404
g ) i € gisios g
g Chaiyaphum . - h{'S}r"ukham ‘ { £
" asothon
‘43403 { ‘ RalEt z Amnat Charoen
Nakhon Sawan 2
h *" ‘\\ X z
Ubon Ratchathani B
48407 48408 ?
s
Nakhon Ratchasima _ z
‘48431 Buri Ram Surin 448409
Si Sa Ket
0 0 60 90 20 150 km
48434
48435 ‘ [ 1] [ ]
; | & 5
<0’ 40°0'E 80°0'E 120°0°E 160°0'E 160°0'W 120°0'W e
Figure 1. Location of all 18 meteorological stations along the Chi watershed in the northeastern region of Thailand.
presented, including isopluvial maps of the return levels and
their changes over time, which were predicted from the best "
model. Discussion is provided in Sect. 5, followed by a con- CONS — n = } :( X)), (1)

clusion in Sect. 6. Technical specifics, tables, and figures are
included in the Supplement.

2 Data

In this study, we analyzed the maximum cumulative rainfall
on CONS data for 2, 3, 4, 5, 6, and 7 d observed by the Thai
Meteorological Department (TMD) (Meteorological, 2021)
from 1984 to 2022. The rainfall data ranged from 115.0 to
330.0 mm, with an average range of 17.7-114.44 mm for all
stations. Descriptive statistics for the maximum cumulative
rainfall on CONS for 2, 3, 4, 5, 6, and 7d are presented in
Table 1 for selected stations. N* is the number of consecu-
tive rainfalls between 1984 and 2022. We used the maximum
cumulative rainfall for CONS to select the number of con-
secutive days for analysis as in Eq. (1):
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i=1

where X; > 0; X; is rainfall on CONS, such as in the case
n =2 and then CONS —2 = X| + X3 when X1, X, is rain-
fall on 1 and 2 consecutive days, respectively. Figure 3 dis-
plays the density curves for cumulative rainfall on consecu-
tive days, indicating that all stations were positively skewed
and had heavy tails. Further details are provided in the Sup-
plement.

Figure 1 displays the locations of the 18 meteorological
stations situated along the Chi watershed in the northeast-
ern region of Thailand, covering 12 provinces. The detailed
latitude and longitude of these stations are provided in Ta-
ble S1 in the Supplement. The Chi watershed falls within
the tropics, between latitudes 13°00'~18°00" and longitudes
101°00-105°00'.

Table 1 presents descriptive statistics of maximum cumu-
lative rainfall on CONS for periods of 2, 3, 4, 5, 6, and 7d.
The results indicate that the stations Chaiyaphum (48403),
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Khon Kaen (48381), Roi Et Agromet. (48404), Kalasin
(48390), Kalasin (48390), and Roi Et (48405) recorded the
highest maximum cumulative rainfall for CONS-2, CONS-
3, CONS-4, CONS-5, CONS-6, and CONS-7, respectively.
The range of maximum CONS values for 2, 3,4, 5, 6,and 7d
was between 115 and 330 mm, while the average of CONS
for the same durations ranged between 17.7 and 114.44 mm.

Table 2 provides a comparison of Mann—Kendall (MK)
test results for CONS data for periods of 2, 3,4, 5, 6, and 7d
at some selected stations. Out of 18 stations, 9 stations (i.e.,
50 % of the total stations) showed a trend in the CONS-2 to
CONS-3 data, except for CONS-7. This trend is more evi-
dent in Fig. 2, which displays the trends in the CONS-2 and
CONS-3 data for the Chaiyaphum station. Consequently, the
functional form of parameters for time dependent NS gener-
alized Pareto models was included. Table 3 provides details
of the five functional models employed for CONS rainy days.

3 Materials and methods
3.1 Time dependent models for GPD

The block maxima method is limited for analyzing maxi-
mum rainfall data each year. Hence, the peak-over-threshold
(POT) method or GPD is commonly employed for this pur-
pose (Coles, 2001). The POT method involves selecting ob-
servations above a specified threshold value («) from the data
variable X, and expressing the exceedances of X over u as
Y = X — u. The GPD function is then defined as in Eq. (2):

-1/ &
H(y):l—(l—i—g&—y) , P

defined on y > 0, where 6 = o +&(u— ) is the scale param-
eter and —oo < & < oo is the shape parameter. In the special
case £ =0, leading to

H(y)=1 —exp(—g), y>0. 3)

The GPD can take on one of three forms depending on
the sign of the shape parameter, £. Specifically, when & > 0,
the distribution has no upper limit, while £ < 0 indicates
an upper bounded distribution and & = O represents an un-
bounded exponential distribution (Senapeng and Busababod-
hin, 2017). This notation for the shape parameter is com-
monly used in statistical literature (see more details in Hosk-
ing, 1990; Coles, 2001).

Grouping extreme values based on their independence can
be achieved by clustering the values that exceed a certain
threshold, which makes the GPD a suitable method for anal-
ysis (Coles, 2001). As a result, this method was selected
to model the maximum cumulative rainfall on consecutive
days. Additionally, the five NS-GPD models considered in
this study are presented in Table 3. These models are very
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important in predicting the behavior of extreme precipitation.
Stationary assumptions can lead to inaccurate results when
the underlying conditions are changing over time. There-
fore, the use of NS models is crucial for accurately captur-
ing the time-varying nature of extreme precipitation, espe-
cially in the context of climate change. Consequently, the ap-
plication of NS models enables a more robust understand-
ing of extreme precipitation patterns and can support in-
formed decision-making for engineering structures and reser-
voir management in the Chi watershed of Thailand.

3.2 Mann-Kendall test of trend

We considered the Mann—Kendall (MK) test of trend, to com-
pare with the NS-GPD model. The MK test is commonly
used to detect monotonic trends in time-series data. In the
MK test, the null hypothesis is Hy: no monotone trend in hy-
dro logic series X, versus the alternative hypothesis which
is Hp: monotonic trend in X; without specification of the
sign of the trend. This hypothesis test is two-tailed, so we
reject Hy with « level if | Z| > z4/2, where Z is a normalized
MK test statistic calculated from data (Naghettini, 2017) ,
and zy/2 is 100 x (1 —z4/2) percentile of the standard normal
distribution (Wilks, 2011). An R package “trend” (Pohlert
et al., 2016) was used to execute the MK test (Prahadchai
etal., 2022).

3.3 Threshold selection method

The selection of an appropriate threshold is a crucial factor in
statistical inference of rare events. This study compares three
different threshold selection methods and their effectiveness.
The first approach involves selecting the threshold based on
meteorological conditions, where rainfall greater than 35 mm
is considered indicative of heavy rainfall. The second ap-
proach uses the 90th percentile of the rainfall data set as the
threshold. The third approach involves using the mean resid-
ual life (MRL) plot to select a threshold for the GPD or point
process models. These approaches are analyzed theoretically
and compared with existing procedures through an extensive
simulation study, and are then applied to a data set of CONS,
where the underlying extreme value index is assumed to vary
over time.

3.4 Parameter estimation and model choice

The parameters in the GPD are commonly estimated using
either the MLE (Coles, 2001) or the L-ME method (Hosk-
ing, 1990). In the present study, the latter method was em-
ployed due to its higher efficiency in small samples compared
with the MLE method (Naghettini, 2017; Papukdee et al.,
2022). Specifically, the “eva” (Bader and Yan, 2016), “ex-
tRemes” (Gilleland and Gilleland, 2016), “ismev” (Stephen-
son, 2011), and “lmom” (Hosking, 2009) packages in R were
utilized for this purpose (Hosking, 2022).

https://doi.org/10.5194/hess-28-801-2024
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Table 1. Descriptive statistics of the maximum cumulative rainfall on consecutive rainy days for 2, 3, 4, 5, 6, and 7d are provided for
selected stations in the northeastern region of Thailand. N* represents the number of consecutive rainy days (unit: mm). The top three
maximum rainfall values are in bold.

Data Station N* Min Mean Median Max Data Station N* Min Mean Median Max
CONS-2 48353 377 020 18.05 10.80 115 CONS-5 48353 91 5.50 54.03 4550 232
48381 390 0.11 20.12 13.16 155 48381 87 5.02 62.13 53.80 216
48384 403 0.02 21.79 14.10 194 48384 89 6.60 69.32 61.01 188
48382 436 0.02 2329 15.55 164 48382 68 3.60 79.95 68.95 228
48390 180 0.02 21.93 14.25 171 48390 34 9.20 76.55 62.90 228
48403 367 0.02 20.72 12.20 201 48403 70 3.60 52.11 37.00 211
48405 399 0.02 2326 15.70 135 48405 59 2.20 60.75 62.30 182
48404 401 021 21.52 14.30 141 48404 73 7.90 68.50 60.10 228
48407 364 0.11 22.69 13.80 129 48407 74 8.00 70.02 70.00 227
CONS-3 48353 218 0.21 33.70 23.90 147 CONS-6 48353 63 11.20 68.25 51.30 304
48381 199 0.80 36.74 28.30 273 48381 50 16.60 76.58 68.85 159
48384 220 0.80 34.66 27.65 174 48384 47 10.30 77.82 6290 289
48382 210 0.60 38.95 29.45 189 48382 46  12.00 84.72 70.65 210
48390 90 0.32 30.76 22.55 151 48390 30 11.50 100.00 7310 303
48403 231 1.00 36.65 28.30 163 48403 61 9.00 72.67 73.90 152
48405 226 0.82 3598 26.75 212 48405 58 2340 82.34 69.25 189
48404 219 0.51 42.30 33.90 182 48404 43 14.43 72.56 65.10 178
48407 208 1.70 43.53 3335 259 48407 56  10.30 96.43 81.00 234
CONS-4 48353 158 250 42.61 31.60 202 CONS-7 48353 377 5.40 81.62 73.95 211
48381 151 3.00 48.80 44.20 173 48381 26 24.00 82.54 68.55 228
48384 112 240 4748 37.20 156 48384 26 25.60 89.69 79.80 200
48382 121 1.61 57.15 51.10 212 48382 23 2430 101.00 88.40 243
48390 47 1.12  56.53 44.00 157 48390 17 18.80 70.19 73.50 124
48403 128 4.50 46.68 38.46 207 48403 22 1940 92.46 70.05 270
48405 136 4.00 57.35 49.95 183 48405 38 21.40 98.55 107.00 272
48404 118 4.40 66.07 52.30 330 48404 26 3640 99.58 82.55 196
48407 116 5.00 51.84 41.10 160 48407 34 28.80 114.00 112.00 251

Table 2. Comparison of the Mann-Kendall test for consecutive rainy days of 2, 3, 4, 5, 6, and 7d at each station. Mann—Kendall test: *

p <0.1,** p <0.05.

StationID  CONS-2 CONS-3 CONS-4 CONS-5 CONS-6 CONS-7
48353 NT NT NT T** NT NT
48354 NT T** NT NT NT NT
48381 NT NT T* T** NT NT
48383 NT NT T NT NT NT
48390 NT NT T* T** NT NT
48403 T** NT NT NT T** NT
48404 T* NT NT NT NT NT
48408 NT NT T* NT T** NT
48409 T* T* NT NT T** NT
48435 NT NT NT T NT NT
48434 NT T** NT T* T** NT

Note: “NT” represents “no trend” in the data and “T” represents the presence of a trend in the data.

https://doi.org/10.5194/hess-28-801-2024
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Figure 2. Scatter and line plots showing the trends for CONS-2 and CONS-3 (unit: mm) at the Chaiyaphum meteorological station in the

Chi watershed, northeastern Thailand.

Table 3. Functional form of parameters for time dependent non-stationary extreme value models, represented by GPDab where a represents
the scale parameter (o) and b represents the shape parameter (£). The stationary model is represented by GPDOO.

Models  Scale parameter Shape parameter

GPDO0  Constant Constant

GPD10 o =exp(og+o; x (Year — 19+ 1)) Constant

GPD20 o =exp(og+ o1 x (Year — g+ 1) + 07 x (Year — 19 + 1)2) Constant

GPDO1  Constant £ =&)+& x (Year— 19+ 1))
GPDI11 o =exp(og+o1 x (Year— g+ 1)) E=&+& x (Year—1p+1))
GPD21 o =exp(og+o1 x (Year—1g+ 1) + 07 X (Year—t0+1)2) E=&+& x(Year—19+ 1))

Assuming observations (X1, X», ..., X,) follow the GPD,

the negative log-likelihood function is

é)glogo—ké%),

provided (1+£&(y;/o))>0 for i=1,2,..,k; otherwise,
£(0,&) = —oo. In the case & =0 the log-likelihood is ob-
tained from Eq. (3) as

£(0,&) = —klogo — (1 + “4)

0(0,8) = —klogo — — Zy, ©)

l—l

The L-ME is widely used in analyzing skewed data, such
as extreme rainfall and flood frequency. Although the details
of the L-ME are not discussed here, we note that it is consid-

Hydrol. Earth Syst. Sci., 28, 801-816, 2024

ered a standard method in such analyses. To calculate the L-
ME of the GPD, we utilize the R package “Imom” developed
by (Hosking, 2009). However, one potential disadvantage of
the L-ME is that Newton—Raphson type algorithms used to
solve systems of L-moments equations may sometimes fail
to converge (Dupuis and Winchester, 2001; Papukdee et al.,
2022).

3.5 Model diagnostics and goodness-of-fit test

The performance of the marginal probability was evaluated
by conducting goodness-of-fit statistical tests. In this study,
two tests — the Kolmogorov—Smirnov and Anderson-Darling
tests — were used for this purpose. The K-S test is pre-
ferred as it does not make any assumptions about the dis-
tribution of data (Glen et al., 2001). This method involves

https://doi.org/10.5194/hess-28-801-2024
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Figure 3. Panels (a)—(f) show ridge line plots for cumulative rainfall on consecutive rainy days (unit: mm) for seven stations including Khon
Kaen, Tha Phra Agromet., Maha Sarakham, Kalasin, Chaiyaphum, Roi Et, and Roi Et Agromet. in the Chi watershed, northeastern Thailand.

comparing the maximum gap between the experimental cu-
mulative distribution function and the theoretical cumulative
distribution function. The K-S test (D, ,r) is used to de-
termine whether the parameters are acceptable or not, and
is given by Glen et al. (2001). To perform the goodness-of-
fit test, a null hypothesis is applied, which is accepted only
when the gap between the theoretical and observed values
is smaller than expected for the given sample. On the other
hand, the Anderson-Darling test assesses whether a sample
comes from a specified distribution. It assumes that, when
given a hypothesized underlying distribution and assuming
that the data do arise from this distribution, the cumulative
distribution function of the data can be assumed to follow
a uniform distribution. The data are then tested for unifor-
mity using a distance test (Shapiro, 1990). The test statistic
can then be compared against the critical values of the theo-
retical distribution. Notably, no parameters are estimated in
relation to the cumulative distribution function in this case.

https://doi.org/10.5194/hess-28-801-2024

3.6 Return level

Return levels or quantiles are used to interpret extreme values
in terms of their probability of return period. Once a suitable
model has been defined, return levels can be calculated as
follows:

R o N
Zr=u+ 2] ©6)
&

It is a T'-year return level, where ny is the number of ob-
servations per year, and it corresponds to the f-observation
return level 1 = T x ny; and when & = 0, the return level can
be calculated as (Coles, 2001)

Zr = u+&log(Tnyhy), (7)

where A, = k/n is the sample proportion of points exceeding
u.

Hydrol. Earth Syst. Sci., 28, 801-816, 2024
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Table 4. Parameter estimates and standard error (SE) with thresholds (i), the number of exceedances (ny; >u), and the results of the goodness-
of-fit test (p value) for the maximum cumulative rainfall of consecutive rainy days for 2, 3, and 4d at selected stations. AIC: Akaike

information criterion; BIC: Bayesian information criterion.

Data Station ID  Model U Ny;>y o (SE) £(SE) K-S (pvalue) AIC BIC
CONS-2 48353  GPDO00 42> 36 19.91 (6.70) 0.07 (0.29) 0.14(0.41) 297 305
48381 GPDO00O 50b 39 14.34 (3.60) 0.24 (0.19) 0.11(0.70) 309 317
48384 GPDO00 52b 41 21.19 (4.52) 0.08 (0.14) 0.11 (0.61) 343 351
48382  GPDO00 55b 44 15.23 (3.22) 0.10 (0.14) 0.08 (0.87) 341 349
48390 GPDO00O 48b 18 28.06 (9.58) 0.01 (0.24) 0.12(0.93) 161 167
48403  GPDO00 51b 37 19.60 (4.48) 0.11 (0.16) 0.09 (0.90) 307 314
48405 GPDO00 57b 40 19.55 (4.48) —0.27 (0.15) 0.08 (0.93) 335 343
48404  GPDO0OO 50b 40 28.00 (5.94) —0.17 (0.14) 0.11(0.63) 337 345
48407  GPDO00O 53b 37 39.34 (8.65) —0.45 (0.16) 0.12(0.63) 316 324
CONS-3 48353  GPDO00 35 77 43.28 (6.88) —0.29 (0.11) 0.05(0.95) 692 699
48381 GPDO00 73b 20 14.22 (6.88) 0.81 (0.46) 0.10(0.95) 183 189
48384  GPDO0O0O 354 94 19.99 (3.37) 0.19 (0.13) 0.04 (0.97) 791 798
48382  GPDO00 35 93 29.23 (4.50) 0.05 (0.11) 0.06 (0.82) 828 835
48390 GPDO00 67°¢ 10 27.76 (13.00) —0.10 (0.34) 0.13 (0.97) 88 93
48403  GPDO00O 354 94 35.18 (4.87) —0.15 (0.10) 0.05(0.94) 832 839
48405 GPDO00 35 86 35.24 (5.09) —0.05 (0.09) 0.04 (0.99) 779 785
48404  GPDO00O 354 106 39.29 (5.28) —0.13 (0.10) 0.04 (0.98) 966 973
48407  GPDO0OO 354 101 38.04 (5.08) —0.02 (0.08) 0.05(0.93) 936 943
CONS-4 48353  GPDO00 90b 16 15.59 (6.32) 0.28 (0.32) 0.11(0.97) 133 139
48381 GPDO1 354 89 3.78 (0.21) &y —0.01 (0.02), 0.07 (0.66) 809 815
&1 =-0.18 (0.10)
48384  GPDO00O 354 58 47.98 (8.87) —0.28 (0.13) 0.07 (0.89) 536 107
48382 GPD00 107° 12 37.49 (1.49) —0.18 (0.27) 0.16 (0.85) 111 116
48390 GPDO00 95¢ 10 74.75 (0.01) —1.20(0.001) 0.21 (0.74) 78 79
48403  GPDO00O 358 70 32.14 (5.96) 0.08 (0.14) 0.06 (0.96) 642 648
48405 GPDO0O0 95¢ 24 35.08 (1.02) —0.27 (0.20) 0.09 (0.98) 209 215
48404 GPDO0 1270 12 51.23 (2.56) 0.17 (0.41) 0.19(0.74) 127 132
48407 GPD00 116P 12 22.13 (1.23) —0.35(0.48) 0.18 (0.81) 94 99

In the case of ny; >, < 30, parameter estimates were obtained using the linear moment method. The threshold values u®, ub, and u® represent the meteorological
critical value, the 90th percentile of the data set, and the mean residual life (MRL) plot, respectively.

4 Results

In this study, the threshold method was employed to select
the appropriate threshold u. To select the appropriate thresh-
old u, we employed the threshold method in this study. The
threshold values were determined based on the meteorologi-
cal critical value (Meteorological, 2021), the 90th percentile
of the data set, and the mean residual life (MRL) plot. Ta-
bles 4 and 5 present the estimated parameters for these mod-
els, which were obtained using both the maximum likelihood
and linear moment methods.

Parameter estimation employed both MLE and L-ME
methods, depending on the number of exceedances (ny, >y ).
The MLE was chosen when ny, -, > 30, while L-ME was
used when ny,., < 30. Standard errors were calculated us-
ing nonparametric bootstrap.

Hydrol. Earth Syst. Sci., 28, 801-816, 2024

The data suitability for the GPD was confirmed via
goodness-of-fit tests. Model selection relied on minimizing
the Akaike information criterion (AIC) or the Bayesian infor-
mation criterion (BIC) while ensuring that p values from K-
S and AD tests were greater than 0.05 (p values: 0.06-0.994;
see the details in Tables 4 and 5). The estimated scale and
shape parameter ranges were (34.92, 124.45) and (—0.10,
0.16), respectively. These findings robustly endorsed the suit-
ability of the GDPOO model for analyzing maximum cumu-
lative rainfall on all CONS data. All stations, with the excep-
tion of the Khon Kaen (48381) station in CONS-4 data and
Chaiyaphum (48403) station in CONS-6, exhibited the best
fit to the GPDO1 model, indicating that the shape parameters
followed linear functions.

The return level estimates for CONS-2 and CONS-7
across various return periods in Tables 6 and 7 were com-
puted using Egs. (6) and (7). Bold values in the tables indi-
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Table 5. Parameter estimates and standard error (SE) with thresholds (), the number of exceedances (ny, >, ), and the results of the goodness-
of-fit test (p values) for the maximum cumulative rainfall of consecutive rainy days for 5, 6, and 7d at selected stations. AIC: Akaike

information criterion; BIC: Bayesian information criterion.

Data Station ID  Model U Ny;>y o (SE) £(SE) K-S (pvalue)y AIC BIC
CONS-5 48353  GPDO00O 354 57 39.00 (6.95) —0.02 (0.11) 0.10(0.54) 532 537
48381 GPDO0O0O 110°¢ 11 38.80 (20.24) —0.06 (0.42) 0.13(0.98) 105 110
48384  GPDOO 354 65 70.91 (10.16) —0.49 (0.09) 0.07 (0.86) 623 628
48382  GPDO0O0O 354 56 72.46 (12.8) —0.27 (0.12) 0.05(0.99) 565 570
48390 GPDO0O0O 354 25 81.17 (21.86) —0.32(0.19) 0.09 (0.97) 258 261
48403  GPDOO 90¢ 11 34.17 (16.13)  —0.004 (0.36) 0.16 (0.87) 104 108
48405  GPDO00O 95¢ 7 54.05 (15.59) —0.52(0.57) 0.17 (0.96) 67 71
48404  GPDOO 100°¢ 13 43.30 (19.39) —0.12 (0.35) 0.11(0.98) 125 129
48407  GPDO00O 110¢ 12 20.21 (10.28) 0.38 (0.43) 0.12(097) 109 114
CONS-6 48353 GPD00  139.6° 7 20.80 (12.75) 0.47 (0.51) 0.20 (0.86) 67 71
48381 GPDO0O0O 354 43 87.74 (17.32) —0.68 (0.16) 0.10(0.71) 416 420
48384 GPDOO 120¢ 10 29.17 (16.42) 0.05 (0.46) 0.15 (0.94) 93 96
48382  GPDO0O 35 44 69.29 (13.95) —0.30 (0.14) 0.07 (0.98) 438 441
48390 GPDO0O 354 24 93.26 (13.07) —0.09 (0.29) 0.11(0.92) 265 268
48403 GPDI10 100° 11 0¢=3.89(0.001), —1.12(0.001) 0.15 (0.96) 84 85
o1 =0.002 (0.01)
48405  GPDO0O 354 53 76.61 (14.79) —0.43 (0.14) 0.09 (0.75) 524 528
48404  GPDOO 110° 8 43.04 (24.24) —0.55(0.48) 0.19 (0.88) 71 75
48407 GPDOO 354 48 112.83 (25.16) —0.49 (0.18) 0.11 (0.50) 507 511
CONS—7 48353  GPDOO 354 35 66.39 (15.04) —0.26 (0.15) 0.07 (0.98) 349 352
48381 GPDO00O 354 21 77.06 (23.57) —0.27 (0.22) 0.09 (0.98) 217 219
48384  GPDO0O0O 354 20 190.76 (0.01) —1.15(0.01) 0.29 (0.06) 200 135
48382  GPDO00O 125¢ 8 39.01 (21.66) —0.06 (0.42) 0.19 (0.86) 77 79
48390 GPDO00O 354 14 101.36 (0.05) —1.13 (0.01) 0.15(0.88) 121 124
48403  GPDOO 100°¢ 8 99.93 (15.77) —0.48 (0.46) 0.2 (0.82) 86 88
48405 GPDO0O 115¢ 11 39.16 (17.82) 0.04 (0.34) 0.14 (0.95) 108 111
48404  GPDOO 354 26 115.46 (15.08) —0.68 (0.26) 0.16 (0.46) 267 270
48407  GPDOO 140¢ 8 57.25 (14.81) —0.37 (0.51) 0.18 (0.90) 79 82

In the case of ny; >, < 30, parameter estimates were obtained using the linear moment method. The threshold values u?, ub, and u¢ represent the meteorological
critical value, the 90th percentile of the data set, and the mean residual life (MRL) plot, respectively.

cate the highest maximum cumulative rainfall return levels.
In Table 6, the three stations with the highest return levels
were Udon Thani (48354), Chok Chai (48434), and Khon
Kaen (48381). As shown in Table 7, the three stations with
the highest return levels were Sisaket (48409), Udon Thani
(48354), and Ubon Ratchathani Agromet. (48408). These
stations exhibited the highest cumulative rainfall return lev-
els for all return periods compared with other stations. For
CONS-3, CONS-4, CONS-5, and CONS-6, the results of es-
timates of the maximum cumulative rainfall return level can
be found in the Supplement.

Since Chaiyaphum Station is the origin station of the Chi
watershed and a direct station, we present the quantile and
return level plots of this station in Figs. 4-5. Figure 4 shows
points falling on or near the diagonal line, indicating that the
data follow the assumed distribution. Figure 5 illustrates the
return level for return periods ranging from 0.005 to 5 years,

https://doi.org/10.5194/hess-28-801-2024

determined using the profile likelihood method at Chaiya-
phum Station.

To enhance the visualization of the results, return level
maps were generated using the Q-Geographic Information
System (Q-GIS) program with the Inverse Distance Weight-
ing (IDW) interpolation method. The IDW interpolation
method assigns weights to the sample points based on their
distance from the unknown point being interpolated. Fig-
ures 6 and 7 show the return level maps for CONS-2 and
CONS-7, respectively.

Figures 6 and 7 present the spatial distribution of the es-
timated return levels of maximum cumulative rainfall for
CONS-2 and CONS-7, respectively, for the return periods
of 2, 5, 25, and 50 years. The results for the other CONS-3,
CONS-4, CONS-5, and CONS-6 are presented in the Supple-
ment. From the figures, it can be observed that Udon Thani
(48354), Chaiyaphum (48430), Maha Sarakham (48382),

Hydrol. Earth Syst. Sci., 28, 801-816, 2024
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Table 6. Estimated return levels over various return period years, where the values in parentheses are standard error for maximum cumulative
rainfall for CONS-2. The bold values present the first three stations which have maximum cumulative rainfall return level.

Station ID 2 years (SE) 5 years (SE) 25 years (SE) 50 years (SE) 100 years (SE)
48353 142 (0.80) 168 (1.44) 218 (3.97) 241 (5.83) 266 (9.08)
48350 125 (0.80) 147 (1.41) 187 (3.35) 206 (5.96) 225 (7.54)
48354 221(0.92) 305 (1.89) 528 (5.86) 667 (9.01) 842 (15.23)
48360 88 (1.70) 90 (3.16) 105 (6.81) 160 (8.29) 180 (13.23)
48381 159 (0.92) 201 (1.73) 304 (4.64) 363 (7.45) 433 (11.70)
48384 162 (0.94) 191 (1.93) 248 (5.31) 275 (7.03) 303 (10.28)
48383 154 (0.87) 183 (1.87) 239 (4.98) 265 (7.64) 294 (11.06)
48382 139 (1.02) 163 (1.78) 210 (3.77) 233 (6.24) 258 (7.83)
48390 173 (1.31) 201 (2.43) 251 (7.55) 272 (11.37) 295 (16.72)
48403 160 (1.02) 191 (2.24) 255 (5.06) 286 (8.79) 320 (12.39)
48405 134 (1.12) 141 (2.22) 151 (4.22) 154 (6.25) 156 (9.25)
48404 134 (01.01) 146 (2.06) 162 (4.11) 167 (5.91) 172 (8.43)
48408 121 (1.12) 126 (2.56) 131 (4.48) 133 (6.80) 135 (9.17)
48407 127 (1.30) 130 (2.21) 137 (4.68) 139 (6.69) 160 (8.85)
48409 151 (1.11) 176 (2.16) 226 (4.62) 249 (7.36) 275 (8.95)
48431 119 (0.88) 130 (1.84) 146 (4.73) 152 (9.35) 170 (14.21)
48435 97 (0.60) 100 (1.24) 103 (3.34) 150 (5.80) 180 (8.39)
48434 263 (0.92) 300 (2.09) 362 (5.37) 388 (9.09) 414 (12.12)

Table 7. Estimated return levels over various return period years, where the values in parentheses are standard error for maximum cumulative
rainfall for CONS-7. The bold values present the first three stations which have maximum cumulative rainfall return level.

Stations 2 years (SE) 5 years (SE) 25 years (SE) 50 years (SE) 100 years (SE)
48353 240 (6.95) 249 (7.45) 261 (8.11) 265 (8.32) 268.14(8.50)
48350 152 (5.12) 153 (5.34) 155 (5.59) 180 (5.65) 190 (5.70)
48354 588 (19.59) 708 (23.78) 956 (32.03) 1078 (35.96) 1212 (40.14)
48360 170 (6.61) 180 (6.64) 190 (6.66) 195 (6.66) 200 (6.67)
48381 267 (10.92) 277 (12.20) 291 (14.21) 295 (14.98) 299 (15.71)
48384 200 (8.27) 210 (8.77) 215 (9.38) 220 (9.56) 225 (9.70)
48383 276 (5.21) 290 (5.32) 312 (5.41) 319 (5.43) 326 (5.44)
48382 306 (6.76) 330 (6.98) 370 (7.20) 386 (7.26) 401 (7.29)
48390 120 (4.03) 123 (4.04) 125 (4.05) 126 (4.05) 127 (4.06)
48403 290 (14.48) 296 (16.78) 300 (20.90) 301 (22.69) 302 (24.49)
48405 349 (6.32) 395 (6.61) 479 (6.92) 516 (7.00) 555 (7.07)
48404 202 (7.33) 203 (7.75) 204 (8.25) 204 (8.40) 205 (8.51)
48408 432 (4.74) 505 (4.81) 650 (4.87) 721 (4.88) 797 (4.89)
48407 270 (4.73) 276 (4.77) 283 (4.80) 285 (4.80) 286 (4.85)
48409 658 (9.17) 837 (9.98) 1261 (11.13) 1499 (11.53) 1777 (11.89)
48431 217 (8.56) 221 (9.46) 224 (10.84) 224 (11.34) 225 (11.81)
48435 160 (5.92) 167 (6.21) 169 (6.53) 170 (6.61) 170 (6.67)
48434 184 (5.40) 185 (5.57) 186 (5.74) 187 (5.78) 190 (5.80)

Tha Phra Agromet. (48384), Roi Et (48405), and Sisaket
(48409) had the highest return levels for all return periods
of CONS-2 and CONS-7. This information can be useful for
decision-making related to disaster risk management, such as
identifying areas that are more vulnerable to extreme rainfall
events and designing appropriate adaptation and mitigation
strategies.

In addition, it can be observed that there was a significant
difference in the return level for the 100-year period as com-

Hydrol. Earth Syst. Sci., 28, 801-816, 2024

pared with the other return periods in the figures of the max-
imum cumulative rainfall return level forecast for CONS-7
of rainfall data. The return level increased every year for all
stations, indicating the importance of future rainfall manage-
ment planning. These findings reveal the risk of flooding ar-
eas in the Chi watershed, including provinces such as Udon
Thani, Chaiyaphum, Khon kaen, Maha Sarakham, Roi Et,
and Sisaket. The figures were generated using the Q-GIS pro-

https://doi.org/10.5194/hess-28-801-2024



T. Phoophiwfa et al.: Employing the generalized Pareto distribution 811

Quantile Plot

Model
100
1
o

0 50 100 150

Empirical
(a)

Quantile Plot

150
|

Model
100
|

50
|

0 50 100 150

Empirical
(c)

Quantile Plot

Model
10 20 30 40 50 60
1 1 1
o
o
o
o
oo

Empirical

(©)

Quantile Plot

Model
20 40 60 80 100

0

80 100 120

Empirical
(b)

Quantile Plot

Model
0 80 100
|
o

20
|

0 20 40 60 80 100 120

Empirical
(d)

Quantile Plot

Model
100 150
1 Il

50
|
o

T T T
50 100 150

Empirical

®

Figure 4. Panels (a)—(f) show quantile—quantile (QQ) plots for the maximum cumulative rainfall on consecutive rainy days for 2, 3, 4, 5,
6, and 7d at Chaiyaphum meteorological station in the Chi watershed, northeastern Thailand. The x axis of the QQ plots represents the

theoretical quantiles, while the y axis represents the observed quantiles.

gram, and they provide valuable insights into the spatial dis-
tribution of extreme rainfall events in the study area.

5 Discussion

In this study, the generalized Pareto distribution parame-
ters were estimated using both maximum likelihood and
L-moment estimation methods. Our decision to use MLE
when the number of ny,., > 30 and L-ME was otherwise
aligns with previous studies (Dupuis and Winchester, 2001;

https://doi.org/10.5194/hess-28-801-2024

Papukdee et al., 2022), which also demonstrated the efficacy
of these methods for different sample sizes. The consistency
of our p values from K-S and AD tests with these studies
further validates our modeling process.

We selected a threshold based on meteorological condi-
tions, specifically when rainfall exceeded 35 mm, indicating
heavy rainfall (Meteorological, 2021). This threshold, while
higher than those used in some earlier studies, was deemed
appropriate for our focus on extreme rainfall events. The
range of scale and shape parameters estimated in our study
were consistent with previous works in similar climatic zones

Hydrol. Earth Syst. Sci., 28, 801-816, 2024
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Figure 5. Panels (a)—(f) show return level plots (profile likelihood method) for the maximum cumulative rainfall on consecutive rainy days
for 2, 3,4, 5, 6, and 7 d at Chaiyaphum meteorological station in the Chi watershed, northeastern Thailand.

(Phoophiwfa et al., 2023a), supporting the applicability of
the GPD for extreme rainfall in our study area.

Our analysis pinpointed Udon Thani province as having
the highest cumulative rainfall return levels across all return
periods, signaling a heightened risk of flooding. This find-
ing holds significant implications for future rainfall manage-
ment planning, echoing the importance emphasized in prior
research advocating for regionally specific flood risk assess-
ment (Prahadchai et al., 2022). Expanding on previous work,
our study presents estimated maximum cumulative rainfall
return levels for CONS-2 and CONS-7 events at selected

Hydrol. Earth Syst. Sci., 28, 801-816, 2024

stations. This detailed analysis offers guidance for targeted
flood mitigation efforts, particularly in regions such as Udon
Thani, Chaiyaphum, and Sisaket identified as higher-risk ar-
eas.

The utilization of Q-GIS to create return level maps via the
inverse distance weight (IDW) interpolation method provides
a visually intuitive depiction of flood risk spatial distribu-
tion. While common in geographic analysis, this application
in mapping extreme rainfall return levels is, to our knowl-
edge, a pioneering instance (Flenniken et al., 2020).

https://doi.org/10.5194/hess-28-801-2024
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Figure 6. Estimated return level of maximum cumulative rainfall for 2 consecutive rainy days in the Chi watershed for 2-, 5-, 25-, and 50-year

periods.

Our findings emphasize the necessity for future rainfall
management planning specifically within the Chi watershed.
This study can be extended beyond the Chi watershed by ex-
amining the potential impact of its findings on policy formu-
lation, infrastructure planning, and disaster mitigation strate-
gies in regions confronted with analogous challenges. Broad-
ening the scope, the research probes the implications of its
results for the domains of hydrology, climatology, and envi-
ronmental science.

Numerous organizations, including prominent bodies like
the IPCC (IPCC, 2014) and UNFCCC (UNFCCC, 2015), are
increasingly acknowledging the pervasive challenges posed
by climate change. This global phenomenon manifests in
widespread impacts, affecting temperatures and altering the
frequency and intensity of extreme weather events (Brid-
hikitti et al., 2023).

Nonetheless, our study acknowledges certain limitations,
notably the assumption of stationary rainfall patterns, which
may, however, be influenced by climate change. Future re-
search could delve into the impact of changing climate con-

https://doi.org/10.5194/hess-28-801-2024

ditions on extreme rainfall events, thereby refining models to
accommodate a warming climate.

6 Conclusions

This study set out to evaluate extreme rainfall events in the
Chi watershed in northeastern Thailand with the aim of ap-
plying extreme value theory to predict future rainfall pat-
terns. We analyzed maximum cumulative rainfall data from
1984 to 2018 and fitted the generalized Pareto distribution
to the data. This model was determined to be appropriate
through goodness-of-fit tests, providing a robust method for
analyzing extreme rainfall events in the region. Our results
reveal that Udon Thani, Chaiyaphum, Maha Sarakham, Tha
Phra Agromet., Roi Et, and Sisaket provinces had the highest
return levels for CONS-2 and CONS-3, suggesting that these
areas are at high risk of flooding.

These findings underscore the importance of forecasting
and planning for extreme rainfall events in the Chi water-
shed. We found that even short periods of continuous rainfall

Hydrol. Earth Syst. Sci., 28, 801-816, 2024
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Figure 7. Estimated return level of maximum cumulative rainfall for seven consecutive rainy days in the Chi watershed for 2-, 5-, 25-, and

50-year periods.

could lead to flash flooding, highlighting the need for effec-
tive water management in the region. We also developed 2D
maps, which provide a practical tool for visualizing at-risk
areas and aiding in the planning of soil and water conser-
vation measures, dam construction, as well as irrigation and
drainage work.

The implications of this study extend beyond academia.
Our findings provide valuable insights for governmental
agencies, private organizations, and individuals alike, em-
powering them to design more effective flood management
strategies, thereby reducing the risk and potential impact of
flooding in their communities. In the broader context, manag-
ing extreme rainfall events and mitigating flood risks are cru-
cial for safeguarding property, preserving ecosystems, and
ultimately saving lives.

Future research should explore spatial analysis to deter-
mine interdependencies among different regions and use cop-
ula functions for correlation analysis. Such developments
could provide a more nuanced understanding of the region’s
flood risk and further enhance our ability to predict and pre-
pare for extreme rainfall events.

Hydrol. Earth Syst. Sci., 28, 801-816, 2024

In conclusion, this study underscores the urgency of focus-
ing on extreme rainfall events in our fight against the increas-
ing threat of flooding. With climate change intensifying, the
tools and strategies we develop today will be instrumental in
managing the water-related challenges of tomorrow.
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