Articles | Volume 27, issue 4
https://doi.org/10.5194/hess-27-953-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-953-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of vegetation maintenance on flow and mixing: case study comparing fully cut with high-coverage conditions
Monika Barbara Kalinowska
CORRESPONDING AUTHOR
Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
Kaisa Västilä
Aalto University School of Engineering, Espoo, Finland
Freshwater Centre, Finnish Environment Institute, Helsinki, Finland
Michael Nones
Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
Adam Kiczko
Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
Emilia Karamuz
Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
Andrzej Brandyk
Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
Adam Kozioł
Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
Marcin Krukowski
Institute of Environmental Engineering, Warsaw University of Life Sciences, Warsaw, Poland
Related authors
M. M. Mrokowska, P. M. Rowiński, and M. B. Kalinowska
Hydrol. Earth Syst. Sci., 19, 4041–4053, https://doi.org/10.5194/hess-19-4041-2015, https://doi.org/10.5194/hess-19-4041-2015, 2015
Short summary
Short summary
This paper presents evaluation of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. Theoretical description is facilitated with the analysis of field data from artificial dam-break flood waves in a small lowland watercourse. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The study shows the Manning coefficient is less sensitive to simplified relations than other parameters.
Tesfaye Belay Senbeta, Krzysztof Kochanek, Emilia Karamuz, and Jaroslaw Jan Napiorkowski
Proc. IAHS, 385, 155–162, https://doi.org/10.5194/piahs-385-155-2024, https://doi.org/10.5194/piahs-385-155-2024, 2024
Short summary
Short summary
The classical assumption that droughts are caused solely by climatic factors is outdated in a human-modified world. This study models the impact of human activities on the hydrological characteristics of droughts using two rainfall-runoff models. The study shows that both models demonstrate similar positive and negative impacts, despite differences in magnitude. The results emphasize the need for an integrated approach to water resources management that considers both climatic and human factors.
Adam Kozioł, Adam Kiczko, Marcin Krukowski, Elżbieta Kubrak, Janusz Kubrak, Grzegorz Majewski, and Andrzej Brandyk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-74, https://doi.org/10.5194/hess-2024-74, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Floodplain trees play a crucial role in increasing flow resistance. Their impact extends beyond floodplains to affect the main channel. The experiments reveal the influence of floodplain trees on the discharge capacity of channels with varying roughness. We determine resistance coefficients for different roughness levels of the main channel bottom. The research contributes to a deeper understanding of open-channel flow dynamics and has practical implications for river engineering.
Francesco Fatone, Bartosz Szeląg, Przemysław Kowal, Arthur McGarity, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Nicolas Caradot
Hydrol. Earth Syst. Sci., 27, 3329–3349, https://doi.org/10.5194/hess-27-3329-2023, https://doi.org/10.5194/hess-27-3329-2023, 2023
Short summary
Short summary
A novel methodology for the development of a stormwater network performance simulator including advanced risk assessment was proposed. The applied tool enables the analysis of the influence of spatial variability in catchment and stormwater network characteristics on the relation between (SWMM) model parameters and specific flood volume, as an alternative approach to mechanistic models. The proposed method can be used at the stage of catchment model development and spatial planning management.
Mohammad Kazem Ghorbani, Nasser Talebbeydokhti, Hossein Hamidifar, Mehrshad Samadi, Michael Nones, Fatemeh Rezaeitavabe, and Shabnam Heidarifar
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2022-16, https://doi.org/10.5194/gc-2022-16, 2023
Preprint withdrawn
Short summary
Short summary
A methodology is developed for assessing the quality of education in Water Resources Engineering as a sub-discipline of Civil Engineering. It is based on Klein's learning model and using the hybrid fuzzy-AHP-TOPSIS method. The relative closeness of universities as a performance evaluation criterion was obtained. The sensitivity analysis was performed based on some qualitative criteria on the model. This model of evaluation can have a considerable influence on the education improvement.
Bartosz Szeląg, Adam Kiczko, Grzegorz Wałek, Ewa Wojciechowska, Michał Stachura, and Francesco Fatone
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-109, https://doi.org/10.5194/hess-2022-109, 2022
Manuscript not accepted for further review
Short summary
Short summary
A methodology for the development of a sewer network performance simulator and risk assesssment is given. The influence of catchment characteristics, sewer network and SWMM parameters on specific flood volume was taken into account in comparison with developed methods. The influence of spatial variability of catchment and sewer network characteristics on the relation between SWMM parameters and sewage flooding was determined, which can be used for spatial planning and urban catchment management.
Hossein Hamidifar and Michael Nones
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-357, https://doi.org/10.5194/nhess-2021-357, 2021
Manuscript not accepted for further review
Short summary
Short summary
Floods are among the most devastating natural hazards. In this research, flooding events that have killed more than 10 people in the 1951–2020 period have been studied, analysing the EM-DAT database. The results show that the severity of flood-related deaths is equally distributed worldwide, but present some specific geographical patterns, with Southern, Eastern, and South-Eastern regions of Asia characterized by high flood-related casualties.
Francesco Fatone, Bartosz Szeląg, Adam Kiczko, Dariusz Majerek, Monika Majewska, Jakub Drewnowski, and Grzegorz Łagód
Hydrol. Earth Syst. Sci., 25, 5493–5516, https://doi.org/10.5194/hess-25-5493-2021, https://doi.org/10.5194/hess-25-5493-2021, 2021
Short summary
Short summary
A sensitivity analysis based on a simulator of hydrograph parameters (volume, maximum flow) is shown. The method allows us to analyze the impact of calibrated hydrodynamic model parameters, including rainfall distribution and intensity, on the hydrograph. A sensitivity coefficient and the effect of the simulator uncertainty on calculation results are presented. This approach can be used to select hydrographs for calibration and validation of models, which has not been taken into account so far.
Adam Kiczko, Kaisa Västilä, Adam Kozioł, Janusz Kubrak, Elżbieta Kubrak, and Marcin Krukowski
Hydrol. Earth Syst. Sci., 24, 4135–4167, https://doi.org/10.5194/hess-24-4135-2020, https://doi.org/10.5194/hess-24-4135-2020, 2020
Short summary
Short summary
The study compares the uncertainty of discharge curves for vegetated channels, calculated using several methods, including the simplest ones, based on the Manning formula and advanced approaches, providing a detailed physical representation of the channel flow processes. Parameters of each method were identified for the same data sets. The outcomes of the study include the widths of confidence intervals, showing which method was the most successful in explaining observations.
Mariateresa Franzoia, Michael Nones, and Giampaolo Di Silvio
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2017-7, https://doi.org/10.5194/esurf-2017-7, 2017
Preprint withdrawn
Short summary
Short summary
Describing the long-term evolution of rivers can be very challenging, especially because of the computational effort required by a detailed description of the physical processes involved. To address this problem, simplified physically-based models can represent an innovative approach, but a thorough verification of equations and simplifications adopted is strictly required. In this work, a 0D, two-reach, two-grainsize hydro-morphological model is presented and applied to a schematic reach.
M. M. Mrokowska, P. M. Rowiński, and M. B. Kalinowska
Hydrol. Earth Syst. Sci., 19, 4041–4053, https://doi.org/10.5194/hess-19-4041-2015, https://doi.org/10.5194/hess-19-4041-2015, 2015
Short summary
Short summary
This paper presents evaluation of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. Theoretical description is facilitated with the analysis of field data from artificial dam-break flood waves in a small lowland watercourse. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The study shows the Manning coefficient is less sensitive to simplified relations than other parameters.
M. Nones, M. Guerrero, and P. Ronco
Earth Surf. Dynam., 2, 9–19, https://doi.org/10.5194/esurf-2-9-2014, https://doi.org/10.5194/esurf-2-9-2014, 2014
A. Kiczko, R. J. Romanowicz, M. Osuch, and E. Karamuz
Nat. Hazards Earth Syst. Sci., 13, 3443–3455, https://doi.org/10.5194/nhess-13-3443-2013, https://doi.org/10.5194/nhess-13-3443-2013, 2013
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Instruments and observation techniques
Hydrological, meteorological, and watershed controls on the water balance of thermokarst lakes between Inuvik and Tuktoyaktuk, Northwest Territories, Canada
Assessing the influence of lake and watershed attributes on snowmelt bypass at thermokarst lakes
Technical note: Analyzing river network dynamics and the active length–discharge relationship using water presence sensors
Technical note: Efficient imaging of hydrological units below lakes and fjords with a floating, transient electromagnetic (FloaTEM) system
Drastic decline of flood pulse in the Cambodian floodplains (Mekong River and Tonle Sap system)
Seasonality of density currents induced by differential cooling
Implications of variations in stream specific conductivity for estimating baseflow using chemical mass balance and calibrated hydrograph techniques
Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain)
Contrasting hydrological and thermal intensities determine seasonal lake-level variations – a case study at Paiku Co on the southern Tibetan Plateau
Technical note: Mobile open dynamic chamber measurement of methane macroseeps in lakes
A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water
Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments
Evolution and dynamics of the vertical temperature profile in an oligotrophic lake
Long-term changes in central European river discharge for 1869–2016: impact of changing snow covers, reservoir constructions and an intensified hydrological cycle
Reliable reference for the methane concentrations in Lake Kivu at the beginning of industrial exploitation
Small dams alter thermal regimes of downstream water
Oxycline oscillations induced by internal waves in deep Lake Iseo
Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations
New profiling and mooring records help to assess variability of Lake Issyk-Kul and reveal unknown features of its thermohaline structure
Evaluation of lacustrine groundwater discharge, hydrologic partitioning, and nutrient budgets in a proglacial lake in the Qinghai–Tibet Plateau: using 222Rn and stable isotopes
Long-term temporal trajectories to enhance restoration efficiency and sustainability on large rivers: an interdisciplinary study
Active heat pulse sensing of 3-D-flow fields in streambeds
Technical note: False low turbidity readings from optical probes during high suspended-sediment concentrations
Effectiveness of distributed temperature measurements for early detection of piping in river embankments
Citizen observations contributing to flood modelling: opportunities and challenges
Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley–Taylor, and Penman estimates
Technical note: Stage and water width measurement of a mountain stream using a simple time-lapse camera
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
Information content of stream level class data for hydrological model calibration
Hydrology of inland tropical lowlands: the Kapuas and Mahakam wetlands
Technical Note: Monitoring of unsteady open channel flows using the continuous slope-area method
Application of CryoSat-2 altimetry data for river analysis and modelling
Technical Note: Advances in flash flood monitoring using unmanned aerial vehicles (UAVs)
Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia
Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China
DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry
The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research
A 2600-year history of floods in the Bernese Alps, Switzerland: frequencies, mechanisms and climate forcing
Technical Note: Semi-automated effective width extraction from time-lapse RGB imagery of a remote, braided Greenlandic river
Characterization of sediment layer composition in a shallow lake: from open water zones to reed belt areas
Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration – the Thur River case study
Dynamics of auto- and heterotrophic picoplankton and associated viruses in Lake Geneva
Historic maps as a data source for socio-hydrology: a case study of the Lake Balaton wetland system, Hungary
Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain
Flood discharge measurement of a mountain river – Nanshih River in Taiwan
Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland
Measurement of spatial and temporal fine sediment dynamics in a small river
Technical Note: How image processing facilitates the rising bubble technique for discharge measurement
Discharge estimation in a backwater affected meandering river
Ephemeral stream sensor design using state loggers
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 27, 2173–2188, https://doi.org/10.5194/hess-27-2173-2023, https://doi.org/10.5194/hess-27-2173-2023, 2023
Short summary
Short summary
The Arctic is warming quickly and influencing lake water balances. We used water isotope concentrations taken from samples of 25 lakes in the Canadian Arctic and estimated the average ratio of evaporation to inflow (E / I) for each lake. The ratio of watershed area (the area that flows into the lake) to lake area (WA / LA) strongly predicted E / I, as lakes with relatively smaller watersheds received less inflow. The WA / LA could be used to predict the vulnerability of Arctic lakes to future change.
Evan J. Wilcox, Brent B. Wolfe, and Philip Marsh
Hydrol. Earth Syst. Sci., 26, 6185–6205, https://doi.org/10.5194/hess-26-6185-2022, https://doi.org/10.5194/hess-26-6185-2022, 2022
Short summary
Short summary
We estimated how much of the water flowing into lakes during snowmelt replaced the pre-snowmelt lake water. Our data show that, as lake depth increases, the amount of water mixed into lakes decreased, because vertical mixing is reduced as lake depth increases. Our data also show that the water mixing into lakes is not solely snow-sourced but is a mixture of snowmelt and soil water. These results are relevant for lake biogeochemistry given the unique properties of snowmelt runoff.
Francesca Zanetti, Nicola Durighetto, Filippo Vingiani, and Gianluca Botter
Hydrol. Earth Syst. Sci., 26, 3497–3516, https://doi.org/10.5194/hess-26-3497-2022, https://doi.org/10.5194/hess-26-3497-2022, 2022
Short summary
Short summary
River networks are highly dynamical. Characterizing expansion and retraction of flowing streams is a significant scientific challenge. Electrical resistance sensors were used to monitor stream network patterns in an alpine catchment. Our data show the presence of spatial heterogeneity in network dynamics and that the active length is more sensitive than discharge to small rain events. The study unravels potentials and limitations of the sensors for the characterization of temporary streams.
Pradip Kumar Maurya, Frederik Ersted Christensen, Masson Andy Kass, Jesper B. Pedersen, Rasmus R. Frederiksen, Nikolaj Foged, Anders Vest Christiansen, and Esben Auken
Hydrol. Earth Syst. Sci., 26, 2813–2827, https://doi.org/10.5194/hess-26-2813-2022, https://doi.org/10.5194/hess-26-2813-2022, 2022
Short summary
Short summary
In this paper, we present an application of the electromagnetic method to image the subsurface below rivers, lakes, or any surface water body. The scanning of the subsurface is carried out by sailing an electromagnetic sensor called FloaTEM. Imaging results show a 3D distribution of different sediment types below the freshwater lakes. In the case of saline water, the system is capable of identifying the probable location of groundwater discharge into seawater.
Samuel De Xun Chua, Xi Xi Lu, Chantha Oeurng, Ty Sok, and Carl Grundy-Warr
Hydrol. Earth Syst. Sci., 26, 609–625, https://doi.org/10.5194/hess-26-609-2022, https://doi.org/10.5194/hess-26-609-2022, 2022
Short summary
Short summary
We found that the annual flood at the Cambodian floodplains decreased from 1960 to 2019. Consequently, the Tonle Sap Lake, the largest lake in Southeast Asia, is shrinking. The results are worrying because the local fisheries and planting calendar might be disrupted. This drastic decline of flooding extent is caused mostly by local factors, namely water withdrawal for irrigation and channel incision from sand mining activities.
Tomy Doda, Cintia L. Ramón, Hugo N. Ulloa, Alfred Wüest, and Damien Bouffard
Hydrol. Earth Syst. Sci., 26, 331–353, https://doi.org/10.5194/hess-26-331-2022, https://doi.org/10.5194/hess-26-331-2022, 2022
Short summary
Short summary
At night or during cold periods, the shallow littoral region of lakes cools faster than their deeper interior. This induces a cold downslope current that carries littoral waters offshore. From a 1-year-long database collected in a small temperate lake, we resolve the seasonality of this current and report its frequent occurrence from summer to winter. This study contributes to a better quantification of lateral exchange in lakes, with implications for the transport of dissolved compounds.
Ian Cartwright
Hydrol. Earth Syst. Sci., 26, 183–195, https://doi.org/10.5194/hess-26-183-2022, https://doi.org/10.5194/hess-26-183-2022, 2022
Short summary
Short summary
Using specific conductivity (SC) to estimate groundwater inflow to rivers is complicated by bank return waters, interflow, and flows off floodplains contributing to baseflow in all but the driest years. Using the maximum SC of the river in dry years to estimate the SC of groundwater produces the best baseflow vs. streamflow trends. The variable composition of baseflow hinders calibration of hydrograph-based techniques to estimate groundwater inflows.
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Frederic Thalasso, Katey Walter Anthony, Olya Irzak, Ethan Chaleff, Laughlin Barker, Peter Anthony, Philip Hanke, and Rodrigo Gonzalez-Valencia
Hydrol. Earth Syst. Sci., 24, 6047–6058, https://doi.org/10.5194/hess-24-6047-2020, https://doi.org/10.5194/hess-24-6047-2020, 2020
Short summary
Short summary
Methane (CH4) seepage is the steady or episodic flow of gaseous hydrocarbons from subsurface reservoirs that has been identified as a significant source of atmospheric CH4. The monitoring of these emissions is important and despite several available methods, large macroseeps are still difficult to measure due to a lack of a lightweight and inexpensive method deployable in remote environments. Here, we report the development of a mobile chamber for measuring intense CH4 macroseepage in lakes.
Shangbin Xiao, Liu Liu, Wei Wang, Andreas Lorke, Jason Woodhouse, and Hans-Peter Grossart
Hydrol. Earth Syst. Sci., 24, 3871–3880, https://doi.org/10.5194/hess-24-3871-2020, https://doi.org/10.5194/hess-24-3871-2020, 2020
Short summary
Short summary
To better understand the fate of methane (CH4) and carbon dioxide (CO2) in freshwaters, dissolved CH4 and CO2 need to be measured with a high temporal resolution. We developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved gases in water. FaRAGE can achieve a short response time (CH4:
t95 % = 12 s; CO2:
t95 % = 10 s) while retaining a high equilibration ratio and accuracy.
Nguyen Thanh Duc, Samuel Silverstein, Martin Wik, Patrick Crill, David Bastviken, and Ruth K. Varner
Hydrol. Earth Syst. Sci., 24, 3417–3430, https://doi.org/10.5194/hess-24-3417-2020, https://doi.org/10.5194/hess-24-3417-2020, 2020
Short summary
Short summary
Under rapid ongoing climate change, accurate quantification of natural greenhouse gas emissions in aquatic environments such as lakes and ponds is needed to understand regulation and feedbacks. Building on the rapid development in wireless communication, sensors, and computation technology, we present a low-cost, open-source, automated and remotely accessed and controlled device for carbon dioxide and methane fluxes from open-water environments along with tests showing their potential.
Zvjezdana B. Klaić, Karmen Babić, and Mirko Orlić
Hydrol. Earth Syst. Sci., 24, 3399–3416, https://doi.org/10.5194/hess-24-3399-2020, https://doi.org/10.5194/hess-24-3399-2020, 2020
Short summary
Short summary
Fine-resolution lake temperature measurements (2 min, 15 depths) show different lake responses to atmospheric forcings: (1) continuous diurnal oscillations in the temperature in the first 5 m of the lake, (2) occasional diurnal oscillations in the temperature at depths from 7 to 20 m, and (3) occasional surface and internal seiches. Due to the sloped lake bottom, surface seiches produced the high-frequency oscillations in the lake temperatures with periods of 9 min at depths from 9 to 17 m.
Erwin Rottler, Till Francke, Gerd Bürger, and Axel Bronstert
Hydrol. Earth Syst. Sci., 24, 1721–1740, https://doi.org/10.5194/hess-24-1721-2020, https://doi.org/10.5194/hess-24-1721-2020, 2020
Short summary
Short summary
In the attempt to identify and disentangle long-term impacts of changes in snow cover and precipitation along with reservoir constructions, we employ a set of analytical tools on hydro-climatic time series. We identify storage reservoirs as an important factor redistributing runoff from summer to winter. Furthermore, our results hint at more (intense) rainfall in recent decades. Detected increases in high discharge can be traced back to corresponding changes in precipitation.
Bertram Boehrer, Wolf von Tümpling, Ange Mugisha, Christophe Rogemont, and Augusta Umutoni
Hydrol. Earth Syst. Sci., 23, 4707–4716, https://doi.org/10.5194/hess-23-4707-2019, https://doi.org/10.5194/hess-23-4707-2019, 2019
Short summary
Short summary
Dissolved methane in Lake Kivu (East Africa) represents a precious energy deposit, but the high gas loads have also been perceived as a threat by the local population. Our measurements confirm the huge amount of methane and carbon dioxide present, but do not support the current theory of a significant recharge. Direct measurements of gas pressure indicate no imminent danger due to limnic eruptions. A continuous survey is mandatory to support responsible action during industrial exploitation.
André Chandesris, Kris Van Looy, Jacob S. Diamond, and Yves Souchon
Hydrol. Earth Syst. Sci., 23, 4509–4525, https://doi.org/10.5194/hess-23-4509-2019, https://doi.org/10.5194/hess-23-4509-2019, 2019
Short summary
Short summary
We found that small dams in rivers alter the thermal regimes of downstream waters in two distinct ways: either only the downstream daily minimum temperatures increase, or both the downstream daily minimum and maximum temperatures increase. We further show that only two physical dam characteristics can explain this difference in temperature response: (1) residence time, and (2) surface area. These results may help managers prioritize efforts to restore the fragmented thermalscapes of rivers.
Giulia Valerio, Marco Pilotti, Maximilian Peter Lau, and Michael Hupfer
Hydrol. Earth Syst. Sci., 23, 1763–1777, https://doi.org/10.5194/hess-23-1763-2019, https://doi.org/10.5194/hess-23-1763-2019, 2019
Short summary
Short summary
This paper provides experimental evidence of the occurrence of large and periodic movements induced by the wind at 95 m in depth in Lake Iseo, where a permanent chemocline is located. These movements determine vertical oscillations of the oxycline up to 20 m. Accordingly, in 3 % of the sediment area alternating redox conditions occur, which might force unsteady sediment–water fluxes. This finding has major implications for the internal matter cycle in Lake Iseo.
Georgiy Kirillin, Ilya Aslamov, Matti Leppäranta, and Elisa Lindgren
Hydrol. Earth Syst. Sci., 22, 6493–6504, https://doi.org/10.5194/hess-22-6493-2018, https://doi.org/10.5194/hess-22-6493-2018, 2018
Short summary
Short summary
We have discovered transient appearances of strong turbulent mixing beneath the ice of an Arctic lake. Such mixing events increase heating of the ice base up to an order of magnitude and can significantly accelerate ice melting. The source of mixing was identified as oscillations of the entire lake water body triggered by strong winds over the lake surface. This previously unknown mechanism of ice melt may help understand the link between the climate conditions and the seasonal ice formation.
Peter O. Zavialov, Alexander S. Izhitskiy, Georgiy B. Kirillin, Valentina M. Khan, Boris V. Konovalov, Peter N. Makkaveev, Vadim V. Pelevin, Nikolay A. Rimskiy-Korsakov, Salmor A. Alymkulov, and Kubanychbek M. Zhumaliev
Hydrol. Earth Syst. Sci., 22, 6279–6295, https://doi.org/10.5194/hess-22-6279-2018, https://doi.org/10.5194/hess-22-6279-2018, 2018
Short summary
Short summary
This paper reports the results of field surveys conducted in Lake Issyk-Kul in 2015–2017 and compares the present-day data with the available historical records. Our data do not confirm the reports of progressive warming of the deep Issyk-Kul waters as suggested in some previous publications. However, they do indicate a positive trend of salinity in the lake’s interior over the last 3 decades. An important newly found feature is a persistent salinity maximum at depths of 70–120 m.
Xin Luo, Xingxing Kuang, Jiu Jimmy Jiao, Sihai Liang, Rong Mao, Xiaolang Zhang, and Hailong Li
Hydrol. Earth Syst. Sci., 22, 5579–5598, https://doi.org/10.5194/hess-22-5579-2018, https://doi.org/10.5194/hess-22-5579-2018, 2018
David Eschbach, Laurent Schmitt, Gwenaël Imfeld, Jan-Hendrik May, Sylvain Payraudeau, Frank Preusser, Mareike Trauerstein, and Grzegorz Skupinski
Hydrol. Earth Syst. Sci., 22, 2717–2737, https://doi.org/10.5194/hess-22-2717-2018, https://doi.org/10.5194/hess-22-2717-2018, 2018
Short summary
Short summary
In this study we show the relevance of an interdisciplinary study for improving restoration within the framework of a European LIFE+ project on the French side of the Upper Rhine (Rohrschollen Island). Our results underscore the advantage of combining functional restoration with detailed knowledge of past trajectories in complex hydrosystems. We anticipate our approach will expand the toolbox of decision-makers and help orientate functional restoration actions in the future.
Eddie W. Banks, Margaret A. Shanafield, Saskia Noorduijn, James McCallum, Jörg Lewandowski, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, https://doi.org/10.5194/hess-22-1917-2018, 2018
Short summary
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
Nicholas Voichick, David J. Topping, and Ronald E. Griffiths
Hydrol. Earth Syst. Sci., 22, 1767–1773, https://doi.org/10.5194/hess-22-1767-2018, https://doi.org/10.5194/hess-22-1767-2018, 2018
Short summary
Short summary
This paper describes instances in the Grand Canyon study area and a laboratory experiment in which very high suspended-sediment concentrations result in incorrectly low turbidity recorded with a commonly used field instrument. If associated with the monitoring of a construction or dredging project, false low turbidity could result in regulators being unaware of environmental damage caused by the actually much higher turbidity.
Silvia Bersan, André R. Koelewijn, and Paolo Simonini
Hydrol. Earth Syst. Sci., 22, 1491–1508, https://doi.org/10.5194/hess-22-1491-2018, https://doi.org/10.5194/hess-22-1491-2018, 2018
Short summary
Short summary
Backward erosion piping is the cause of a significant percentage of failures and incidents involving dams and river embankments. In the past 20 years fibre-optic Distributed Temperature Sensing (DTS) has proved to be effective for the detection of leakages and internal erosion in dams. This work investigates the effectiveness of DTS for monitoring backward erosion piping in river embankments. Data from a large-scale piping test performed on an instrumented dike are presented and discussed.
Thaine H. Assumpção, Ioana Popescu, Andreja Jonoski, and Dimitri P. Solomatine
Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, https://doi.org/10.5194/hess-22-1473-2018, 2018
Short summary
Short summary
Citizens can contribute to science by providing data, analysing them and as such contributing to decision-making processes. For example, citizens have collected water levels from gauges, which are important when simulating/forecasting floods, where data are usually scarce. This study reviewed such contributions and concluded that integration of citizen data may not be easy due to their spatio-temporal characteristics but that citizen data still proved valuable and can be used in flood modelling.
Jutta Metzger, Manuela Nied, Ulrich Corsmeier, Jörg Kleffmann, and Christoph Kottmeier
Hydrol. Earth Syst. Sci., 22, 1135–1155, https://doi.org/10.5194/hess-22-1135-2018, https://doi.org/10.5194/hess-22-1135-2018, 2018
Short summary
Short summary
This paper is motivated by the need for more precise evaporation rates from the Dead Sea (DS) and methods to estimate and forecast evaporation. A new approach to measure lake evaporation with a station located at the shoreline, also transferable to other lakes, is introduced. The first directly measured DS evaporation rates are presented as well as applicable methods for evaporation calculation. These results enable us to further close the DS water budget and to facilitate the water management.
Pauline Leduc, Peter Ashmore, and Darren Sjogren
Hydrol. Earth Syst. Sci., 22, 1–11, https://doi.org/10.5194/hess-22-1-2018, https://doi.org/10.5194/hess-22-1-2018, 2018
Short summary
Short summary
We show the utility of ground-based time-lapse cameras for automated monitoring of stream stage and flow characteristics. High-frequency flow stage, water surface width and other information on the state of flow can be acquired for extended time periods with simple local calibration using a low-cost time-lapse camera and a few simple field measurements for calibration and for automated image selection and sorting. The approach is a useful substitute or complement to the conventional stage data.
Christina Tecklenburg and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 5043–5063, https://doi.org/10.5194/hess-21-5043-2017, https://doi.org/10.5194/hess-21-5043-2017, 2017
Short summary
Short summary
We characterized groundwater–lake exchange patterns and identified their controls based on extensive field measurements. Our measurement design bridges the gap between the detailed local characterisation and low resolution regional investigations. Results indicated strong spatial variability in groundwater inflow rates: large scale inflow patterns correlated with topography and the groundwater flow field and small scale patterns correlated with grainsize distributions of the lake sediment.
H. J. Ilja van Meerveld, Marc J. P. Vis, and Jan Seibert
Hydrol. Earth Syst. Sci., 21, 4895–4905, https://doi.org/10.5194/hess-21-4895-2017, https://doi.org/10.5194/hess-21-4895-2017, 2017
Short summary
Short summary
We tested the usefulness of stream level class data for hydrological model calibration. Only two stream level classes, e.g. above or below a rock in the stream, were already informative, particularly when the boundary was chosen at a high stream level. There was hardly any improvement in model performance when using more than five stream level classes. These results suggest that model based streamflow time series can be obtained from citizen science based water level class data.
Hidayat Hidayat, Adriaan J. Teuling, Bart Vermeulen, Muh Taufik, Karl Kastner, Tjitske J. Geertsema, Dinja C. C. Bol, Dirk H. Hoekman, Gadis Sri Haryani, Henny A. J. Van Lanen, Robert M. Delinom, Roel Dijksma, Gusti Z. Anshari, Nining S. Ningsih, Remko Uijlenhoet, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 21, 2579–2594, https://doi.org/10.5194/hess-21-2579-2017, https://doi.org/10.5194/hess-21-2579-2017, 2017
Short summary
Short summary
Hydrological prediction is crucial but in tropical lowland it is difficult, considering data scarcity and river system complexity. This study offers a view of the hydrology of two tropical lowlands in Indonesia. Both lowlands exhibit the important role of upstream wetlands in regulating the flow downstream. We expect that this work facilitates a better prediction of fire-prone conditions in these regions.
Kyutae Lee, Ali R. Firoozfar, and Marian Muste
Hydrol. Earth Syst. Sci., 21, 1863–1874, https://doi.org/10.5194/hess-21-1863-2017, https://doi.org/10.5194/hess-21-1863-2017, 2017
Short summary
Short summary
Accurate estimation of stream/river flows is important in many aspects, including public safety during floods, effective uses of water resources for hydropower generation and irrigation, and environments. In this paper, we investigated a feasibility of the continuous slope area (CSA) method which measures dynamic changes in instantaneous water surface elevations, and the results showed promising capabilities of the suggested method for the accurate estimation of flows in natural streams/rivers.
Raphael Schneider, Peter Nygaard Godiksen, Heidi Villadsen, Henrik Madsen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 21, 751–764, https://doi.org/10.5194/hess-21-751-2017, https://doi.org/10.5194/hess-21-751-2017, 2017
Short summary
Short summary
We use water level observations from the CryoSat-2 satellite in combination with a river model of the Brahmaputra River, extracting satellite data over a dynamic river mask derived from Landsat imagery. The novelty of this work is the use of the CryoSat-2 water level observations, collected using a complex spatio-temporal sampling scheme, to calibrate a hydrodynamic river model. The resulting model accurately reproduces water levels, without precise knowledge of river bathymetry.
Matthew T. Perks, Andrew J. Russell, and Andrew R. G. Large
Hydrol. Earth Syst. Sci., 20, 4005–4015, https://doi.org/10.5194/hess-20-4005-2016, https://doi.org/10.5194/hess-20-4005-2016, 2016
Short summary
Short summary
Unmanned aerial vehicles (UAVs) have the potential to capture information about the earth’s surface in dangerous and previously inaccessible locations. Here we present a method whereby image acquisition and subsequent analysis have enabled the highly dynamic and oft-immeasurable hydraulic phenomenon present during high-energy flash floods to be quantified at previously unattainable spatial and temporal resolutions.
Ian Cartwright and Harald Hofmann
Hydrol. Earth Syst. Sci., 20, 3581–3600, https://doi.org/10.5194/hess-20-3581-2016, https://doi.org/10.5194/hess-20-3581-2016, 2016
Short summary
Short summary
This paper uses the natural geochemical tracer Rn together with streamflow measurements to differentiate between actual groundwater inflows and water that exits the river, flows through the near-river sediments, and subsequently re-enters the river downstream (parafluvial flow). Distinguishing between these two components is important to understanding the water balance in gaining streams and in managing and protecting surface water resources.
Z. D. Wen, K. S. Song, Y. Zhao, J. Du, and J. H. Ma
Hydrol. Earth Syst. Sci., 20, 787–801, https://doi.org/10.5194/hess-20-787-2016, https://doi.org/10.5194/hess-20-787-2016, 2016
Short summary
Short summary
The study indicated that CDOM in rivers had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes in the Hulun Buir plateau, Northeast China. The autochthonous sources of CDOM in plateau waters were higher than in other freshwater rivers reported in the literature. Study of the optical–physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in plateau water environments.
C. Schwatke, D. Dettmering, W. Bosch, and F. Seitz
Hydrol. Earth Syst. Sci., 19, 4345–4364, https://doi.org/10.5194/hess-19-4345-2015, https://doi.org/10.5194/hess-19-4345-2015, 2015
J. Halder, S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal
Hydrol. Earth Syst. Sci., 19, 3419–3431, https://doi.org/10.5194/hess-19-3419-2015, https://doi.org/10.5194/hess-19-3419-2015, 2015
Short summary
Short summary
We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers) and evaluate its longer-term data holdings. A regionalized, cluster-based precipitation isotope model was used to compare measured to predicted isotope compositions of riverine catchments. The study demonstrated that the seasonal isotopic composition and variation of river water can be predicted, which will improve the application of water stable isotopes in rivers.
L. Schulte, J. C. Peña, F. Carvalho, T. Schmidt, R. Julià, J. Llorca, and H. Veit
Hydrol. Earth Syst. Sci., 19, 3047–3072, https://doi.org/10.5194/hess-19-3047-2015, https://doi.org/10.5194/hess-19-3047-2015, 2015
Short summary
Short summary
A 2600-year long composite palaeoflood record is reconstructed from high-resolution delta plain sediments of the Hasli-Aare floodplain on the northern slope of the Swiss Alps. Natural proxies compiled from sedimentary, geochemical and geomorphological data were calibrated by textual and factual sources and instrumental data. Geomorphological, historical and instrumental data provide evidence for flood damage intensities and discharge estimations of severe and catastrophic historical floods.
C. J. Gleason, L. C. Smith, D. C. Finnegan, A. L. LeWinter, L. H Pitcher, and V. W. Chu
Hydrol. Earth Syst. Sci., 19, 2963–2969, https://doi.org/10.5194/hess-19-2963-2015, https://doi.org/10.5194/hess-19-2963-2015, 2015
Short summary
Short summary
Here, we give a semi-automated processing workflow to extract hydraulic parameters from over 10,000 time-lapse images of the remote Isortoq River in Greenland. This workflow allows efficient and accurate (mean accuracy 79.6%) classification of images following an automated similarity filtering process. We also give an effective width hydrograph (a proxy for discharge) for the Isortoq using this workflow, showing the potential of this workflow for enhancing understanding of remote rivers.
I. Kogelbauer and W. Loiskandl
Hydrol. Earth Syst. Sci., 19, 1427–1438, https://doi.org/10.5194/hess-19-1427-2015, https://doi.org/10.5194/hess-19-1427-2015, 2015
M. Schirmer, J. Luster, N. Linde, P. Perona, E. A. D. Mitchell, D. A. Barry, J. Hollender, O. A. Cirpka, P. Schneider, T. Vogt, D. Radny, and E. Durisch-Kaiser
Hydrol. Earth Syst. Sci., 18, 2449–2462, https://doi.org/10.5194/hess-18-2449-2014, https://doi.org/10.5194/hess-18-2449-2014, 2014
A. Parvathi, X. Zhong, A. S. Pradeep Ram, and S. Jacquet
Hydrol. Earth Syst. Sci., 18, 1073–1087, https://doi.org/10.5194/hess-18-1073-2014, https://doi.org/10.5194/hess-18-1073-2014, 2014
A. Zlinszky and G. Timár
Hydrol. Earth Syst. Sci., 17, 4589–4606, https://doi.org/10.5194/hess-17-4589-2013, https://doi.org/10.5194/hess-17-4589-2013, 2013
B. Fournier, C. Guenat, G. Bullinger-Weber, and E. A. D. Mitchell
Hydrol. Earth Syst. Sci., 17, 4031–4042, https://doi.org/10.5194/hess-17-4031-2013, https://doi.org/10.5194/hess-17-4031-2013, 2013
Y.-C. Chen
Hydrol. Earth Syst. Sci., 17, 1951–1962, https://doi.org/10.5194/hess-17-1951-2013, https://doi.org/10.5194/hess-17-1951-2013, 2013
A. T. Rezende Filho, S. Furian, R. L. Victoria, C. Mascré, V. Valles, and L. Barbiero
Hydrol. Earth Syst. Sci., 16, 2723–2737, https://doi.org/10.5194/hess-16-2723-2012, https://doi.org/10.5194/hess-16-2723-2012, 2012
Y. Schindler Wildhaber, C. Michel, P. Burkhardt-Holm, D. Bänninger, and C. Alewell
Hydrol. Earth Syst. Sci., 16, 1501–1515, https://doi.org/10.5194/hess-16-1501-2012, https://doi.org/10.5194/hess-16-1501-2012, 2012
K. P. Hilgersom and W. M. J. Luxemburg
Hydrol. Earth Syst. Sci., 16, 345–356, https://doi.org/10.5194/hess-16-345-2012, https://doi.org/10.5194/hess-16-345-2012, 2012
H. Hidayat, B. Vermeulen, M. G. Sassi, P. J. J. F. Torfs, and A. J. F. Hoitink
Hydrol. Earth Syst. Sci., 15, 2717–2728, https://doi.org/10.5194/hess-15-2717-2011, https://doi.org/10.5194/hess-15-2717-2011, 2011
R. Bhamjee and J. B. Lindsay
Hydrol. Earth Syst. Sci., 15, 1009–1021, https://doi.org/10.5194/hess-15-1009-2011, https://doi.org/10.5194/hess-15-1009-2011, 2011
Cited articles
Baattrup-Pedersen, A., Ovesen, N. B., Larsen, S. E., Andersen, D. K., Riis, T., Kronvang, B., and Rasmussen, J. J.: Evaluating effects of weed cutting on
water level and ecological status in Danish lowland streams, Freshwater
Biol., 63, 652–661, https://doi.org/10.1111/fwb.13101, 2018. a, b, c
Bączyk, A., Wagner, M., Okruszko, T., and Grygoruk, M.: Influence of technical maintenance measures on ecological status of agricultural lowland
rivers – Systematic review and implications for river management, Sci. Total Environ., 627, 189–199, https://doi.org/10.1016/j.scitotenv.2018.01.235, 2018. a
Bal, K., Struyf, E., Vereecken, H., Viaene, P., Doncker, L. D., de Deckere, E., Mostaert, F., and Meire, P.: How do macrophyte distribution patterns affect hydraulic resistances?, Ecol. Eng., 37, 529–533,
https://doi.org/10.1016/j.ecoleng.2010.12.018, 2011. a
Biggs, H. J., Haddadchi, A., and Hicks, D. M.: Interactions between aquatic
vegetation, hydraulics and fine sediment: A case study in the Halswell River,
New Zealand, Hydrol. Process., 35, e14245, https://doi.org/10.1002/hyp.14245, 2021. a, b
Bretreger, D., Yeo, I.-Y., Hancock, G., and Willgoose, G.: Monitoring
irrigation using landsat observations and climate data over regional scales
in the Murray-Darling Basin, J. Hydrol., 590, 125356, https://doi.org/10.1016/j.jhydrol.2020.125356, 2020. a
Buisson, R.: The drainage channel biodiversity manual: Integrating wildlife and flood risk management, English Nature, 189 pp., https://www.wlma.org.uk/uploads/NE121_Drainage_Channel_Biodiversity_Manual.pdf (last access: 13 November 2022), 2008. a
Câmara, G., Palomo, D., de Souza, R. C. M., and de Oliveira, O. R. F.:
Towards a Generalized Map Algebra: Principles and Data Types, in: VII Brazilian Symposium on Geoinformatics, 20–23 November 2005, Campos do
Jordão, São Paulo, Brazil, edited by: Fonseca, F. T. and Casanova,
M. A., INPE, 66–81,
http://www.geoinfo.info/geoinfo2005/papers/p77.pdf (last access: 28 February 2023), 2005. a
Carrivick, J. L. and Smith, M. W.: Fluvial and aquatic applications of
Structure from Motion photogrammetry and unmanned aerial vehicle/drone
technology, Wiley Interdisciplin. Rev.: Water, 6, e1328, https://doi.org/10.1002/wat2.1328, 2019. a
Cornacchia, L., Wharton, G., Davies, G., Grabowski, R. C., Temmerman, S., Wal, D. V. D., Bouma, T. J., and Koppel, J. V. D.: Self-organization of river
vegetation leads to emergent buffering of river flows and water levels, P. Roy. Soc. B, 287, 20201147, https://doi.org/10.1098/rspb.2020.1147, 2020. a
Czernuszenko, W.: Dispersion of pollutants in flowing surface waters,
Encyclopedia of fluid mechanics, surface and groundwater flow phenomena, 10,
119–168, 1990. a
Errico, A., Lama, G. F. C., Francalanci, S., Chirico, G. B., Solari, L., and
Preti, F.: Flow dynamics and turbulence patterns in a drainage channel
colonized by common reed (Phragmites australis) under different scenarios of
vegetation management, Ecol. Eng., 133, 39–52, https://doi.org/10.1016/j.ecoleng.2019.04.016, 2019. a, b, c, d
Fischer, H. B.: Longitudinal dispersion in laboratory and natural streams,
PhD Thesis, California Institute of Technology, https://doi.org/10.7907/8D5C-BV11, 1966. a
Fischer, H. B.: Discussion of “simple method for predicting dispersion in
streams”, J. Environ. Eng. Div., 101, 453–455, https://doi.org/10.1061/JEEGAV.0000360, 1975. a
Forzieri, G., Castelli, F., and Preti, F.: Advances in remote sensing of
hydraulic roughness, Int. J. Remot Sens., 33, 630–654, https://doi.org/10.1080/01431161.2010.531788, 2012. a
Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., Escalona, J., and Medrano, H.: UAVs challenge to assess water stress for sustainable agriculture, Agr. Water Manage., 153, 9–19, https://doi.org/10.1016/j.agwat.2015.01.020, 2015. a
Ghisalberti, M. and Nepf, H.: Mass transport in vegetated shear flows, Environ. Fluid Mech., 5, 527–551, https://doi.org/10.1007/s10652-005-0419-1, 2005. a
Green, J. C.: Comparison of blockage factors in modelling the resistance of
channels containing submerged macrophytes, River Res. Appl., 21, 671–686, https://doi.org/10.1002/rra.854, 2005. a, b
Helmiö, T.: Unsteady 1D flow model of compound channel with vegetated
floodplains, J. Hydrol., 269, 89–99, https://doi.org/10.1016/S0022-1694(02)00197-X, 2002. a
Julínek, T. and Říha, J.: Longitudinal dispersion in an open channel determined from a tracer study, Environ. Earth Sci., 76, 1–15, https://doi.org/10.1007/s12665-017-6913-1, 2017. a, b
Kalinowska, M. B.: Dataset of tracer study experiments on influence of
vegetation on flow and mixing in small channels, Zenodo [data set], https://doi.org/10.5281/zenodo.7385385, 2022. a, b
Kalinowska, M. B. and Rowiński, P. M.: Uncertainty in computations of the spread of warm water in a river – lessons from Environmental Impact Assessment case study, Hydrol. Earth Syst. Sci., 16, 4177–4190, https://doi.org/10.5194/hess-16-4177-2012, 2012. a, b
Kalinowska, M. B., Västilä, K., and Rowiński, P. M.: Solute transport in complex natural flows, Acta Geophys., 67, 939–942, https://doi.org/10.1007/s11600-019-00308-z, 2019. a
Kiczko, A., Västilää K., Kozioł, A., Kubrak, J., Kubrak, E., and Krukowski, M.: Predicting discharge capacity of vegetated compound channels: uncertainty and identifiability of one-dimensional process-based models, Hydrol. Earth Syst. Sci., 24, 4135–4167, https://doi.org/10.5194/hess-24-4135-2020, 2020. a
Kilpatrick, F. A. and Wilson, J. F.: Measurement of time of travel in streams
by dye tracing, in: vol. 3, US Government Printing Office, https://doi.org/10.3133/twri03A9, 1989. a, b
Kindervater, E. and Steinman, A. D.: Two‐Stage Agricultural Ditch Sediments
Act as Phosphorus Sinks in West Michigan, J. Am.Water Resour. Assoc., 55, 1183–1195, https://doi.org/10.1111/1752-1688.12763, 2019. a
Lightbody, A. F. and Nepf, H. M.: Prediction of velocity profiles and
longitudinal dispersion in salt marsh vegetation, Limnol. Ooceanogr., 51, 218–228, https://doi.org/10.4319/lo.2006.51.1.0218, 2006. a
Luhar, M. and Nepf, H. M.: From the blade scale to the reach scale: A
characterization of aquatic vegetative drag, Adv. Water Resour., 51, 305–316, https://doi.org/10.1016/j.advwatres.2012.02.002, 2013. a, b
Masina, M., Lambertini, A., Daprà, I., Mandanici, E., and Lamberti, A.: Remote sensing analysis of surface temperature from heterogeneous data in a maize field and related water stress, Remote Sens., 12, 2506, https://doi.org/10.3390/rs12152506, 2020. a
Mlambo, R., Woodhouse, I. H., Gerard, F., and Anderson, K.: Structure from
motion (SfM) photogrammetry with drone data: A low cost method for monitoring
greenhouse gas emissions from forests in developing countries, Forests, 8,
68, https://doi.org/10.3390/f8030068, 2017. a
Mogili, U. M. R. and Deepak, B.: Review on application of drone systems in
precision agriculture, Proced. Comput. Sci., 133, 502–509, https://doi.org/10.1016/j.procs.2018.07.063, 2018. a
Murphy, E., Ghisalberti, M., and Nepf, H.: Model and laboratory study of
dispersion in flows with submerged vegetation, Water Resour. Res., 43, W05438, https://doi.org/10.1029/2006WR005229, 2007. a
Nepf, H. M., Mugnier, C. G., and Zavistoski, R. A.: The effects of vegetation
on longitudinal dispersion, Estuarine, Coast. Shelf Sci., 44, 675–684, https://doi.org/10.1006/ecss.1996.0169, 1997. a
Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G., and Reid, M.:
Hydraulic resistance due to aquatic vegetation in small streams: field study,
J. Hydraul. Eng., 134, 1326–1332, 2008. a
Nones, M.: Remote sensing and GIS techniques to monitor morphological changes
along the middle-lower Vistula river, Poland, Int. J. River Basin Manage., 19, 345–357, https://doi.org/10.1080/15715124.2020.1742137, 2021. a
Old, G. H., Naden, P. S., Rameshwaran, P., Acreman, M. C., Baker, S., Edwards, F. K., Sorensen, J. P. R., Mountford, O., Gooddy, D. C., and Stratford, C. J.: Instream and riparian implications of weed cutting in a chalk river, Ecol. Eng., 71, 290–300, https://doi.org/10.1016/j.ecoleng.2014.07.006, 2014. a, b, c
Pan, Y., Li, Z., Yang, K., and Jia, D.: Velocity distribution characteristics
in meandering compound channels with one-sided vegetated floodplains, J. Hydrol., 578, 124068, https://doi.org/10.1016/j.jhydrol.2019.124068, 2019. a, b
Park, H. and Hwang, J. H.: Quantification of vegetation arrangement and its
effects on longitudinal dispersion in a channel, Water Resour. Res., 55, 4488–4498, https://doi.org/10.1029/2019WR024807, 2019. a
Perret, E., Renard, B., and Coz, J. L.: A rating curve model accounting for
cyclic stage‐discharge shifts due to seasonal aquatic vegetation, Water Resour. Res., 57, e2020WR027745, https://doi.org/10.1029/2020WR027745, 2021. a
Rasmussen, J. J., Kallestrup, H., Thiemer, K., Alnøe, A. B., Henriksen, L. D., Larsen, S. E., and Baattrup-Pedersen, A.: Effects of different weed cutting methods on physical and hydromorphological conditions in lowland streams, Knowl. Manage. Aquat. Ecosyst., 422, 10, https://doi.org/10.1051/kmae/2021009, 2021. a
Rowiński, P. M. and Chrzanowski, M. M.: Influence of selected fluorescent dyes on small aquatic organisms, Acta Geophys., 59, 91–109, https://doi.org/10.2478/s11600-010-0024-7, 2011. a
Rowiński, P. M., Guymer, I. A. N., and Kwiatkowski, K.: Response to the slug injection of a tracer – a large-scale experiment in a natural river/Réponse à l'injection impulsionnelle d'un traceur – expérience à grande échelle en rivière naturelle, Hydrolog. Sci. J., 53, 1300–1309, https://doi.org/10.1623/hysj.53.6.1300, 2008. a, b
Rowiński, P. M., Västilä, K., Aberle, J., Järvelä, J., and Kalinowska, M. B.: How vegetation can aid in coping with river management challenges: A brief review, Ecohydrol. Hydrobiol., 18, 345–354, https://doi.org/10.1016/j.ecohyd.2018.07.003, 2018. a
Rowiński, P. M., Okruszko, T., and Radecki-Pawlik, A.: Environmental
hydraulics research for river health: recent advances and challenges,
Ecohydrol. Hydrobiol., 22, 213–225, https://doi.org/10.1016/j.ecohyd.2021.12.003, 2022. a
Rudi, G., Bailly, J.-S., Belaud, G., Dagès, C., Lagacherie, P., and Vinatier, F.: Multifunctionality of agricultural channel vegetation: A review based on community functional parameters and properties to support ecosystem function modeling, Ecohydrol. Hydrobiol., 20, 397–412, 2020. a
Rutherford, J.: River Mixing, Wiley, ISBN 0-471-94282-0, https://doi.org/10.1002/aheh.19950230614, 1994. a, b
SEPA: Engineering in the Water Environment Good Practice Guide: Riparian
Vegetation Management, https://www.sepa.org.uk/media/151010/wat_sg_44.pdf (last access: 1 March 2023), 2009. a
Shucksmith, J. D., Boxall, J. B., and Guymer, I.: Effects of emergent and
submerged natural vegetation on longitudinal mixing in open channel flow,
Water Resour. Res., 46, W04504, https://doi.org/10.1029/2008WR007657, 2010. a, b, c
Smart, P. L. and Laidlaw, I. M. S.: An evaluation of some fluorescent dyes for water tracing, Water Resour. Res., 13, 15–33, 1977. a
Socolofsky, S. A. and Jirka, G. H.: CVEN 489-501: Special topics in mixing and transport processes in the environment, Engineering – Lectures, 5th Edn., Coastal and Ocean Engineering Division, Texas AM University, MS, 3136, 73136-77843, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b9c4313e053931bc01c96dea0dae3263bfde05f5
(last access: 28 February 2023), 2005. a, b
Sukhodolov, A. N., Nikora, V. I., Rowiński, P. M., and Czemuszenko, W.: A case study of longitudinal dispersion in small lowland rivers, Water Environ. Res., 69, 1246–1253, https://doi.org/10.2175/106143097X126000, 1997. a
Västilä, K. and Järvelä, J.: Environmentally preferable two-stage drainage channels: considerations for cohesive sediments and conveyance, Int. Journal River Basin Manage., 9, 171–180, https://doi.org/10.1080/15715124.2011.572888, 2011. a
Västilä, K. and Järvelä, J.: Characterizing natural riparian vegetation for modeling of flow and suspended sediment transport, J. Soils
Sediment., 18, 3114–3130, https://doi.org/10.1007/s11368-017-1776-3, 2018. a
Västilä, K., Järvelä, J., and Koivusalo, H.: Flow-Vegetation-Sediment Interaction in a Cohesive Compound Channel, J. Hydraul. Eng., 142, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001058, 2016. a, b
Västilä, K., Väisänen, S., Koskiaho, J., Lehtoranta, V., Karttunen, K., Kuussaari, M., Järvelä, J., and Koikkalainen, K.: Agricultural water management using two-stage channels: Performance and policy recommendations based on Northern European experiences, Sustainability, 13, 9349, https://doi.org/10.3390/su13169349, 2021. a
Västilä, K., Oh, J., Sonnenwald, F., Ji, U., Järvelä, J., Bae, I., and Guymer, I.: Longitudinal dispersion affected by willow patches of low areal coverage, Hydrol. Process., 36, e14613, https://doi.org/10.1002/hyp.14613, 2022. a, b
Verschoren, V., Schoelynck, J., Cox, T., Schoutens, K., Temmerman, S., and
Meire, P.: Opposing effects of aquatic vegetation on hydraulic functioning
and transport of dissolved and organic particulate matter in a lowland river:
a field experiment, Ecol. Eng., 105, 221–230, https://doi.org/10.1016/j.ecoleng.2017.04.064, 2017. a, b, c
Wallis, S. G., Young, P. C., and Beven, K. J.: Experimental investigation of
the aggregated dead zone model, Proc. Inst. Civ. Eng., 87, 1–22, https://doi.org/10.1680/iicep.1989.1450, 1989. a, b
Wang, Y. and Huai, W.: Estimating the longitudinal dispersion coefficient in
straight natural rivers, J. Hydraul. Eng., 142, 04016048, https://doi.org/10.1061/(ASCE)HY.1943-7900.0001196, 2016.
a
Yang, Z., Li, D., Huai, W., and Liu, J.: A new method to estimate flow
conveyance in a compound channel with vegetated floodplains based on energy
balance, J. Hydrol., 575, 921–929, https://doi.org/10.1016/j.jhydrol.2019.05.078, 2019. a
Yotsukura, N., Fischer, H. B., and Sayre, W. W.: Measurement of mixing
characteristics of the Missouri River between Sioux city, Iowa, and Plattsmouth, Nebraska, Water Supply Paper 1899-G, USGS,
https://doi.org/10.3133/wsp1899G, 1970. a
Short summary
Vegetation is commonly found in rivers and channels. Using field investigations, we evaluated the influence of different vegetation coverages on the flow and mixing in the small naturally vegetated channel. The obtained results are expected to be helpful for practitioners, enlarge our still limited knowledge, and show the further required scientific directions for a better understanding of the influence of vegetation on the flow and mixing of dissolved substances in real natural conditions.
Vegetation is commonly found in rivers and channels. Using field investigations, we evaluated...