Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-481-2023
https://doi.org/10.5194/hess-27-481-2023
Research article
 | 
24 Jan 2023
Research article |  | 24 Jan 2023

Atmospheric water transport connectivity within and between ocean basins and land

Dipanjan Dey, Aitor Aldama Campino, and Kristofer Döös

Cited articles

Aldama-Campino, A., Döös, K., Kjellsson, J., and Jönsson, B.: TRACMASS: Formal release of version 7.0, Zenodo [code], https://doi.org/10.5281/zenodo.4337926, 2020. a, b
Alestalo, M.: The atmospheric water vapour budget over Europe, in: Variations in the global water budget, Springer, 67–79, https://doi.org/10.1007/978-94-009-6954-4_3, 1983. a
Allan, R. P., Liu, C., Zahn, M., Lavers, D. A., Koukouvagias, E., and Bodas-Salcedo, A.: Physically consistent responses of the global atmospheric hydrological cycle in models and observations, Surv. Geophys., 35, 533–552, 2014. a
Berglund, S., Döös, K., and Nycander, J.: Lagrangian tracing of the water–mass transformations in the Atlantic Ocean, Tellus A, 69, 1306311, https://doi.org/10.1080/16000870.2017.1306311, 2017. a, b
Berglund, S., Döös, K., Campino, A. A., and Nycander, J.: The Water Mass Transformation in the Upper Limb of the Overturning Circulation in the Southern Hemisphere, J. Geophys. Res.-Oceans, 126, e2021JC017330, https://doi.org/10.1029/2021JC017330, 2021. a
Download
Short summary
One of the most striking and robust features of climate change is the acceleration of the atmospheric water cycle branch. Earlier studies were able to provide a quantification of the global atmospheric water cycle, but they missed addressing the atmospheric water transport connectivity within and between ocean basins and land. These shortcomings were overcome in the present study and presented a complete synthesised and quantitative view of the atmospheric water cycle.
Share