Blanke, B., Arhan, M., Madec, G., and Roche, S.: Warm water paths in the
equatorial Atlantic as diagnosed with a general circulation model, J. Phys. Oceanogr., 29, 2753–2768, 1999. a
Chahine, M. T.: The hydrological cycle and its influence on climate, Nature,
359, 373–380, 1992.
a,
b,
c,
d,
e
Chou, C. and Neelin, J. D.: Mechanisms of global warming impacts on regional
tropical precipitation, J. Climate, 17, 2688–2701, 2004. a
Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
a
Dey, D. and Döös, K.: Atmospheric freshwater transport from the
Atlantic to the Pacific Ocean: A Lagrangian analysis, Geophysical Res. Lett., 47, e2019GL086176,
https://doi.org/10.1029/2019GL086176, 2020.
a,
b,
c,
d,
e,
f
Dey, D. and Döös, K.: Tracing the origin of the South Asian summer
monsoon precipitation and its variability using a novel Lagrangian framework,
J. Climate, 34, 8655–8668, 2021.
a,
b,
c,
d,
e
Döös, K.: Interocean exchange of water masses, J. Geophys. Res.-Oceans, 100, 13499–13514, 1995. a
Döös, K., Nycander, J., and Coward, A. C.: Lagrangian decomposition of the Deacon Cell, J. Geophys. Res.-Oceans, 113, C07028,
https://doi.org/10.1029/2007JC004351, 2008.
a,
b
Döös, K., Jönsson, B., and Kjellsson, J.: Evaluation of oceanic and atmospheric trajectory schemes in the TRACMASS trajectory model v6.0, Geosci. Model Dev., 10, 1733–1749,
https://doi.org/10.5194/gmd-10-1733-2017, 2017.
a,
b
ECMWF: The ERA-Interim reanalysis dataset, Copernicus Climate Change Service (C3S) [data set],
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (last access: 9 November 2020), 2011. a
Emile-Geay, J., Cane, M. A., Naik, N., Seager, R., Clement, A. C., and van Geen, A.: Warren revisited: Atmospheric freshwater fluxes and “Why is no
deep water formed in the North Pacific”, J. Geophys. Res.-Oceans, 108, 3178,
https://doi.org/10.1029/2001JC001058, 2003.
a
Huntington, T. G.: Evidence for intensification of the global water cycle:
Review and synthesis, J. Hydrol., 319, 83–95, 2006. a
Link, A., van der Ent, R., Berger, M., Eisner, S., and Finkbeiner, M.: The fate of land evaporation – a global dataset, Earth Syst. Sci. Data, 12, 1897–1912,
https://doi.org/10.5194/essd-12-1897-2020, 2020.
a,
b
Liu, W., Sun, F., Li, Y., Zhang, G., Sang, Y.-F., Lim, W. H., Liu, J., Wang, H., and Bai, P.: Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets, Hydrol. Earth Syst. Sci., 22, 351–371,
https://doi.org/10.5194/hess-22-351-2018, 2018.
a
Rodell, M., Beaudoing, H. K., L'ecuyer, T., Olson, W. S., Famiglietti, J. S.,
Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D.,
Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J., Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A., Sheffield, J., and Wood, E. F.: The observed state of the water cycle in the early twenty-first century, J. Climate, 28, 8289–8318,
https://doi.org/10.1175/JCLI-D-14-00555.1, 2015.
a,
b,
c,
d,
e
Schmitt, R. W.: Salinity and the global water cycle, Oceanography, 21, 12–19, 2008. a
Shi, F., Hao, Z., and Shao, Q.: The analysis of water vapor budget and its
future change in the Yellow-Huai-Hai region of China, J. Geophys. Res.-Atmos., 119, 10702–10719,
https://doi.org/10.1002/2013JD021431, 2014.
a
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and Ngan,
F.: NOAA's HYSPLIT atmospheric transport and dispersion modeling system, B. Am. Meteorol. Soc., 96, 2059–2077, 2015.
a,
b
Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.: Climate
Change 2013: The physical science basis, in: Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate
change, Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp., ISBN 978-1-107-05799-1 (hardback), ISBN 978-1-107-66182-0 (paperback), 2014. a
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe, J. Hydrometeorol., 5, 656–678, 2004.
a,
b,
c
Stohl, A. and James, P.: A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean
basins and river catchments, J. Hydrometeorol., 6, 961–984, 2005. a
Trenberth, K. E.: Conceptual framework for changes of extremes of the
hydrological cycle with climate change, in: Weather and climate extremes,
Springer, 327–339,
https://doi.org/10.1023/A:1005488920935, 1999.
a
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of
the global water budget and its annual cycle using observational and model
data, J. Hydrometeorol., 8, 758–769, 2007.
a,
b,
c,
d,
e
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric moisture
transports from ocean to land and global energy flows in reanalyses, J. Climate, 24, 4907–4924, 2011.
a,
b,
c
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation, Earth Syst. Sci. Data, 12, 3177–3188,
https://doi.org/10.5194/essd-12-3177-2020, 2020.
a,
b,
c,
d,
e
Van der Ent, R. J., Savenije, H. H., Schaefli, B., and Steele-Dunne, S. C.:
Origin and fate of atmospheric moisture over continents, Water Resour. Res., 46, W09525,
https://doi.org/10.1029/2010WR009127, 2010.
a,
b,
c,
d,
e
van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling, Earth Syst. Dynam., 5, 471–489,
https://doi.org/10.5194/esd-5-471-2014, 2014.
a,
b
Vries, P. and Döös, K.: Calculating Lagrangian trajectories using
time-dependent velocity fields, J. Atmos. Ocean. Tech., 18, 1092–1101, 2001. a
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory survey,
in: vol. 92, Elsevier, ISBN 13:978-0-12-732951-2, ISBN 10:0-12-732951-X, 2006. a
Warren, B. A.: Why is no deep water formed in the North Pacific?, J. Mar. Res., 41, 327–347, 1983. a
Zheng, Z., Ma, Z., Li, M., and Xia, J.: Regional water budgets and
hydroclimatic trend variations in Xinjiang from 1951 to 2000, Climatic Change, 144, 447–460, 2017. a