Articles | Volume 26, issue 4
Hydrol. Earth Syst. Sci., 26, 975–999, 2022
https://doi.org/10.5194/hess-26-975-2022
Hydrol. Earth Syst. Sci., 26, 975–999, 2022
https://doi.org/10.5194/hess-26-975-2022
Research article
21 Feb 2022
Research article | 21 Feb 2022

Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica

Saúl Arciniega-Esparza et al.

Related authors

Catchment-scale groundwater recharge and vegetation water use efficiency
Peter A. Troch, Ravindra Dwivedi, Tao Liu, Antonio Alves Meira Neto, Tirthankar Roy, Rodrigo Valdés-Pineda, Matej Durcik, Saúl Arciniega-Esparza, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-449,https://doi.org/10.5194/hess-2018-449, 2018
Revised manuscript not accepted
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022,https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation
Antoine Pelletier and Vazken Andréassian
Hydrol. Earth Syst. Sci., 26, 2733–2758, https://doi.org/10.5194/hess-26-2733-2022,https://doi.org/10.5194/hess-26-2733-2022, 2022
Short summary
Influences of land use changes on the dynamics of water quantity and quality in the German lowland catchment of the Stör
Chaogui Lei, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 26, 2561–2582, https://doi.org/10.5194/hess-26-2561-2022,https://doi.org/10.5194/hess-26-2561-2022, 2022
Short summary
Impact of spatial distribution information of rainfall in runoff simulation using deep learning method
Yang Wang and Hassan A. Karimi
Hydrol. Earth Syst. Sci., 26, 2387–2403, https://doi.org/10.5194/hess-26-2387-2022,https://doi.org/10.5194/hess-26-2387-2022, 2022
Short summary
Towards effective drought monitoring in the Middle East and North Africa (MENA) region: implications from assimilating leaf area index and soil moisture into the Noah-MP land surface model for Morocco
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022,https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary

Cited articles

Andersson, J. C. M., Pechlivanidis, I. G., Gustafsson, D., Donnelly, C., and Arheimer, B.: Key factors for improving large-scale hydrological model performance, Eur. Water, 49, 77–88, 2015. 
Andersson, J. C. M., Ali, A., Arheimer, B., Gustafsson, D., and Minoungou, B.: Providing peak river flow statistics and forecasting in the Niger River basin, Phys. Chem. Earth, 100, 3–12, https://doi.org/10.1016/j.pce.2017.02.010, 2017. 
Arciniega-Esparza, S. and Birkel, C.: Hydrological simulations for Costa Rica from 1985 to 2019 using HYPE CR 1.0 (1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.4029572, 2020. 
Arciniega-Esparza, S., Breña-Naranjo, J. A., and Troch, P. A.: On the connection between terrestrial and riparian vegetation: The role of storage partitioning in water-limited catchments, Hydrol. Process., 31, 489–494, https://doi.org/10.1002/hyp.11071, 2017. 
Download
Short summary
In the humid tropics, a notoriously data-scarce region, we need to find alternatives in order to reasonably apply hydrological models. Here, we tested remotely sensed rainfall data in order to drive a model for Costa Rica, and we evaluated the simulations against evapotranspiration satellite products. We found that our model was able to reasonably simulate the water balance and streamflow dynamics of over 600 catchments where the satellite data helped to reduce the model uncertainties.