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Abstract. Streamflow simulation across the tropics is lim-
ited by the lack of data to calibrate and validate large-scale
hydrological models. Here, we applied the process-based,
conceptual HYPE (Hydrological Predictions for the Envi-
ronment) model to quantitatively assess Costa Rica’s wa-
ter resources at a national scale. Data scarcity was com-
pensated for by using adjusted global topography and re-
motely sensed climate products to force, calibrate, and in-
dependently evaluate the model. We used a global tem-
perature product and bias-corrected precipitation from Cli-
mate Hazards Group InfraRed Precipitation with Station
data (CHIRPS) as model forcings. Daily streamflow from
13 gauges for the period 1990–2003 and monthly Mod-
erate Resolution Imaging Spectroradiometer (MODIS) po-
tential evapotranspiration (PET) and actual evapotranspira-
tion (AET) for the period 2000–2014 were used to calibrate
and evaluate the model applying four different model con-
figurations (M1, M2, M3, M4). The calibration consisted of
step-wise parameter constraints preserving the best parame-
ter sets from previous simulations in an attempt to balance
the variable data availability and time periods. The model
configurations were independently evaluated using hydro-
logical signatures such as the baseflow index, runoff coef-
ficient, and aridity index, among others. Results suggested
that a two-step calibration using monthly and daily stream-
flow (M2) was a better option than calibrating only with daily
streamflow (M1), with similar mean Kling–Gupta efficiency

(KGE∼ 0.53) for daily streamflow time series, but with im-
provements to reproduce the flow duration curves, with a
median root mean squared error (RMSE) of 0.42 for M2
and a median RMSE of 1.15 for M1. Additionally, including
AET (M3 and M4) in the calibration statistically improved
the simulated water balance and better matched hydrological
signatures, with a mean KGE of 0.49 for KGE in M3–M4, in
comparison to M1–M2 with mean KGE< 0.3. Furthermore,
Kruskal–Wallis and Mann–Whitney statistical tests support a
similar model performance for M3 and M4, suggesting that
monthly PET-AET and daily streamflow (M3) represents an
appropriate calibration sequence for regional modeling. Such
a large-scale hydrological model has the potential to be used
operationally across the humid tropics informing decision-
making at relatively high spatial and temporal resolution.

1 Introduction

Tropical regions differ from temperate regions by their larger
energy inputs, more intense atmospheric dynamics, higher
precipitation rates, larger streamflow, and greater sediment
yields (Dehaspe et al., 2018; Esquivel-Hernández et al.,
2017; Wohl et al., 2012). Moreover, tropical regions are
among the fastest-changing environments, with a hydrolog-
ical cycle pressurized by population growth (Wohl et al.,
2012; Ziegler et al., 2007), land use/cover modifications
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(Gibbs et al., 2010), and altered precipitation and runoff
patterns (Esquivel-Hernández et al., 2017) due to climate
change. Central America, the northern boundary of the hu-
mid tropics, was identified by Giorgi (2006) as the most sen-
sitive tropical region to climate change due to the location
between two major water bodies, the Pacific Ocean and the
Caribbean Sea.

Increasing concerns about the effects of human activi-
ties and climate change on tropical catchments demand ac-
curate quantification of the water balance components in
space and time to guarantee future water resources availabil-
ity for ecosystems and socioeconomic activities (Esquivel-
Hernández et al., 2017; Wohl et al., 2012). Hydrological
models have been widely used to assess the spatiotemporal
variability of water resources and to provide insights into po-
tential future climate and management decisions (Andersson
et al., 2015; Xiong and Zeng, 2019).

However, models also implicitly include many uncertain-
ties (Beven, 2012). For example, Birkel et al. (2020) and
Dehaspe et al. (2018) highlighted those hydrological mod-
els that are useful for predicting streamflow but showed lim-
itations to assess water partitioning and storage changes re-
quired for water management in the humid tropics. Model-
ing in the tropics is further hampered by the lack of good
quality hydrometric data used to drive models and for cal-
ibration (Westerberg and Birkel, 2015; Westerberg et al.,
2014). Moreover, a decrease in hydrological measurements
and monitoring networks in many tropical regions has oc-
curred during the last 3 decades (Wohl et al., 2012), limit-
ing the applicability of hydrological models or reducing their
performance in simulating streamflow in Central America
(Westerberg et al., 2014) and South America (Guimberteau et
al., 2012). Model calibration mostly leads to several combi-
nations of parameters with similar streamflow response, i.e.,
equifinality (Beven, 2012; Xiong and Zeng, 2019), and it is
therefore desirable to reduce or constrain the uncertainty of
model parameters. Moreover, some case studies around the
world have found that soil model parameters can be rela-
tively insensitive to streamflow simulations (Massari et al.,
2015; Rajib et al., 2018b; Silvestro et al., 2015).

Opportunities to provide more realistic internal hydrologi-
cal partitioning exist in the form of including additional vari-
ables to streamflow, such as, e.g., tracers and remotely sensed
variables of evapotranspiration and soil moisture (Dal Molin
et al., 2020; Rakovec et al., 2016; Xiong and Zeng, 2019;
Massari et al., 2015). The latter, however, may come at the
expense of increased complexity for model calibration and
evaluation (Arheimer et al., 2020; Her and Seong, 2018;
Massari et al., 2015; Xiong and Zeng, 2019; Zhang et al.,
2018) since non-linearity increases complexity in data as-
similation (Massari et al., 2015; Rajib et al., 2018a, b). In
addition, hydrological signatures can improve model realism
through the synthesis of many simultaneous catchment pro-
cesses at different scales (Arheimer et al., 2020; Sawicz et al.,
2011). Hydrological signatures can be used to increase our

understanding of water balance partitioning and hydrologi-
cal similarity across different scales (e.g., Arciniega-Esparza
et al., 2017; Beck et al., 2015; Kirchner, 2009; Troch et
al., 2009) and have been applied to improve model evalu-
ation (e.g., Andersson et al., 2015; Arheimer et al., 2020;
Dal Molin et al., 2020; Raphael Tshimanga and Hughes,
2014; Westerberg et al., 2014). Despite uncertainties in ob-
served hydrological signatures (Westerberg and McMillan,
2015), there is potential to identify model weaknesses and
to ultimately produce a more well-balanced catchment rep-
resentation.

Most hydrological models have been developed since
the 1970s to solve different needs at catchment scales (Pech-
livanidis and Arheimer, 2015; Todini, 2007). Nevertheless,
water management increasingly requires detailed hydrolog-
ical information over larger, aggregated spatial domains in-
stead of a single catchment (Arheimer et al., 2020; Rojas-
Serna et al., 2016). Global hydrological models can serve
this purpose but suffer from rather coarse spatial resolu-
tion and increased computational cost (Kumar et al., 2013;
Sood and Smakhtin, 2015). Distributed landscape charac-
teristics at large scales such as soil, topography, and land
cover can result in complex hydrological models with many
calibrated model parameters (Gurtz et al., 1999) and result
in greater uncertainty. However, distributed model parame-
terization based on landscape characteristics also promises
the advantage of predicting the hydrological response of un-
gauged basins (Hrachowitz et al., 2013; Pechlivanidis and
Arheimer, 2015). Therefore, the question as to how complex
or simple a hydrological model should be remains an open
scientific debate considering that simpler models can lead to
similar results in comparison with more complex and more
highly parameterized models (Archfield et al., 2015; Rojas-
Serna et al., 2016).

An alternative to simulate the hydrology at large spatial
scales is by means of semi-distributed, conceptual hydrolog-
ical models together with global data of precipitation, evap-
otranspiration, and soil moisture (Andersson et al., 2015;
Brocca et al., 2020). Conceptual models fall in the cat-
egory between very simple bucket models and physically
based, distributed models, limiting the numbers of param-
eters while still being able to gain insights into the hydro-
logical processes governing a set of neighboring catchments
(e.g., Beven, 2012 for a model classification). Moreover, re-
cent hydrological studies have implemented data assimila-
tion from remote sensing and global products of soil mois-
ture (Kwon et al., 2020; Massari et al., 2015; Silvestro et
al., 2015), snow depth (Infante-Corona et al., 2014), evap-
otranspiration (Lin et al., 2018; Rajib et al., 2018a, b), and
terrestrial water storage (Getirana et al., 2020; Reager et
al., 2015), often in combination with conceptual models in
order to reduce or constrain the model parameter uncer-
tainty and to help with model evaluation (e.g., Sheffield et
al., 2018). Such an approach needs testing in tropical re-
gions such as Central America, located on the narrow con-
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tinental bridge (< 40 km in places) that connects North and
South America. The relatively smaller landmass also results
in relatively smaller-sized catchments that quickly convert
coarse-scale global products unsuitable for modeling. Ad-
ditionally, remotely sensed climatological model input data
are a source of error over complex topographical landscapes
such as Central America (Maggioni et al., 2016); for exam-
ple, Zambrano-Bigiarini et al. (2017) estimated KGE<−2
in high elevation areas (> 2000 m a.s.l.) of Chile using seven
precipitation products, in comparison with low and mid-
elevation areas (< 1000 m a.s.l.), which showed KGE> 0.7.

Therefore, this paper aims to test the use of the large-scale
conceptual but process-based semi-distributed HYPE model
(Lindström et al., 2010), exploring strategies to improve re-
gional modeling of tropical data-scarce regions, and incorpo-
rating different time steps and global gridded products for the
complex topographical regions of Costa Rica. We, therefore,
additionally used the potential evapotranspiration (PET) and
actual evapotranspiration (AET) products, respectively, from
MODIS (Moderate Resolution Imaging Spectroradiometer)
in order to streamflow time series to calibrate the model fol-
lowed by a posteriori independent evaluation of hydrological
signatures calculated from these global data sets. The model
was calibrated using a step-wise procedure tracking the most
effective strategy to constrain the parameter space and to re-
duce the model uncertainty.

Our specific objectives are the following.

1. Adjust the open-source, conceptual rainfall–runoff
model HYPE to simulate Costa Rica’s catchment hy-
drology at the national scale using remotely sensed
global climate data and landscape products to drive and
evaluate the model under four different step-wise cali-
bration strategies.

2. Analyze the effect of remotely sensed PET and AET
data on model calibration and their capability to im-
prove the simulated water balance and matching hydro-
logical signatures.

2 Study area and data

The study area corresponds to Costa Rica, located on the
Central American Isthmus, between 8 and 11◦ N latitude and
82 and 86◦W longitude. Costa Rica covers∼ 51000 km2 be-
tween neighboring Nicaragua to the north and Panama to the
south. Costa Rica is characterized by an elevation range from
0 to ∼ 3840 m a.s.l. with a mountain range of volcanic origin
dividing the country from the northwest to southeast into the
Pacific and Caribbean drainage basins. Notably, the proxim-
ity to the two large water bodies (the Pacific Ocean and the
Caribbean Sea) differentiates the atmospheric water dynam-
ics, resulting in a marked gradient of tropical rainfall patterns
east and west of the continental divide (Maldonado et al.,
2013).

Figure 1a shows the study area boundaries, the precip-
itation gauges (blue dots), the monitored catchments (red
polygons), and their respective streamflow gauges (black
squares), as well as the catchments used within the HYPE
model (gray polygons). In situ data consisted of 75 precip-
itation stations obtained from the National Meteorological
Service (IMN in Spanish) containing a minimum length of
10 years of data overlapping the period from 1981 to 2017.
This period was selected to compare ground precipitation
records with precipitation from global remote sensing prod-
ucts. Moreover, 13 streamflow gauges with daily records
from 1990 to 2003 were obtained from the Costa Rican Elec-
tricity Institute (ICE). The attributes and climate properties
of monitored catchments are shown in Table 1, with catch-
ment areas ranging from 74 to 4772 km2 that cover a total
area of∼ 10508 km2 (∼ 21 % of Costa Rican territory), with
mean catchment elevations ranging from 330 to 2600 m a.s.l.

Regarding model simulations, more than 600 nested catch-
ments covering the whole country were delineated using the
30 m Shuttle Radar Topography Mission (SRTM) elevation
model (Bamler, 1999) and the terrain analysis toolset from
SAGA GIS v.6.4 (Conrad et al., 2015), where the fill sinks
algorithm by Wang and Liu (2006) was applied with a min-
imum slope parameter of 0.0001◦ and the flow accumula-
tion top-down algorithm together with the single flow direc-
tion (D8) configuration. These parameters were defined fol-
lowing previous experience using SAGA with SRTM. Sev-
eral issues were found during the delineation of catchments
on flat terrain, where computed water courses differed from
the actual river network. We corrected the computed river
network using the vector layers of the main rivers from Open-
StreetMap (OSM), forcing the water courses following Mon-
teiro et al. (2018). The final catchments ranged from 3 to
500 km2 with a median value of 65 km2 and a main river
length from 2.5 to 75 km with a median value of 15.2 km.

Figure 1b and c shows the soil types and land uses across
Costa Rica, respectively. Soil types were derived from Soil-
Grids (Hengl et al., 2017; see dataset description in Table 2)
and compared to national-scale soil maps. Sand content and
clay content at 1 m depth were used to classify the soil types
from the USDA classification criteria in SAGA GIS tools.
Furthermore, in order to reduce the number of model param-
eters, only the four most frequent soil types were considered
(Fig. 1b). The predominant soil texture is clay loam covering
an area of∼ 35360 km2 (69 % of Costa Rica), mainly across
low elevation areas. Clay soils cover an area of ∼ 9740 km2

(∼ 19 % of Costa Rica) and are located mainly along the Pa-
cific Basin. Moreover, in high elevations loamy soils pre-
dominate, covering an area of ∼ 3800 km2 (7 % of total
area). The land use classes were obtained from the Climate
Change Initiative Land Cover (CCI LC), where 19 unique
land cover classes were found for Costa Rica. Similarly, the
land use was reclassified into the four most common cate-
gories (Fig. 1c), where the predominant land uses were tree
cover (∼ 65 %) and mosaic cover (∼ 34 %, which includes
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Figure 1. Study area (a) rainfall gauges (blue dots), monitored catchments (red polygons), and sub-basins used in the HYPE model (gray
polygons), (b) soil type at 1 m depth from SoilGrids, where blue polygons correspond to catchments used for rain correction but not for
calibration, (c) major land use categories from CCI Land Cover, (d) precipitation seasonal index with dark blue corresponding to uniform
monthly precipitation and yellow to a more seasonal precipitation regime, (e) mean annual precipitation for the period 1981–2017 from
CHIRPS, and (f) mean annual actual evapotranspiration for the period 2000–2014 from MODIS.

shrubs, grassland, sparse vegetation, croplands). Urban areas
represent less than 0.5 % of Costa Rica. Different CCI LC
tree categories were grouped into a single tree class, with
∼ 87 % corresponding to broadleaved evergreen trees. More
than 98 % of the reclassified urban areas correspond to the
original urban land use from CCI LC. The mosaic reclas-

sification was mainly composed of mosaic natural vegeta-
tion and croplands (54 % and 13 %, respectively). Finally,
the water reclassification consisted of 93 % water bodies and
flooded shrub areas.

The climatological space–time series were obtained from
remote sensing and global products, described in Ta-
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Table 1. Physical and climatological properties of the monitored catchments. Streamflow gauges were grouped according to their location in
the Caribbean and the Pacific basins. AI stands for aridity index and EI stands for evaporative index.

Zone Station Area Elevation [m a.s.l.] Slope Prec EI AI Qt

[km2
] Min Mean Max [%] [mm yr−1

] mean
daily

[m s−1
]

Caribbean

Cariblanco 75 761.7 1850.8 2829.5 26.5 3079 0.44 0.54 9.02
Oriente 229 586.5 1413.7 2740.1 40.1 4202 0.32 0.42 29.90
Dos Montañas 660 108.5 1316.7 3191.0 37.2 3551 0.36 0.45 53.79
Terron Colorado 2061 18.6 734.7 2312.5 21.3 3175 0.44 0.56 149.66
Guatuso 242 7.8 520.6 1881.7 18.9 3968 0.35 0.45 29.38

Pacific

Providencia 122 1365.8 2573.0 3479.7 44.3 2750 0.50 0.68 6.68
Tacares 201 584.3 1404.8 2723.8 17.6 2714 0.49 0.61 11.27
Guapinol 210 178.2 1070.4 2173.3 23.7 2879 0.49 0.66 10.13
Caracucho 1133 60.9 1251.0 3252.7 24.7 3091 0.43 0.56 72.92
El Rey 656 48.6 1142.1 2501.5 36.5 2648 0.51 0.67 31.96
Rancho Rey 320 0.0 490.7 1902.4 15.3 2234 0.57 0.86 9.35
Guardia 961 0.0 336.5 1898.2 11.0 1787 0.68 1.07 23.66
Palmar 4771 0.0 1009.2 3791.0 30.3 3176 0.41 0.55 305.45

Table 2. Remote sensing and global products used in this study.

Dataset Variable Coverage and Period Scale Data type Reference
resolution

CHIRPSv2.0 Precipitation (P ) 50◦ S–50◦ N, 1981– daily merged remote sensing Funk et al. (2015)
∼ 5 km present interpolated and calibrated

using more than 14 000 rain
gauges

MOD16 AET and PET global, 2000– monthly AET and latent heat flux based Mu et al. (2011)
∼ 5 km 2014 on the Penman–Monteith

equation incorporated remote
sensed MODIS products

CPC Global Temperature 89.75◦ S–89.75◦ N, 1979– daily gridded temperature from https://psl.noaa.gov/
Temperature (Tmin, Tmax, ∼ 50 km present 6000–7000 global stations (last access:

Tmean) 20 November 2020)

CCI Land Vegetation cover global, 1993– annual land cover maps derived from Bontemps et al.
Cover (land use) 0.3 km 2015 MERIS remote sensing (2013)

products and classification
models

SoilGrids Silt, sand, and global, – – soil properties derived from Hengl et al. (2017)
clay content 0.25 km soil profiles and machine

learning

SRTM Land elevation 30 m – – SAR interferometry Bamler (1999)

ble 2. The precipitation grid was obtained from the Cli-
mate Hazards Group InfraRed Precipitation with Satellite
data (CHIRPS) version 2 (Funk et al., 2015), and the mean
daily temperature was obtained from the CPC Global Daily
Temperature product provided by the NOAA/OAR/ESRL
PSL (https://psl.noaa.gov/, last access: 20 November 2020).
Temperature exhibited low seasonality, with mean values

ranging from 27 ◦C in coastal regions to 20 ◦C in the cen-
tral region at around 1000 m a.s.l. (Esquivel-Hernández et al.,
2017). Figure 1d shows the seasonality of monthly precip-
itation from CHIRPS using the index proposed by Walsh
and Lawler (1981), where lower values (< 0.3) correspond
to a more uniform monthly precipitation, and higher val-
ues (> 0.8) indicate that annual precipitation is concentrated
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over a few months. Such seasonality is widely controlled
by air masses that reach Costa Rica at the Caribbean lit-
toral, accumulating more humidity on the Caribbean slope
(Sáenz and Durán-Quesada, 2015), shown as dark blue ar-
eas in Fig. 1d. Meanwhile, the humidity along the Pacific
Basin is highly influenced by the migration of continental air
masses of the Intertropical Convergence Zone (ITCZ), which
establishes the rainy season in May–June and in September–
November (Esquivel-Hernández et al., 2017; Muñoz et al.,
2008).

The yearly cycle of wet and dry deviations in the ocean–
atmosphere is linked to changes in the sea surface tempera-
ture of both the Pacific Ocean and the Caribbean Sea, where
the El Niño Southern Oscillation (ENSO) is associated with
a decrease of the mean annual precipitation across the Pa-
cific Basin, and an increase of precipitation in the Caribbean
Basin (Muñoz et al., 2008).

Moreover, the cold-phase La Niña is the cause of an in-
crease in precipitation in the Pacific Basin and a decrease in
the Caribbean (Waylen et al., 1996). Overall, the mean an-
nual precipitation averaged ∼ 3000 mm for Costa Rica with
maxima as high as 9000 mm, observed in the headwaters of
the Reventazón catchment at the northwest of the Talamanca
Mountain range and the Caribbean Basin (Fig. 1e). The min-
imum annual precipitation of 1200 mm yr−1 is observed on
the northern Pacific Basin in the Bebedero and Tempisque
catchments.

The rainfall patterns across Costa Rica are reflected
in the streamflow responses of catchments on the Pacific
and Caribbean sides. The daily streamflow tends to be
higher in the Caribbean Basin (9.2 mm d−1 in comparison
to 4.2 mm d−1 on the Pacific side, computed from observed
streamflow records, Table 1), mainly due to the seasonal cli-
mate across the Pacific slope with reduced water availability
during the dry season from December to April. Furthermore,
the stream lengths of rivers on the Caribbean slope tend to be
longer in comparison with rivers from the Pacific Basin (see
the river network in Fig. 1c).

Potential evapotranspiration and actual evapotranspira-
tion were obtained from the MODIS product (Mu et al.,
2011) distributed by the Numerical Terradynamic Simulation
Group at the University of Montana, USA, which compared
well to the few available ground stations in Costa Rica, with
errors from −0.3 to 0.7 mm yr−1 (Esquivel-Hernández et al.,
2017). Even though several products of AET and PET are
available at higher temporal resolution (such as GLEAM at
a daily time step; Miralles et al., 2011), the spatial resolution
of these products is at least 5 times lower than MODIS (∼
5× 5 km, ∼ 25 km2). Since ∼ 70 % of our delimited catch-
ments are smaller than 100 km2, the spatial resolution of the
global products plays an important role in capturing the spa-
tial variability of the water balance for modeling.

Figure 1f shows the mean annual AET from MODIS,
which spatially ranges from 547 to 1612 mm. The highest
AET values were observed at the coast (Caribbean and Pa-

cific). Moreover, the lower AET values overlap with low hu-
midity zones and sparse vegetation areas (northwestern Costa
Rica), as well as higher elevation cloud cover that decreases
soil evaporation (Caribbean slope mountain region).

3 Materials and methods

3.1 HYPE model structure and setup

We used Hydrological Predictions for the Environ-
ment (HYPE) version 5.9, a semi-distributed hydrological
model, for the assessment of water resources and water qual-
ity at small and large scales (Lindström et al., 2010) in order
to simulate the hydrological response of Costa Rican catch-
ments. The HYPE model can be considered as the evolution
of the distributed Hydrologiska Byråns Vattenbalansavdel-
ning (HBV) model (Lindström et al., 1997). HYPE was de-
veloped by the Swedish Meteorological and Hydrological In-
stitute (SMHI) as the operative model for drought and flood
forecasting across Sweden (Pechlivanidis et al., 2014). More-
over, HYPE was recently applied to other climatic regions
(Andersson et al., 2017; Arheimer et al., 2018; Berg et al.,
2018; Lindström, 2016; Pugliese et al., 2018; Tanouchi et al.,
2019), including a global-scale application (Arheimer et al.,
2020).

The HYPE model allows simulating the water balance
and nutrient fluxes at a daily or sub-daily scale using pre-
cipitation and temperature as forcings (SMHI, 2018). The
model structure (Fig. 2a) describes the major water pathways
and fluxes, ensuring mass conservation at the catchment and
sub-catchment scale. Furthermore, each sub-catchment is di-
vided into the most fundamental spatial soil and land use
classes (SLCs) depending on the classification of soil types,
land cover, climate, and elevation, as shown in Fig. 2b. The
SLCs in HYPE provide the capability to predict streamflows
in ungauged basins since the parameters that regulate the
fluxes and storages are linked to each SLC, with a maxi-
mum of three layers of different soil thickness, as shown
in Fig. 2b. Water bodies such as lakes and rivers may be
considered as an SLC, where lakes can be defined as natu-
ral lakes or regulated dams with multiple water outputs. For
full details of the HYPE model, see the description by Lind-
ström et al. (2010) and the open-access code references lo-
cated at https://hypeweb.smhi.se/model-water/ (last access:
10 June 2021).

For this study, Costa Rica was divided into 605 catchments
(Fig. 1a) with 12 SLCs obtained from the spatial combi-
nation of soil types and land cover maps shown in Fig. 1b
and c, respectively. Outlet lakes (which discharge to down-
stream catchments) and internal lakes (which discharge into
the main river or tributaries) were set up as different SLCs to
consider the water bodies that regulate the streamflow. The
largest water body in Costa Rica is the Arenal reservoir, lo-
cated in the San Carlos River catchment (Fig. 1b). The Are-
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Figure 2. Schematic representation of the HYPE model (a) division into sub-basins and local classes according to topography, land use, and
soil classes and (b) the model structure of Basin 1 considering two main soil–land combinations and lake properties. In (b), the simulated
hydrological processes and variables are shown in black, while parameter names are given in blue. A full description of parameters (in blue)
is available at https://hypeweb.smhi.se/model-water/ (last access: 10 June 2021). The ilake parameter corresponds to an internal lake and the
olake parameter to an outlet lake. T is temperature, P is precipitation, ET is evapotranspiration, Qt is streamflow, and GW is groundwater.

nal reservoir is an artificial lake used for hydropower pur-
poses with an average surface area of 87.8 km2 and a depth
that ranges from 30 to 60 m. The Arenal reservoir was imple-
mented as a natural lake since its operational rules are confi-
dential and therefore unknown.

Soil thickness varied for different SLCs, with a maximum
soil thickness of 3 m under forests and a minimum of 2 m
for bare soil cover, following Arheimer et al. (2020). Further-
more, delimited catchments were classified according to their
elevation and location (Pacific Basin and Caribbean Basin),
applying regional factors to correct the hydrological behavior
of lowland and mountainous catchments with similar SLCs,
resulting in six defined regions.

Daily time series of precipitation from CHIRPS and tem-
perature from NOAA for the period 2000–2014 were ex-
tracted for each catchment using GRASS GIS (Neteler et
al., 2012), where datasets were resampled to 1 km using
the nearest-neighbor criteria and spatially averaged for each
catchment. The climatological forcings were resampled due
to the small size of some catchments (area of ∼ 1 km2).
Arheimer et al. (2020) recommended computing the average
of the nearest grids to obtain the forcings instead of deriving
the data from the nearest pixel.

3.2 Precipitation correction

Rainfall estimations from satellites are subject to systematic
errors that may produce uncertainty in hydrological simula-
tions (Goshime et al., 2019; Grillakis et al., 2018; Infante-
Corona et al., 2014; Wörner et al., 2019). The CHIRPS prod-

uct already incorporates a bias correction procedure but uses
only a few concentrated ground stations in Costa Rica. The
performance of CHIRPS estimating annual water balances is
shown in Fig. S1a and c in the Supplement, with frequent
underestimation in the monitored catchments. Therefore, we
applied a linear scaling to further correct for the bias between
the product and ground precipitation from 75 available sta-
tions across Costa Rica (Fig. 1a). The corrected precipitation
was estimated as

CHIRPSc(t)= CHIRPS(t) ·BF, (1)

where CHIRPSc is the bias-corrected precipitation at time t ,
CHIRPS is the original precipitation at time t , and BF is the
bias factor. The bias factor was estimated as

BF=
µ(P )

µ(CHIRPS)
, (2)

where µ(P ) is the mean of the historical precipitation from
the ground stations, and µ(CHIRPS) is the mean of the
historical precipitation from CHIRPS. Note that µ(P ) and
µ(CHIRPS) were computed using the common study period.
The simple linear bias correction was preferred over more
complex methods due to the lack of a long common period
for all stations. Therefore, we used the individual records of
more than 60 available stations covering a period from 1980
to 2010 to better capture the complex topography and result-
ing rainfall patterns.

Some monitored catchments exhibiting higher annual
streamflow than annual precipitation could not be corrected
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due to groundwater contributions from neighboring catch-
ments (Genereux and Jordan, 2006; Genereux et al., 2002),
under-catch at rainfall gauges (Frumau et al., 2011), and the
insufficient number of precipitation stations to correct the
CHIRPS database at a national scale. Nevertheless, errors in
climatological data have been found to be the most common
issue for water balance modeling in Central America (West-
erberg et al., 2014; Birkel et al., 2012). In that sense, an ad-
ditional approach was implemented to reduce the unrealis-
tic relationship between streamflow and precipitation, which
consisted of the creation of virtual stations at the catchment
centroid, where the new bias factor was computed as

BF2 =
µ
(
Qty

)
+µ

(
AETy

)
µ
(
CHIRPSy

) , (3)

where µ refers to the mean value, Qty is the annual stream-
flow from 1990 to 2003, AETy is the MODIS annual actual
evapotranspiration from 2001 to 2014, and CHIRPSy is the
CHIRPS annual precipitation from 1990 to 2014. BF2 adjusts
the long-term precipitation volume to ensure that the water
balance is preserved, avoiding underestimation of stream-
flow and evapotranspiration. Four streamflow gauges in addi-
tion to those shown in Table 1 were used to cover additional
spatial area at high elevations for the correction of satellite-
based precipitation. These streamflow gauges were omitted
from the model calibration–validation procedure due to their
shorter records (less than 7 years). The location of the four
streamflow gauges and their catchments are shown in Fig. 1b.

Finally, BF points from precipitation stations and
BF2 from virtual points were interpolated using the inverse
distance weighted (IDW) method (Shepard, 1968), with an
exponent value of 2 at the original CHIRPS resolution. The
interpolated map of the bias factor was used to spatially cor-
rect the time series of CHIRPS across Costa Rica.

3.3 Evapotranspiration and temperature correction

HYPE incorporates four methods for PET estimation (SMHI,
2018). After initial tests, we found that the monthly PET sig-
nal from MODIS in Costa Rica can be reproduced by only
using temperature as forcing, where PET is computed as

PET= (cevp · cseason) · (temp− ttmp) · (1+ cevpcorr) , (4)

where PET is the daily potential evapotranspiration (in mil-
limeters), temp is the daily mean air temperature (◦C), cevp is
an evapotranspiration parameter that depends on the land
use (mm ◦C−1 d−1), ttmp is a threshold temperature for evap-
otranspiration (◦C), cevpcorr is a correction factor for evap-
otranspiration, and cseason is a factor computed as

cseason= 1+ cevpam · sin
(

2 ·π · (dayno− cevpph)
365

)
, (5)

where cevpam is a correction factor, dayno is the day of the
year, and cevpph is a factor used to correct the phase of the

sine function in order to correct the potential evapotranspi-
ration (set as zero in this study). To deal with the coarse
spatial resolution of the temperature database (0.5◦), a cor-
rection factor that depends on catchment elevation was com-
puted (SMHI, 2018):

tempc= temp−
tcelevadd · elev

100
, (6)

where tempc is the corrected air temperature (in ◦C), temp is
the original air temperature (◦C), tcelevadd is a calibrated pa-
rameter that corrects temperature (◦C 100−1 m−1), and elev
is the mean catchment elevation (m). Since only few (<
10) temperature station records were available, a bias cor-
rection procedure was not possible, but measured tempera-
ture closely followed the environmental lapse rate (Esquivel-
Hernandez et al., 2017). The parameters cevp, cevcorr, cev-
pam, and tcelevadd are part of the Monte Carlo simulation
and their ranges are shown in Table 3.

3.4 Model calibration procedure

Figure 3 shows the workflow adopted for model calibration,
which involves a qualitative parameter sensitivity analysis
to find the most suitable range of values for the automatic
calibration. The initial parameter ranges were obtained from
manual iterations of one parameter at a time to facilitate au-
tomatic calibration (Infante-Corona et al., 2014).

We considered four model configurations to analyze the
effect of including PET and AET in model calibration:

– model configuration 1 (M1), calibrated using only daily
streamflow (Qt );

– model configuration 2 (M2), calibrated using monthly
streamflow followed by daily streamflow;

– model configuration 3 (M3), incorporating a calibration
using monthly PET and AET, followed by daily stream-
flow;

– model configuration 4 (M4), similar to M3, additionally
using monthly streamflow before daily streamflow cali-
bration.

For comparison purposes, M1 was chosen as the baseline
model configuration, which usually is standard in hydrolog-
ical practice. The steps are described in Fig. 3. The com-
mon period between Qt and PET-AET is relatively short
(3 years), resulting in Qt and PET-AET calibration using
different steps. The automatic calibration consisted of a step-
wise procedure, where each model configuration was cali-
brated for different fluxes (daily Qt , monthly Qt , monthly
AET, monthly PET). The parameter names and initial ranges
used for the calibration steps and their configuration are
shown in Table 3 and Fig. 2. A final step (not shown in Fig. 3)
consisted of calibrating the curve discharge parameters of the
Arenal reservoir using observed water levels. However, the
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Figure 3. Schematic representation of the HYPE model calibration strategy considering a step-wise procedure to constrain parameters. Four
model configurations (M1, M2, M3, M4) were established using different data sets and/or different timescales. From each calibration step,
the 10th and 90th values of the best-fit parameters were used to constrain the parameters of the next step.

Arenal infrastructure does not contribute to the downstream
basins and has a poor impact on the regional model calibra-
tion. Moreover, as previously stated, the reservoir was simu-
lated as a lake since its operational rules are unknown.

The streamflow records were divided into the period
from 1991 to 1999 for calibration and from 2000 to 2003
for validation. The PET and AET calibration period was es-
tablished as 2002 to 2010 and the validation period as 2011
to 2014. In both cases, for model warm-up we ran it for
2 years prior to calibration since our modeling tests showed
that using 2 years was enough to stabilize the effects of initial
conditions of water content in soil layers, rivers, and reser-
voirs. The 13 monitored catchments were used for stream-
flow calibration. For PET and AET calibration steps, only
the 130 catchments within the 13 monitored catchments were
used since our tests showed that using the 605 catchments
did not significantly increase the model performance but it
did increase the calibration time by a factor of 5. The simula-
tions of the 605 catchments were used to compute the metrics
for the calibration and validations periods.

A total of 86 parameters were used to build the HYPE
model structure consisting of 36 parameters linked to four
soil types, 24 parameters linked to four land cover classes,
6 parameters for the general structure, 12 parameters for the
regional correction of PET and temperature, and 8 parame-
ters for lake discharge. The Monte Carlo (MC) routine for pa-
rameter sampling and sensitivity analysis included in HYPE
was used for calibration, and the model configurations were
run 10 000 times for each step, except for M1, which used
20 000 runs to cover more parameter combinations since
this configuration only used daily streamflow. Despite the
lower computational efficiency of the MC with respect to
other optimization schemes (such as gradient-based meth-
ods), the MC routines are more flexible in accounting for
multiple parameters sets in complex models (Beven, 2006).
The 10th and 90th percentiles of the resulting parameters
from the best 100 runs were used to constrain the parame-
ters for the next calibration step.

3.5 Model calibration and validation using
hydrological signatures

The CHIRPS product was evaluated with ground records us-
ing the false alarm rate (FAR, computed with Eq. 7), prob-
ability of detection (PD, computed with Eq. 8), and threat
score (TS, computed with Eq. 9):

FAR=
false alarms

hits+ false alarms
, (7)

PD=
hits

hits+misses
, (8)

TS=
hits

hits+ false alarms+misses
, (9)

where hits are days with precipitation detected by CHIRPS
and ground rain gauges, false alarms are days where precip-
itation was detected only by CHIRPS, and misses are days
where precipitation was detected only by rain gauges.

The model performance was evaluated using the Kling–
Gupta efficiency (KGE; Kling and Gupta, 2009), computed
as

KGE= 1−
√
(r − 1)2+ (∝−1)2+ (β − 1)2, (10)

r = CC=
cov(xo,xs)

σoσs
, (11)

∝=
σs

σo
, (12)

β =
µs

µo
, (13)

where subscripts “o” and “s” correspond to observations and
simulations, respectively. µ is the mean, x is the time se-
ries (streamflow, actual evapotranspiration, or potential evap-
otranspiration), σ is the standard deviation, r and CC are
the correlation coefficient, α is the agreement between am-
plitudes, and β is the bias. KGE was chosen as the objec-
tive function for calibration since it equally captures maxi-
mum and minimum flows (e.g., Arheimer et al., 2020; Pech-
livanidis and Arheimer, 2015; Rajib et al., 2018a; Rakovec
et al., 2016; Xiong and Zeng, 2019), and has been described
as a relatively balanced metric with slightly more focus on
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Table 4. Hydrological signatures used as independent performance evaluation criteria.

Signature Equation Description

Mean.Qtd µ= 1
n

n∑
i=1

Qd(i) Mean flow of daily streamflow series

Median.Qtd m= 1
2

(
Qd

(
n
2
)
+Qd

(
n+1

2

))
Median value of daily streamflow series

Slope.Qtd slope=
Qd0.33−Qd0.66

0.66−0.33 Slope of the flow duration curve

CV.Qtd CV= µ(Qd)
σ (Qd)

Variation coefficient, ratio between mean and standard deviation

SC SC= 1
N

N∑
y=1

365∑
i=1

Qd(y,i)

365∑
i=1

P(y,i)

Streamflow coefficient, mean of annual streamflow divided by annual precipitation

BFI BFI= 1
N

N∑
y=1

365∑
i=1

Qb(y,i)

365∑
i=1

Qd(y,i)

Base flow index, mean of annual baseflow divided by annual streamflow

AI AI= 1
N

N∑
y=1

365∑
i=1

PET(y,i)

365∑
i=1

P(y,i)

Aridity index, mean of annual potential evapotranspiration divided by annual precipitation

EI EI= 1
N

N∑
y=1

365∑
i=1

AET(y,i)

365∑
i=1

P(y,i)

Evaporative index, mean of annual actual evapotranspiration divided by annual precipitation

FDC sort(Qd) Flow duration curve, a plot displaying the statistical distribution of daily streamflow in decreasing order

high flows (Garcia et al., 2017). Non-transformed data were
used given the advice of Santos et al. (2018) against using
log-transformed discharge with the KGE for low flow eval-
uation. Furthermore, other statistical criteria were computed
to facilitate assessing the performance of the model config-
urations, such as the Pearson correlation coefficient (com-
puted with Eq. 11), mean absolute error (MAE, computed
with Eq. 14), Nash–Sutcliffe efficiency (NSE, computed with
Eq. 15), root mean square logarithmic error (RMSLE, com-
puted with Eq. 16), and relative bias (Eq. 17):

MAE=
1
n

n∑
i=1

|xs(i)− xo(i)| , (14)

NSE= 1−

n∑
i=1
(xs(i)− xo(i))

2

n∑
i=1
(xo(i)−µo)

2
, (15)

RMSLE=

√√√√√ n∑
i=1
(log(xs(i))− log(xo(i)))

2

n
, (16)

Bias=
µs−µo

µo
. (17)

Furthermore, hydrological signatures were calculated to in-
dependently assess how well the calibrated model configura-
tions reproduced different hydrological criteria. The hydro-
logical signatures used in this study are shown in Table 4
and the Budyko curve was constructed from the aridity index
(AI) and evaporative index (EI).

Finally, the non-parametric Kruskal–Wallis (Kruskal and
Wallis, 1952) and Mann–Whitney (Mann and Whitney,
1947) tests were used to detect statistically different perfor-
mance.

4 Results

4.1 Remote sensing input data bias correction and
evaluation

Comparing precipitation from CHIRPS with annual stream-
flow and streamflow plus evapotranspiration (assuming long-
term balance P−Qt−AET= 0) showed an underestimation
of annual precipitation (as shown in Fig. S1a and c), lead-
ing to unrealistic water balance values. The interpolated bias
correction factor (BF, Fig. 4a) showed an overestimation of
CHIRPS rainfall in blue and underestimations in red. The
BF ranged from 0.65 to 1.57 with an average of 1.06± 0.14,
where the greater disagreements between the ground precipi-
tation and satellite-merged precipitation were observed along
the Pacific Basin. The underestimation reached 30 % to 35 %
in the north of the Gulf of Nicoya and in the southwest of the
Providencia catchment. Underestimation of CHIRPS across
the Caribbean slope was mainly observed in the Terron Col-
orado and Cariblanco catchments, with a BF between 1.2
and 1.4. Moreover, the largest overestimation of CHIRPS
was observed for the Guanacaste region (BF= 0.65–0.8),
downstream of the Tacares catchment (BF=∼ 0.8), and to
the southeast of Costa Rica (BF= 0.8–0.85).

For modeling purposes, we evaluated the temporal syn-
chronicity of rainfall versus streamflow (Fig. 4b) using cross-
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Figure 4. Performance of the CHIRPS precipitation product in representing observed rainfall in Costa Rica. (a) Interpolated bias factor,
where red areas indicate underestimation and dark blue areas overestimation of CHIRPS with respect to ground stations, and (b) cross
correlations between daily precipitation from CHIRPS and observed daily streamflow, where high correlation values without delay (at zero)
indicate that precipitation and high flows tend to occur on the same day. A high correlation with negative delays indicates that precipitation
occurred on average before the streamflow response.

correlation between daily streamflow and catchment-scale
daily precipitation from CHIRPS, where the x axis cor-
responds to the lag time in days. Most of the monitored
catchments exhibited the highest correlation within lag time
zero, indicating that the hydrological response of catchments
tends to occur within the same day. Nevertheless, the Cari-
blanco and Rancho Rey catchments exhibited poor correla-
tion (ρ < 0.3), which means a lack of synchrony between
daily satellite-merged precipitation and streamflow.

The bias correction improved the annual precipitation
where CHIRPSc was consistent with annual streamflow, and
the long-term water balance was mostly preserved, as ob-
served in Fig. S1b and d. Figure S2 shows the MAE normal-
ized by mean precipitation for CHIRPS and bias-corrected
CHIRPS (CHIRPSc), both with respect to the 75 precipi-
tation stations, where boxplots correspond to the variabil-
ity of normalized MAE estimated by each point. The av-
erage normalized MAE at a daily scale was estimated at
1.2±0.12 mm mm−1 for CHIRPS and 1.17±0.08 mm mm−1

for CHIRPSc, 0.30± 0.09 and 0.27± 0.07 mm mm−1 at a
monthly scale, and 0.16± 0.09 and 0.11± 0.04 mm mm−1

at an annual scale, respectively.
Figure S2d shows the probability of success and failure

of CHIRPSc at detecting rainy or dry days with respect to
ground stations, where the probability was computed from a
single time series merged from the 75 station records. Fur-
thermore, Fig. S2e to g show the false alarm rate (FAR),
probability of detection (PD), and threat score (TS), respec-
tively. Results indicated that CHIRPSc detected true rainy
and dry days with a similar probability (0.31 to 0.34) as in
situ observed rainfall, whereas the FAR ranged from 0.15
to 0.38 with the greater values (i.e., incorrect detection of dry
days as rainy days by CHIRPS) to the southeast, and the PD
showed greater values (i.e., better performance of CHIRPS at

detecting rainy days) for the Pacific Basin (median of∼ 0.69)
in comparison with the rain gauges in the Caribbean Basin
(median PD of∼ 0.54). The TS showed similar results to PD
(Fig. S2g), with better performance of CHIRPS for the Pa-
cific Basin (median of ∼ 0.53) than for the Caribbean Basin
(median of ∼ 0.46). Such low capacity of CHIRPS to detect
rainy days in the Caribbean Basin could affect the perfor-
mance of the hydrological model during peak flows.

4.2 Model performance and parameter uncertainty

Figure 5 shows the comparison of the model configura-
tions’ performance for the calibration (dark blue) and vali-
dation (light blue) periods. Simulated daily streamflow for
the 13 gauged catchments was similar for baseline configura-
tion (M1) and M2 during the calibration period (1991–1999;
Fig. 5a) with a mean KGE of 0.54±0.09 and 0.53±0.08, re-
spectively. Nevertheless, M1 showed a median NSE of 0.33
in comparison to M2, which showed a median NSE of 0.25.
The comparison of the correlation coefficient, median abso-
lute error, and NSE metrics is shown in Fig. S3. Moreover,
metrics for M3 and M4 were slightly poorer due to a larger
dispersion across the sample, with a mean KGE of 0.45±0.2
and 0.47± 0.17, respectively, and a mean NSE of 0.23± 0.2
and 0.21± 0.21. For the validation period (2000–2003), the
mean KGE decreased by ∼ 0.08, but with similar perfor-
mance for NSE.

The configuration M2 best reproduced monthly stream-
flow for the calibration period (Fig. 5b), with a mean KGE
of 0.67± 0.11, whereas the configurations M1, M3, and M4
showed a mean KGE of ∼ 0.60, also driven by larger dis-
persion along the KGE scale. The NSE also supports M2 as
the best monthly streamflow predictor for the calibration pe-
riod (Fig. S3), with a median value of 0.54, in contrast to
M1, which showed a median NSE of 0.43. The four model
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Figure 5. The range of KGE values for the calibration (dark blue) and validation periods (light blue). (a) KGE statistical dispersion for
daily streamflow, (b) KGE statistical dispersion for monthly streamflow, (c) boxplots of KGE values for AET, and (d) boxplots of KGE for
PET. Streamflow calibration period from 1991 to 1999 and validation period from 2000 to 2003. PET and AET calibration period from 2001
to 2010 and validation period from 2011 to 2014. Since the configurations M1 and M2 were calibrated only with streamflow, panels (c) and
(d) are for comparison purposes only, showing the effect of including PET and AET in the calibration procedure.

configurations preserved performance for the validation pe-
riod, and in some cases, the KGE even increased, as was the
case for the Palmar, Caracucho, and El Rey catchments (not
shown). Nevertheless, the Rancho Rey catchment exhibited
poor performance during the validation period (KGE< 0 and
NSE<−2) for daily and monthly scales since the four con-
figurations overestimated streamflow. In the following sec-
tions, we present more details for Rancho Rey that can ex-
plain the catchment behavior and its performance.

Figure 5c and d show the effect of including AET and
PET in the calibration steps, and the KGE was computed by
aggregating the complete domain (605 nested catchments).
The calibration consisted of 130 nested catchments within
the monitored catchments. Furthermore, M1 and M2 were
only plotted for comparison purposes since these configura-
tions were calibrated with streamflow. From Fig. 5c, we ob-
served that simulated monthly AET for the calibration pe-
riod (2002–2010) improved for M3 and M4 with a mean
KGE of ∼ 0.49± 0.17 with respect to M1 with a mean KGE
of 0.29±0.29 and M2 (0.04±0.33). The higher performance
of AET was also observed for M3 and M4 according to the
correlation coefficient and MAE (Fig. S3). Surprisingly, the
baseline configuration (M1) showed a slightly better per-
formance of simulated monthly PET, with a mean KGE of
0.64± 0.09, whereas M3 and M4 showed a mean KGE of
∼ 0.61±0.10, and M2 a mean KGE of 0.43±0.28 (Fig. 5d).
The performance of monthly AET and monthly PET was
similar for the validation period (2011–2014; Fig. S3).

The results from Fig. 6 suggested that the best perfor-
mance of daily and monthly streamflow for the calibra-
tion period (2001–2009) was obtained for catchments in

the southeast of Costa Rice, such as the Palmar, Caracu-
cho, El Rey, and Guapinol catchments, with KGEs higher
than 0.55 (NSE> 0.4, as shown in Fig. S4) for daily stream-
flow and higher than 0.8 (NSE> 0.63) for monthly stream-
flow. Nevertheless, the mid-Pacific Basin also resulted in the
Tacares and Providencia catchments exhibiting the worst per-
formance for monthly streamflow and the configurations M3
and M4 with KGE< 0.3 and NSE< 0 (Fig. 6g and h).

The spatially distributed KGE on the last two panels
of Fig. 6 shows the improvement by including AET and
PET in the calibration steps (Fig. 6k, l, o and p), un-
like the case of daily and monthly Qt , where no signif-
icant improvements were observed using the four calibra-
tion procedures. The calibrated monthly AET simulated with
M1 showed low efficiency (KGE< 0.2 and NSE< 0) for
∼ 182 catchments of the Pacific Basin but an acceptable
performance (KGE> 0.6 and NSE> 0.2) for monthly PET.
M2 exhibited poor performance across the simulation do-
main for AET and low efficiency of PET in the southeast
Caribbean. Additionally, M3 and M4 showed similar results
with acceptable performance (KGE> 0.6 and NSE> 0.2)
for ∼ 179 catchments, most of them located in the north-
east. The median MAE and the median correlation coeffi-
cient for M3 and M4 were ∼ 11 % lower (MAE=∼ 15 mm)
and ∼ 39 % higher (CC> 0.63) than for M1. Surprisingly,
the simulated PET with M3 and M4 was similar to the PET
from M1. The performance of the calibrated water level on
the Arenal reservoir was relatively low for all configurations
(KGE∼ 0.35, NSE<−0.1, and CC∼ 0.36), affected by the
unknown quantity of withdrawals from the reservoir during
the driest months (April–July).
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Figure 6. Matrix of spatially distributed KGE results for the calibration period (streamflow from 1991 to 1999, PET and AET from 2001
to 2010), where green and blue reflect better performance. Configurations M1 and M2 were calibrated only with streamflow. Nevertheless,
PET and AET panels are compared to show the effect of including such variables in the calibration procedure. The mean±SD of KGE is
shown on the lower left of each panel.

Figure 7 shows the model parameter ranges from the
100 best-fit simulations resulting from the last calibration
step for each configuration. The red dots from Fig. 7 cor-
respond to the optimal parameters used for modeling, where
multiple red dots and boxplots for each model are shown by
soil type and land use.

A large dispersion with a coefficient of variation
(CV=SD/mean) greater than 0.35 was observed for runoff
response parameters (srrate, fraction for surface runoff; srrcs,
recession coefficient for surface runoff) and baseflow param-
eters (rrcs1, recession coefficient for uppermost soil layer;
rrcs2, recession coefficient for lowest soil layer). The impacts
of monthly streamflow on calibration were observed for the
general model parameters of rivvel (river velocity) and rrcs3
(deep layer recession coefficient), with constrained posterior
parameter distributions for configurations M2 and M4 and
higher velocities and greater baseflow discharge for M2 with
respect to M4.

The soil type and land use coverage influence the calibra-
tions’ parametrization. M2 and M4 showed constrained dis-
tributions of parameters srrate and rrcs1 for clay-loam soil
(third class), the most frequent soil type in the monitored
catchments (Fig. 1b). The bottom panel in Fig. 7 shows the

spatial distribution of the srrate parameter, with similar val-
ues for M2, M3, and M4 and the most frequent soil classes
(clay and clay-loam).

The soil parameters that regulate the soil water con-
tent (wcwp, wcep) showed similar distributions with the me-
dian value of the fraction of soil water available for evap-
otranspiration (wcfc). The effective porosity (wcep) was
slightly higher for configurations M1 and M2, but the final
parameters (red dots) differed between the models. Further-
more, for M3 and M4, the parameters lp and cevpam exhib-
ited constrained distributions with a CV of 0.12 and 0.11,
respectively. In comparison, M1 and M2 showed CV values
of ∼ 0.25 and ∼ 0.28 for lp and cevpam.

4.3 Evaluating streamflow simulations and
hydrological signatures

The step-wise calibration improved model performance in
different aspects. Figure 8 shows the comparison of the hy-
drological simulations for two monitored catchments con-
trasting the best simulation with the highest KGE perfor-
mance (Palmar catchment) and the worst simulation with the
lowest KGE performance (Rancho Rey catchment).
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Figure 7. A posteriori parameter distribution for the 100 best-fit simulations from the last calibration step for each configuration, where red
dots correspond to the optimal parameters. Multiple boxplots for each model configuration correspond to the parameters of different soil and
land classes. The top two rows of parameter panels correspond to streamflow components, the third row to water content parameters, and the
fourth row to PET and AET processes (see Table 3 for reference). For comparison purposes, the bottom row shows the spatial variability of
the best-fit calibrated srrate (–) parameter for each configuration.

The Palmar catchment exhibited acceptable performance
(KGE> 0.5 and NSE> 0.45) for daily streamflow, but all
configurations underestimated the highest peak flows dur-
ing the calibration and validation periods. For the Rancho
Rey catchment, the observed highest peak flows during 1997
were 3 times larger than simulated peak flows. Underestima-
tion of simulated peak flows was related to the poor capabili-
ties of CHIRPSc to detect heavy storms since observed peak
flows were not associated with large precipitation amounts
(Fig. 8a). In the Palmar and Rancho Rey catchments, the
baseline (M1) underestimates low flows by 1 and 2 orders of
magnitude during the dry season, respectively (Fig. 8d and j).
Moreover, daily streamflow for M2 exhibited a mean relative
bias (Eq. 17) of −0.046 with respect to M1 due to the un-
derestimation of peak flows in all monitored catchments, and

M3–M4 showed a mean relative bias of 0.156. The mean rel-
ative bias with respect to baseline (M1) using the logarithm
of daily streamflow ranged from 0.24 to 0.29; hence, con-
figuration M1 tended to generate lower flows during the dry
period.

At a monthly scale, streamflow was preserved by the
model configurations in several catchments, except for Ran-
cho Rey, where simulated streamflow was on average 2 times
larger than the observed streamflow during the rainy season
(Fig. 8l). Such overestimation indicated that the bias fac-
tor was insufficient to correct the global precipitation prod-
uct or for large discharge measurement errors. Furthermore,
all configurations reproduced the seasonality of AET and
PET from MODIS (not shown), but M3 and M4 underes-
timated the AET and PET in Palmar while showing good

https://doi.org/10.5194/hess-26-975-2022 Hydrol. Earth Syst. Sci., 26, 975–999, 2022



990 S. Arciniega-Esparza et al.: Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica

Figure 8. Simulated versus observed time series for catchments with the best streamflow KGE performance (Palmar watershed) and the
worst streamflow simulation (Rancho Rey watershed). Black lines represent streamflow observations from 1990 to 2003. The panels on the
right (b, d, f, h, j, l) show the mean daily and monthly time series.

performance for AET in Rancho Rey. Moreover, simulated
monthly soil moisture (SM) content was independently com-
pared with the catchment average soil moisture content from
the Land Parameter Retrieval Model (LPRM; Owe et al.,
2008) product for the period 2012 to 2016. The simulated SM
for M1 followed the seasonal behavior of the LPRM prod-
uct in the Palmar catchment, matching the absolute LPRM
% SM content. The LPRM product uses SM from the up-
per 5 cm against the 50 cm of the upper layer defined for
all model configurations. However, all model configurations

show a high correlation (CC> 0.7) in both catchments (Pal-
mar and Rancho Rey), matching the seasonality.

The observed and simulated flow duration curves for all
monitored catchments are shown for the period 1991–2003
in Fig. 9. The baseline (M1, dashed red line) underestimated
the median and low flows in several catchments (Guardia,
Rancho Rey, Guatuso, Terron Colorado, Caracucho, El Rey,
Guapinol), with a median RMSE of 1.15 considering all
monitored catchments, 2 times larger than other model con-
figurations. M2 (dashed blue line) exhibited the best per-
formance for median and low flows (with a median RMSE
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Figure 9. A comparison of observed flow duration curves (FDCs) as a hydrological signature and the matching simulated FDC for each
model configuration. The simulated period was from 1991 to 2003.

of 0.42), whereas M3 (orange line) and M4 (blue line)
showed similar results to M2. Higher efficiencies for median
and low flows were obtained for catchments that exhibited
higher cross-correlation with precipitation (Fig. 4b), as was
the case for Palmar, Caracucho, and El Rey, among others.

The simulated and observed hydrological signatures are
shown in Fig. 10, where simulations covered the pe-
riod 1991–2014, and observations covered different periods
depending on available records. The comparison of hydro-
logical signatures by monitored watershed is shown in Ta-
bles S1 and S2 in the Supplement. The simulated long-term
mean annual water balance (Prec−Qt −AET) was mostly
closed in all catchments (∼ 0 mm), with average values of
−1.80 mm (M1), −0.62 mm (M2), −0.79 mm (M3), and
−1.17 mm (M4); hence the water balance was significantly
improved when compared to the observed water balance. In-
deed, the observed water balance (Prec−Qt −AET) yielded
values from −800 to 600 mm. Such variability in observed
water balances may be related to the short common period

of data but also to the discrepancies between the data sources
(in situ, interpolated and merged, remotely sensed), as can be
observed in Fig. S4. Figure S4 shows how the long-term wa-
ter balance using the observed data differs from the Budyko
curve in all monitored catchments (Westerberg et al., 2014),
while the simulations fit the theoretical curve.

The spatial distribution of baseflow indices (BFI) derived
from M2, M3, and M4 exhibited similarities with respect to
the observations. Simulated BFI showed an overwhelming
groundwater contribution to streamflow with relatively sim-
ilar average values of 0.70, 0.69, 0.68, and 0.74 for model
configurations M1, M2, M3, and M4, respectively.

Larger differences were observed in the northwest and
southwest when comparing the BFI of M1 with respect to
other configurations, whereas M4 resulted in larger contri-
butions of baseflow to streamflow in coastal areas of the
Caribbean. Similar spatial patterns were obtained for the
streamflow coefficient (SC=Qt/Prec), with low values in
the drier northwest and higher values for catchments that re-
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Figure 10. Observed and simulated spatial distribution of hydrological signatures. BFI: baseflow index (baseflow/streamflow), EI: evapo-
rative index (AET/P ), AI: aridity index (PET/P ). Signatures from observations were obtained for the periods 2000–2003 (balance), 1991–
2003 (BFI, SC), and 2002–2014 (EI, AI). Signatures from the simulations were obtained for the period 1991–2014, and the mean±SD are
shown on the lower left of each panel.

ceive more rainfall (Fig. 1e). In contrast, M2 indicated that
a lower amount of precipitation became streamflow, with an
average value of 0.49, in comparison with M1, M3, and M4,
which showed medians of 0.52, 0.57, and 0.57, respectively.
Moreover, M1 and M2 followed the spatial patterns of the
observed SC due to their higher streamflow performance.

The EI and AI were similar for M3 and M4 due to their
similar model parameters. The spatial distribution of ob-
served EI from MODIS was reproduced by M3 and M4,
whereas AI spatial patterns were preserved by M1. In addi-
tion, M1 and M3–M4 showed similar spatial patterns for EI
and AI across the north, but differences were observed in the
south, where M1 indicated lower water availability attributed
to higher evaporative ratios (higher EI). M2 simulated the
driest catchments, with an average value of EI and AI of 0.50
and 0.63, respectively, whereas M1 showed median values
of 0.47 and 0.59, and M3–M4 values of 0.42 and 0.51.

5 Discussion

5.1 Remote sensing and global products as model
forcings and calibration series

Daily precipitation from CHIRPS was preferred over other
global precipitation products because of a relatively higher
spatial resolution and good performance across different
climates and biomes (e.g., Bayissa et al., 2017; Ullah et
al., 2019; Zambrano-Bigiarini et al., 2017). Nevertheless,
CHIRPS showed a large bias and more rainy days with re-
spect to ground precipitation across Costa Rica (Fig. 4a).
The results suggested that at large scales, the precipitation
bias was compensated for since the mean bias factor (BF)
was ∼ 1, but underestimation of precipitation was observed
in mountainous regions as wells as large overestimations in
the drier northwest (Fig. 4). Similarly, results from Chile by
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Zambrano-Bigiarini et al. (2017) indicated that an evaluation
and even correction of global products is necessary and may
be related to the poor density of ground gauges used to gener-
ate CHIRPS in those regions, especially across regions with
steep topography (Funk et al., 2015). The latter authors also
reported underestimation during extreme rainfall events and
overestimation during rainy days.

Our simple, linear bias correction of CHIRPS showed bet-
ter performance at monthly and annual scales and solved the
water balance inconsistencies of most catchments (Fig. 10).
However, the cross-correlation between daily precipitation
and streamflow remains unchanged by the bias correction.
Not surprisingly, our results showed that catchments with
highly correlated streamflow and daily precipitation exhib-
ited better performance than catchments with low correla-
tions. Several studies highlighted those meteorological forc-
ings are the largest source of uncertainty in hydrological
modeling (e.g., Arheimer et al., 2020; Dal Molin et al., 2020;
Lin et al., 2018; Wörner et al., 2019), whereas more com-
plex bias correction techniques (e.g., quantile mapping) may
improve the results (e.g., Goshime et al., 2019; Wörner et
al., 2019). However, the lack of matching daily streamflows
with precipitation inputs and intense rain events might per-
sist. Nonetheless, Infante-Corona et al. (2014) suggested that
global products can achieve better streamflow simulation re-
sults than sparse ground precipitation data, whereas West-
erberg and Birkel (2015) found that in situ precipitation in
Costa Rica may require corrections to achieve better model
results.

The global CPC temperature dataset used was not bias-
corrected due to the lack of sufficient in situ measurements.
Temperature can introduce large errors in hydrological simu-
lations if used for the estimation of potential evapotranspira-
tion and actual evapotranspiration (Andersson et al., 2015).
We corrected the temperature data set using elevation and
a lapse rate parameter (Eq. 6) during the calibration steps.
The corrected temperature closely followed the environmen-
tal lapse rate of 6 ◦C temperature decrease per 1000 m ele-
vation gain and improved model performance (KGE) by on
average∼ 10 %. Global evapotranspiration estimates showed
differences compared to ground estimations in different re-
gions due to the influence of, e.g., irrigation, vegetation dy-
namics, and uncertainty in climatological forcings (Pan et al.,
2020; Velpuri et al., 2013). We used the PET and AET from
MODIS 16 for calibration and evaluation due to the good per-
formance reported in different applications around the world
(e.g., Lin et al., 2018; Mu et al., 2013; Pan et al., 2020; Rajib
et al., 2018b; Tang et al., 2011; Velpuri et al., 2013). Nev-
ertheless, MODIS AET has shown poor performance at the
point scale in different regions (e.g., Liu et al., 2015; Weeras-
inghe et al., 2020), but better performance when aggregated
at the catchment scale (Velpuri et al., 2013). Additionally,
Wohl et al. (2012) recognized that dense vegetation and fre-
quent cloudiness in the humid tropics are challenges for
satellite monitoring of AET. Unfortunately, the low density

of eddy covariance towers and lack of comparative studies
for tropical climates are limiting factors in the validation of
MODIS 16 in Central America. Nonetheless, among the few
existing studies available, Esquivel-Hernandez et al. (2017)
compared the MODIS 16 PET product against 10 Priestley–
Taylor station data-derived PET estimates in Costa Rica and
found relatively small errors from −0.33 to +0.36 mm yr−1.

5.2 HYPE performance in data-scarce tropical
catchments

Simulated daily streamflow showed reasonable performance
using the four model configurations, where M2 (calibrated
Qt monthly+Qt daily) improved low flows simulations
in comparison with M1 (Fig. 9). Moreover, our configura-
tion using a step-wise calibration for Costa Rica resulted in
improved streamflow performance compared to the global
model by Arheimer et al. (2020). The main shortcomings
of the four configurations were the underestimated larger
peak flows (Fig. 8), but such errors were associated with
the precipitation input rather than model capabilities. The
spatial comparison of streamflow simulations indicated that
catchments in the southwest performed best (KGE> 0.5 and
NSE> 0.45, Fig. 6) compared to other areas. The southwest-
ern Pacific is characterized by moderate precipitation sea-
sonality (Fig. 1d) with a low bias in the precipitation prod-
uct (Fig. 4a) and better performance in detecting rainy and
dry days (Fig. S2), compared with the tropical climate gradi-
ent of the dry to humid tropics in Costa Rica. Furthermore,
we found overestimated monthly streamflows in the drier
northwestern region of Costa Rica (Rancho Ray and Guardia
catchments with higher mean daily and monthly simulated
streamflows, as is shown in Table S2). Previous studies have
noted that HYPE overestimates streamflow in dry environ-
ments (Arheimer et al., 2020). Finally, the streamflow over-
estimation could also be related to the precipitation bias of
CHIRPSc and possibly to the nonuniform spatial distribu-
tion of our streamflow observational sample, with additional
“wetter” catchments used for calibration. Indeed, despite bias
correction, precipitation overestimation persisted in drier en-
vironments (Fig. 4), associated with the lack of ground pre-
cipitation records to correct the CHIRPS product in head-
water catchments, such as Rancho Rey. Furthermore, the low
correlation of daily precipitation of CHIRPS with rain gauges
resulted in low NSE values (< 0.2) for daily streamflow due
to the unsynchronized peak flows, mainly in the Caribbean
slope.

Results from the Kruskal–Wallis test suggested median
KGE in AET and PET from M3–M4 were statistically dif-
ferent compared to the baseline configuration M1 (the statis-
tic H ∼ 183 and p value< 0.05 for AET, and H ∼ 72 and
p value< 0.05 for PET). Nevertheless, the Kruskal–Wallis
and Mann–Whitney tests indicated that median and the dis-
tribution of KGE for daily and monthly streamflows are simi-
lar among all model configurations (p values> 0.05). Hence,
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statistical significance using AET and PET for calibration is
related to improvements in water partitioning in soil layers
(Figs. 6 and 7) rather than runoff generation.

Such multi-objective calibration trade-offs were previ-
ously observed by, e.g., Zhang et al. (2018). Larger improve-
ments were obtained for AET simulation of M3 and M4,
whereas M1 (only daily Qt calibration) showed similar PET
performance in both periods (calibration and validation). The
worst PET and AET simulations were observed for M2, since
the monthly aggregation ignores an accurate representation
of spatial water partitioning to match the monthly hydro-
graph (Rajib et al., 2018b). Our results also suggested that
low flows were improved using PET and AET for calibration
(Fig. 9), where FDC exhibited an average RMSLE (Eq. 16)
value of ∼ 0.5±0.22 compared to 1.1±0.53 from M1, con-
straining vertical fluxes and regulating discharge from soil
layers (Massari et al., 2015; Rakovec et al., 2016). The con-
strained posterior parameter distributions using MODIS PET,
and AET in calibration steps decreased the variability of
parameters related to evapotranspiration processes (lp, cev-
pam). However, the soil water content parameters (wcfc,
wcwp, wcep) ranges were similar among model configura-
tions (Fig. 7). Additionally, including monthly Qt into the
calibration routine also constrained parameters related to soil
layer discharge (srrate, rrcs1, rrcs3) for the most frequent soil
types on the monitored catchments. Such results highlight
that remotely sensed PET and AET are useful at constrain-
ing some parameters and that the combination of data sources
representing different modeled hydrological processes helps
constrain model uncertainties, particularly for large-scale do-
mains (Rajib et al., 2018b). Despite the partly different cali-
bration periods used due to the limited data availability, sim-
ilar record lengths (8 years of calibration and 3 years of vali-
dation) resulted in consistent results from M1 to M4.

Despite the generally reasonable performance of our
model configurations, we found some issues when compar-
ing our results with previous efforts, such as those of Birkel
et al. (2012), who modeled the streamflow in the Sarapiqui
River basin (data not used in this study for calibration) with
the HBVlight model (Seibert, 2005) for the period from 1983
to 1991 and obtained an NSE of 0.74 after rainfall correction
of the underestimated observed precipitation. Our configura-
tion M4 resulted in an NSE=−5.6 due to rainfall underesti-
mation (Frumau et al., 2011). In contrast, our model config-
uration M4 showed lower improvements with respect to the
global product of Arheimer et al. (2020). For example, we
obtained a KGE= 0.73 and NSE= 0.46 for the streamflow
simulation of the Palmar catchment, in comparison to the
global product showing a KGE of less than 0.3. Such results
reflect that more data are required to improve the streamflow
response at local scales.

5.3 Independent model evaluation using hydrological
signatures

A hydrological model useful for water management should
be able to mimic streamflow seasonality and to realisti-
cally represent the large-scale physical processes of the wa-
ter partitioned by vegetation interception and the soil ma-
trix into evapotranspiration and discharge (Arheimer et al.,
2020; Kwon et al., 2020; Pechlivanidis and Arheimer, 2015;
Rajib et al., 2018b; Rakovec et al., 2016; Xiong and Zeng,
2019). We, therefore, independently evaluated the four con-
figurations using a range of hydrological signatures (Ta-
ble 4) following Westerberg and McMillan (2015) in an at-
tempt to single out the sought-after well-balanced model
for use in decision-making. However, using multiple sig-
natures also complicated the interpretation of simulations
since daily streamflow (Qtd ) and monthly streamflow (Qtm )
indicated improvements in different configurations (see Ta-
bles S1 and S2).

Significant spatial variations in hydrological signatures
were observed between M1–M2 and M3–M4 since imple-
menting a spatial calibration of AET improved the repre-
sentativeness of the more complex large-scale climate gra-
dient. Similar results were found in catchments in the United
States (Lin et al., 2018; Rajib et al., 2018a) and worldwide
(Arheimer et al., 2020). The model configurations M3 and
M4 better reproduced the spatial variability between the Pa-
cific and Caribbean basins and the north–south gradient of
the AI and EI (Esquivel-Hernandez et al., 2017). Further-
more, the resulting hydrological signatures of M3 and M4
were consistent with previous small catchment-scale studies
that showed that runoff coefficients tend to be larger than the
evaporative index (Dehaspe et al., 2018; Gómez-Delgado et
al., 2011). Results also suggested that the event streamflow
response is dominated by quick near-surface soil water dis-
charge (Dehaspe et al., 2018), with streamflow being fed by
groundwater during dry periods resulting in BFI values ex-
ceeding 0.7 (Birkel et al., 2012). In contrast to Westerberg
et al. (2014), who calibrated Central American catchments
using FDC information, we used the observed FDCs as an
independent hydrological signature (Fig. 9). The configura-
tions M2 to M4 outperformed the baseline (M1), supporting
the notion that only streamflow used for calibration is not
enough to produce a well-balanced model.

6 Conclusions

This study is the first attempt to apply the process-based,
conceptual rainfall–runoff HYPE model at the national scale
of Costa Rica (∼ 600 simulated catchments). Due to the
lack of detailed observational data available for Costa Rica,
as in most parts of the world’s tropics, we used different
global topography, soil, land use products, daily streamflow
from 13 gauges, the bias-corrected global precipitation prod-
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uct CHIRPS (with 75 ground stations) and remotely sensed
MODIS 16 PET and AET products to improve the perfor-
mance of HYPE in a step-wise calibration procedure towards
a well-balanced model useful for water resources manage-
ment. The calibrated model configurations were indepen-
dently evaluated using a suite of hydrological signatures. We
summarize our main findings here.

– Bias was observed in the precipitation from CHIRPS,
with underestimation in mountainous regions and over-
estimation in the driest region with around 1000 mm of
annual rainfall in Costa Rica.

– CHIRPS showed ∼ 10 % more days with rainfall in
comparison with ground precipitation but could not cap-
ture extreme rainfall events, which ultimately impacts
streamflow simulation.

– Our bias correction procedure using the linear-scaling
technique reduced annual water balance inconsisten-
cies (Prec<Q+ET) by 25 %. Still, a more complex
methodology is required to improve daily precipitation
depth and timing.

– The temperature could efficiently be used with an ele-
vation correction; nevertheless, a higher-resolution tem-
perature product or downscaling approach would im-
prove the many micro-climates across the complex to-
pography in Costa Rica.

– HYPE successfully reproduced major processes (evap-
otranspiration, runoff, baseflow discharge) of tropical
catchments in Costa Rica, where we obtained accept-
able performance for daily streamflow (median KGE
from 0.4 to 0.6) and good performance for monthly
streamflow (median KGE from 0.6 to 0.9, and median
NSE from 0.4 to 0.55), with best-fit results for PET and
AET of KGE= 0.6 and KGE= 0.5, respectively.

– Model calibration using monthly and daily stream-
flow (M2) improved the performance of the low flows
in comparison to only daily streamflow (M1) calibra-
tion, where the average RMSLE of FDC was computed
as 0.42±0.22 for M2, compared to 1.14±0.53 from M1.

– Remotely sensed PET and AET constrained the soil
type and land cover parameters associated with the
evapotranspiration process.

– Statistical differences in AET and PET performance
was observed for M3–M4 with respect to M1 and M2,
but not for daily and monthly (KGE) streamflow simu-
lations.

– Including PET and AET in calibration (M3 and M4)
slightly decreased the overall streamflow performance
(average KGE of 0.47± 0.17 compared to 0.54± 0.09
from baseline M1) at the expense of an improved and

more well-balanced median and low flow (average RM-
SLE for FDC of ∼ 0.5± 0.22 compared to 1.1± 0.53
from baseline M1) simulation and evapotranspiration
water partitioning.

– Simulated hydrological signatures (aridity index, evap-
orative index, baseflow index, streamflow coefficient,
flow duration curve) differed for each calibrated model,
but configurations M3 and M4 more realistically mim-
icked the spatial distribution of all tested hydrological
signatures.

We conclude that M3 and M4 are promising model config-
urations for the quantitative assessment of water resources
in Costa Rica and that PET-AET and daily streamflow (M3)
and PET-AET, and daily and monthly streamflow (M4) rep-
resent an appropriate calibration sequence for regional mod-
eling. Improvements to these models could be achieved by
incorporating more independent data into the calibration pro-
cess, such as soil moisture and groundwater level and storage
data. However, all global products crucially depend on evalu-
ation and even correction, which require observational in situ
data. Nonetheless, we hope to have provided a way forward
towards a large-sale operational hydrological model for the
humid tropics of Costa Rica and potentially for other humid
regions of the world.

Data availability. The hydrological simulations of model con-
figuration 4 (M4) represent the HYPE for Costa Rica ver-
sion 1.0 dataset (HYPE CR 1.0), and are freely available online
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