Articles | Volume 26, issue 24
https://doi.org/10.5194/hess-26-6413-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/hess-26-6413-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Engineering Research Center of Eco-environment in Three Gorges
Reservoir Region, Yichang 443002, China
College of Hydraulic and Environmental Engineering, China Three Gorges
University, Yichang, 443002, China
Chenghao Wang
Department of Earth System Science, Stanford University, Stanford, CA
94305, USA
School of Meteorology, University of Oklahoma, Norman, OK 73072, USA
Department of Geography and Environmental Sustainability, University
of Oklahoma, Norman, OK 73019, USA
Ru Huang
National Institute of
Natural Hazards, Beijing 100085, China
Denghua Yan
State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, Water Resources Department, China Institute of Water Resources
and Hydropower Research (IWHR), Beijing, 100038, China
Hui Peng
CORRESPONDING AUTHOR
Engineering Research Center of Eco-environment in Three Gorges
Reservoir Region, Yichang 443002, China
College of Hydraulic and Environmental Engineering, China Three Gorges
University, Yichang, 443002, China
Shangbin Xiao
Engineering Research Center of Eco-environment in Three Gorges
Reservoir Region, Yichang 443002, China
College of Hydraulic and Environmental Engineering, China Three Gorges
University, Yichang, 443002, China
Related authors
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024, https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Short summary
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution for WAM2layers, while for FLEXPART coupled with WaterSip, we suggest applying bias corrections to optimize the filtering of precipitation particles and adjust evaporation estimates.
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Yuqi Huang, Chenghao Wang, Tyler Danzig, Temple R. Lee, and Sandip Pal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3397, https://doi.org/10.5194/egusphere-2025-3397, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We evaluated a high-resolution numerical weather prediction model in a small, semi-arid U.S. city using dense ground-based measurements. While the forecasts showed good skill for temperature and humidity, they consistently overestimated wind and underestimates nighttime cooling, with inaccurate heat advection predictions. The results highlight the need for improved urban representation in forecast models to better support heat warning systems for small cities.
Keke Zhao, Denghua Yan, Tianling Qin, Chenhao Li, Dingzhi Peng, and Yifan Song
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-291, https://doi.org/10.5194/essd-2025-291, 2025
Preprint under review for ESSD
Short summary
Short summary
This study presents a high-quality daily weather dataset for all of China from 1961 to 2021, including air temperature, atmospheric pressure, relative humidity, and sunshine duration. It was produced using a reconstruction framework that combines thousands of ground observations with landform and elevation data. The dataset provides consistent weather information even in mountainous regions and supports studies on land surface and water processes, climate change, and environmental impacts.
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024, https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Short summary
For moisture tracking over the Tibetan Plateau, we recommend using high-resolution forcing datasets, prioritizing temporal resolution over spatial resolution for WAM2layers, while for FLEXPART coupled with WaterSip, we suggest applying bias corrections to optimize the filtering of precipitation particles and adjust evaporation estimates.
Haiwei Li, Yongling Zhao, Chenghao Wang, Diana Ürge-Vorsatz, Jan Carmeliet, and Ronita Bardhan
EGUsphere, https://doi.org/10.5194/egusphere-2024-234, https://doi.org/10.5194/egusphere-2024-234, 2024
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We investigated the cooling efficacy of urban trees in different climate zones through a robust meta-analysis, we determine that the cooling efficacy of trees is significantly influenced by the interplay of urban morphology, tree traits, and climate zones. We complement the study by an interactive map, offering a visual and quantitative examination and comparison of the cooling effects of urban trees in different climate zones.
Baisha Weng, Zhaoyu Dong, Yuheng Yang, Denghua Yan, Mengyu Li, and Yuhang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2022-1290, https://doi.org/10.5194/egusphere-2022-1290, 2022
Preprint archived
Short summary
Short summary
The study selected a structural equation model to construct the turnover rate of amino sugars with soil physicochemical properties and extracellular enzymes under the warming and increased precipitation scenarios. The results of this study answer the mechanism of action of warming and precipitation on the effect of soil amino sugars which will play an important scientific and technical support role in the development of plateau agriculture and carbon and nitrogen cycles.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Ying Li, Chenghao Wang, Hui Peng, Shangbin Xiao, and Denghua Yan
Hydrol. Earth Syst. Sci., 25, 4759–4772, https://doi.org/10.5194/hess-25-4759-2021, https://doi.org/10.5194/hess-25-4759-2021, 2021
Short summary
Short summary
Precipitation change in the Three Gorges Reservoir Region (TGRR) plays a critical role in the operation and regulation of the Three Gorges Dam and the protection of residents and properties. We investigated the long-term contribution of moisture sources to precipitation changes in this region with an atmospheric moisture tracking model. We found that southwestern source regions (especially the southeastern tip of the Tibetan Plateau) are the key regions that control TGRR precipitation changes.
Cited articles
Algarra, I., Nieto, R., Ramos, A. M., Eiras-Barca, J., Trigo, R. M., and
Gimeno, L.: Significant increase of global anomalous moisture uptake feeding
landfalling Atmospheric Rivers, Nat. Commun., 11, 5082,
https://doi.org/10.1038/s41467-020-18876-w, 2020.
Bingyi, W.: Weakening of Indian summer monsoon in recent decades, Adv.
Atmos. Sci., 22, 21–29, https://doi.org/10.1007/BF02930866, 2005.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the
Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev.
Earth Planet. Sci., 47, 453–479,
https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Cai, Z. and Tian, L.: What Causes the Postmonsoon 18O Depletion Over Bay of
Bengal Head and Beyond?, Geophys. Res. Lett., 47, e2020GL086985,
https://doi.org/10.1029/2020GL086985, 2020.
Chen, B., Zhang, W., Yang, S., and Xu, X. D.: Identifying and contrasting
the sources of the water vapor reaching the subregions of the Tibetan
Plateau during the wet season, Clim. Dyn., 53, 6891–6907,
https://doi.org/10.1007/s00382-019-04963-2, 2019.
Chen, D., Xu, B., Yao, T., Guo, Z., Cui, P., Chen, F., Zhang, R., Zhang, X.,
Zhang, Y., and Fan, J.: Assessment of past, present and future environmental
changes on the Tibetan Plateau, Chin. Sci. Bull., 60, 3025–3035,
https://doi.org/10.1360/N972014-01370, 2015.
Copernicus Climate Change Service (C3S) Climate Date Store (CDS): The ERA5
monthly averages data on single levels from 1979 to present, https://cds.climate.copernicus.eu/, last access: 11 November 2021.
Curio, J. and Scherer, D.: Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau, Earth Syst. Dynam., 7, 767–782, https://doi.org/10.5194/esd-7-767-2016, 2016.
Curio, J., Maussion, F., and Scherer, D.: A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau, Earth Syst. Dynam., 6, 109–124, https://doi.org/10.5194/esd-6-109-2015, 2015.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., and Bauer, P.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
Duan, A. and Xiao, Z.: Does the climate warming hiatus exist over the
Tibetan Plateau?, Sci. Rep., 5, 13711, https://doi.org/10.1038/srep13711,
2015.
European Centre for Medium-Range Weather Forecast (ECMWF): The ERA-Interim
reanalysis dataset, https://apps.ecmwf.int/datasets/data/interim-full-daily/, last access: 16
May 2017.
Findell, K. L., Keys, P. W., van der Ent, R. J., Lintner, B. R., Berg, A.,
and Krasting, J. P.: Rising Temperatures Increase Importance of Oceanic
Evaporation as a Source for Continental Precipitation, J. Climate, 32,
7713-7726, https://doi.org/10.1175/jcli-d-19-0145.1, 2019.
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and
Schneider, M.: Stable isotopes in atmospheric water vapor and applications
to the hydrologic cycle, Rev. Geophys., 54, 809–865,
https://doi.org/10.1002/2015rg000512, 2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., and Reichle, R.: The
modern-era retrospective analysis for research and applications, version 2
(MERRA-2), J. Climate, 30, 5419–5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M., and Stohl, A.: On the
origin of continental precipitation, Geophys. Res. Lett., 37, 153–188,
https://doi.org/10.1029/2010GL043712, 2010.
Gimeno, L., Nieto, R., Drumond, A., Castillo, R., and Trigo, R.: Influence
of the intensification of the major oceanic moisture sources on continental
precipitation, Geophys. Res. Lett., 40, 1443–1450,
https://doi.org/10.1002/grl.50338, 2013.
Gimeno, L., Nieto, R., and Sori, R.: The growing importance of oceanic
moisture sources for continental precipitation, Npj Climate and Atmospheric
Science, 3, 27, https://doi.org/10.1038/s41612-020-00133-y, 2020a.
Gimeno, L., Vazquez, M., Eiras-Barca, J., Sori, R., Stojanovic, M., Algarra,
I., Nieto, R., Ramos, A. M., Duran-Quesada, A. M., and Dominguez, F.: Recent
progress on the sources of continental precipitation as revealed by moisture
transport analysis, Earth-Sci. Rev., 201, 103070,
https://doi.org/10.1016/j.earscirev.2019.103070, 2020b.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999-2049,
https://doi.org/10.1002/qj.3803, 2020.
Hren, M. T., Bookhagen, B., Blisniuk, P. M., Booth, A. L., and Chamberlain,
C. P.: δ18O and δD of streamwaters across the Himalaya and
Tibetan Plateau: Implications for moisture sources and paleoelevation
reconstructions, Earth Planet. Sci. Lett., 288, 20–32,
https://doi.org/10.1016/j.epsl.2009.08.041, 2009.
Immerzeel, W. W., Van Beek, L. P., and Bierkens, M. F.: Climate change will
affect the Asian water towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily
3-Hourly and 6-Hourly Data, Archived at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory,
https://rda.ucar.edu/datasets/ds628.0/, last access: 19 July 2018.
Jiang, X. W. and Ting, M. F.: A Dipole Pattern of Summertime Rainfall
across the Indian Subcontinent and the Tibetan Plateau, J. Climate, 30,
9607–9620, https://doi.org/10.1175/Jcli-D-16-0914.1, 2017.
Jin, Q. and Wang, C.: A revival of Indian summer monsoon rainfall since
2002, Nat. Climate Chang., 7, 587–595,
https://doi.org/10.1038/NCLIMATE3348, 2017.
Joswiak, D. R., Yao, T., Wu, G., Tian, L., and Xu, B.: Ice-core evidence of
westerly and monsoon moisture contributions in the central Tibetan Plateau,
J. Glaciol., 59, 56–66, https://doi.org/10.3189/2013JoG12J035 2013.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., and Endo, H.: The JRA-55 reanalysis:
General specifications and basic characteristics, J. Meteor. Soc. Japan,
93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Kuang, X. and Jiao, J. J.: Review on climate change on the Tibetan Plateau
during the last half century, J. Geophys. Res.-Atmos., 121, 3979–4007,
https://doi.org/10.1002/2015JD024728, 2016.
Kumar, O., Ramanathan, A. L., Bakke, J., Kotlia, B. S., Shrivastava, J. P.,
Kumar, P., Sharma, R., and Kumar, P.: Role of Indian Summer Monsoon and
Westerlies on glacier variability in the Himalaya and East Africa during
Late Quaternary: Review and new data, Earth-Sci. Rev., 212, 103431,
https://doi.org/10.1016/j.earscirev.2020.103431, 2021.
Li, Y., Peng, H., and Xiao, S.: Dataset of oceanic moisture contributions to
precipitation over the Tibetan Plateau simulated by WAM-2 during 1979–2015,
Archived at the National Tibetan Plateau Data Center,
https://doi.org/10.11888/Atmos.tpdc.272946, 2022.
Link, A., van der Ent, R., Berger, M., Eisner, S., and Finkbeiner, M.: The fate of land evaporation – a global dataset, Earth Syst. Sci. Data, 12, 1897–1912, https://doi.org/10.5194/essd-12-1897-2020, 2020.
Liu, Y., Lu, M., Yang, H., Duan, A., He, B., Yang, S., and Wu, G.:
Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its
climate impacts, Natl. Sci. Rev., 7, 534–552,
https://doi.org/10.1093/nsr/nwaa011, 2020.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change, 4, 587–592,
https://doi.org/10.1038/nclimate2237, 2014.
NASA Goddard Earth Sciences Data and Information Services Center (GES DISC):
Modern-Era Retrospective analysis for Research and Applications, Version 2,
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2, last
access: 19 June 2018.
National Tibetan Plateau Data Center: Data set of δ18O stable
Isotopes in Precipitation from Tibetan Network for Isotopes (1991–2008),
http://data.tpdc.ac.cn/en/, last access: 3 September 2021.
Pan, C., Zhu, B., Gao, J., Kang, H., and Zhu, T.: Quantitative
identification of moisture sources over the Tibetan Plateau and the
relationship between thermal forcing and moisture transport, Clim. Dynam.,
52, 181–196, https://doi.org/10.1007/s00382-018-4130-6, 2018.
Qiu, T., Huang, W., Wright, J. S., Lin, Y., Lu, P., He, X., Yang, Z., Dong,
W., Lu, H., and Wang, B.: Moisture Sources for Wintertime Intense
Precipitation Events Over the Three Snowy Subregions of the Tibetan Plateau,
J. Geophys. Res.-Atmos., 124, 12708–12725,
https://doi.org/10.1029/2019jd031110, 2019.
Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., and Goswami,
B. N.: Drying of Indian subcontinent by rapid Indian Ocean warming and a
weakening land-sea thermal gradient, Nat. Commun., 6, 7423,
https://doi.org/10.1038/ncomms8423, 2015.
Tian, L., Yao, T., MacClune, K., White, J., Schilla, A., Vaughn, B., Vachon,
R., and Ichiyanagi, K.: Stable isotopic variations in west China: a
consideration of moisture sources, J. Geophys.Res.-Atmos., 112, D10112,
https://doi.org/10.1029/2006JD007718, 2007.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric Moisture
Transports from Ocean to Land and Global Energy Flows in Reanalyses, J.
Climate, 24, 4907–4924, https://doi.org/10.1175/2011JCLI4171.1, 2011.
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture and associated uncertainties, Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, 2020.
Tuinenburg, O. A., Theeuwen, J. J. E., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation, Earth Syst. Sci. Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, 2020.
Van der Ent, R. J.: A new view on the hydrological cycle over continents,
Delft University of Technology, Netherlands, Ph.D., 96 pp.,
https://doi.org/10.4233/uuid:0ab824ee-6956-4cc3-b530-3245ab4f32be, 2014.
Van der Ent, R. J.: WAM-2layers v2.4.08, https://github.com/ruudvdent/WAM2layersPython, last access: 5 August 2022.
Van der Ent, R. J. and Savenije, H. H.: Oceanic sources of continental
precipitation and the correlation with sea surface temperature, Water
Resour. Res., 49, 3993–4004, https://doi.org/10.1002/wrcr.20296, 2013.
Van der Ent, R. J., Savenije, H. H., Schaefli, B., and Steele-Dunne, S. C.:
Origin and fate of atmospheric moisture over continents, Water Resour. Res.,
46, W09525, https://doi.org/10.1029/2010WR009127, 2010.
van der Ent, R. J., Tuinenburg, O. A., Knoche, H.-R., Kunstmann, H., and Savenije, H. H. G.: Should we use a simple or complex model for moisture recycling and atmospheric moisture tracking?, Hydrol. Earth Syst. Sci., 17, 4869–4884, https://doi.org/10.5194/hess-17-4869-2013, 2013.
van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling, Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, 2014.
Wang, X., Pang, G., and Yang, M.: Precipitation over the Tibetan Plateau
during recent decades: a review based on observations and simulations, Int.
J. Climatol., 38, 1116–1131, https://doi.org/10.1002/joc.5246 2018.
Wang, Z., Duan, A., and Yang, S.: Potential regulation on the climatic
effect of Tibetan Plateau heating by tropical air–sea coupling in regional
models, Clim. Dynam., 52, 1685–1694,
https://doi.org/10.1007/s00382-018-4218-z, 2019.
Wu, G., Duan, A., Liu, Y., Mao, J., Ren, R., Bao, Q., He, B., Liu, B., and
Hu, W.: Tibetan Plateau climate dynamics: recent research progress and
outlook, Natl. Sci. Rev., 2, 100–116, https://doi.org/10.1093/nsr/nwu045, 2015.
Xu, X., Lu, C., Shi, X., and Gao, S.: World water tower: An atmospheric
perspective, Geophys. Res. Lett., 35, L20815,
https://doi.org/10.1029/2008gl035867, 2008.
Xu, X., Zhao, T., Lu, C., Guo, Y., Chen, B., Liu, R., Li, Y., and Shi, X.: An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau, Atmos. Chem. Phys., 14, 11287–11295, https://doi.org/10.5194/acp-14-11287-2014, 2014.
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., and Chen, Y.: Recent climate
changes over the Tibetan Plateau and their impacts on energy and water
cycle: A review, Glob. Planet. Change, 112, 79–91,
https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014.
Yao, T., Thompson, L., Yang, W., Yu, W. S., Gao, Y., Guo, X. J., Yang, X.
X., Duan, K. Q., Zhao, H. B., Xu, B. Q., Pu, J. C., Lu, A. X., Xiang, Y.,
Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric
circulations in Tibetan Plateau and surroundings, Nat. Climate Chang., 2,
663–667, https://doi.org/10.1038/Nclimate1580, 2012.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm,
C., Werner, M., Zhao, H., and He, Y.: A review of climatic controls on
δ18O in precipitation over the Tibetan Plateau: Observations and
simulations, Rev. Geophys., 51, 525–548,
https://doi.org/10.1002/rog.20023, 2013.
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., Koike, T., Lau,
W. K.-M., Lettenmaier, D., and Mosbrugger, V.: Recent Third Pole's rapid
warming accompanies cryospheric melt and water cycle intensification and
interactions between monsoon and environment: multi-disciplinary approach
with observation, modeling and analysis, B. Am. Meteorol. Soc., 100,
423–444, https://doi.org/10.1175/BAMS-D-17-0057.1 2018.
Zhang, C., Tang, Q., and Chen, D.: Recent changes in the moisture source of
precipitation over the Tibetan Plateau, J. Climate, 30, 1807–1819,
https://doi.org/10.1175/JCLI-D-15-0842.1, 2017.
Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C. K., Bolch, T., Yi,
S., Allen, S., Jiang, L., Chen, W., and Ke, C.: Response of Tibetan Plateau
lakes to climate change: Trends, patterns, and mechanisms, Earth-Sci. Rev.,
208, 103269, https://doi.org/10.1016/j.earscirev.2020.103269, 2020.
Zhu, L., Lü, X., Wang, J., Peng, P., Kasper, T., Daut, G., Haberzettl,
T., Frenzel, P., Li, Q., Yang, R., Schwalb, A., and Mäusbacher, R.:
Climate change on the Tibetan Plateau in response to shifting atmospheric
circulation since the LGM, Sci. Rep., 5, 13318,
https://doi.org/10.1038/srep13318, 2015.
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan...