Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6055-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6055-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Camille Labrousse
CORRESPONDING AUTHOR
Centre de Formation et de Recherche sur les Environnements
Méditerranéens, Université de Perpignan Via Domitia, CNRS, UMR
5110, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France
present address: Jacob Blaustein Institutes for Desert
Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben-Gurion,
Israel
Wolfgang Ludwig
Centre de Formation et de Recherche sur les Environnements
Méditerranéens, Université de Perpignan Via Domitia, CNRS, UMR
5110, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France
Sébastien Pinel
Centre de Formation et de Recherche sur les Environnements
Méditerranéens, Université de Perpignan Via Domitia, CNRS, UMR
5110, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France
Mahrez Sadaoui
Centre de Formation et de Recherche sur les Environnements
Méditerranéens, Université de Perpignan Via Domitia, CNRS, UMR
5110, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France
Andrea Toreti
European Commission, Joint Research Centre, Via E.Fermi, 2749, 21027 Ispra, Italy
Guillaume Lacquement
Acteurs, Ressources, Territoires dans le Développement,
Université de Perpignan Via Domitia, UMR 5281, 52 Avenue Paul Alduy,
66860 Perpignan CEDEX, France
Related authors
No articles found.
Juan C. Acosta Navarro, Alvise Aranyossy, Paolo De Luca, Markus G. Donat, Arthur Hrast Essenfelder, Rashed Mahmood, Andrea Toreti, and Danila Volpi
Earth Syst. Dynam., 16, 1723–1737, https://doi.org/10.5194/esd-16-1723-2025, https://doi.org/10.5194/esd-16-1723-2025, 2025
Short summary
Short summary
A computationally inexpensive climate model analog method yields skillful climate predictions across timescales, from seasons to multiple years, complementing existing climate prediction systems and potentially providing valuable information for sectors like agriculture and energy.
Roland Baatz, Gohar Ghazaryan, Michael Hagenlocher, Claas Nendel, Andrea Toreti, and Ehsan Eyshi Rezaei
Hydrol. Earth Syst. Sci., 29, 1379–1393, https://doi.org/10.5194/hess-29-1379-2025, https://doi.org/10.5194/hess-29-1379-2025, 2025
Short summary
Short summary
Our global review of 130 000 peer-reviewed articles reveals that drought forecasting and plant genetics dominate drought research priorities. Using topic modelling, we traced evolving themes from 1901 to 2022, highlighting a shift from ecology to cutting-edge technologies. By applying unsupervised machine learning, we offer insights into how integrated approaches matter, guiding future priorities to strengthen drought resilience and to safeguard water resources.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
Juan Camilo Acosta Navarro and Andrea Toreti
Weather Clim. Dynam., 4, 823–831, https://doi.org/10.5194/wcd-4-823-2023, https://doi.org/10.5194/wcd-4-823-2023, 2023
Short summary
Short summary
Droughts and heatwaves have become some of the clearest manifestations of a changing climate. Near-term adaptation strategies can benefit from seasonal predictions, but these predictions still have limitations. We found that an intrinsic property of multi-system forecasts can serve to better anticipate extreme high-temperature and low-precipitation events during boreal summer in several regions of the Northern Hemisphere with different levels of predictability.
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022, https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Short summary
We evaluated the ability of vegetation indices derived from satellite data to capture annual yield variations across Europe. The strength of the relationship varies throughout the year, with March–October representing the optimal period in most cases. Spatial differences were also observed, with the best results obtained in the Mediterranean regions.
Cited articles
Arnell, N. W., van Vuuren, D. P., and Isaac, M.: The implications of climate
policy for the impacts of climate change on global water resources, Global
Environ. Chang., 21, 592–603,
https://doi.org/10.1016/j.gloenvcha.2011.01.015, 2011.
BD Carthage Métropole: Hydrological Data Bank Hosted at the French Ministry of the Environment and of Sustainable Development,
https://geo.data.gouv.fr/fr/datasets/38d5c85219924e0f5355b551b0453ed942a03b8f,
last access: 21 February 2021.
Beranová, R. and Kyselý, J.: Links between circulation indices and precipitation in the Mediterranean in an ensemble of regional climate models, Theor. Appl. Climatol., 123, 693–701, https://doi.org/10.1007/s00704-015-1381-6, 2016.
Bholowalia, P. and Kumar, A.: EBK-Means: A Clustering Technique based on
Elbow Method and K-Means in WSN, Int. J. Comp. Appl., 105, 17–24, 2014.
Bueh, C. and Nakamura, H.: Scandinavian pattern and its climatic impact, Q. J. Roy. Meteor. Soc.,
133, 2117–2131, https://doi.org/10.1002/qj.173, 2007.
Burgess, M. G., Ritchie, J., Shapland, J., and Pielke, R.: IPCC baseline
scenarios have over-projected CO2 emissions and economic growth, Environ.
Res. Lett., 16, 014016, https://doi.org/10.1088/1748-9326/abcdd2, 2020.
Cam, L. M. L. and Neyman, J.: Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability: Weather modification, University of
California Press, 690 pp., https://www.worldcat.org/formats-editions/25234809 (last access: 22 November 2020), 1967.
Chazette, P., Flamant, C., Raut, J.-C., Totems, J., and Shang, X.: Tropical
moisture enriched storm tracks over the Mediterranean and their link with
intense rainfall in the Cevennes-Vivarais area during HyMeX, Q. J. Roy. Meteor. Soc., 142, 320–334,
https://doi.org/10.1002/qj.2674, 2016.
Chiodo, G., Oehrlein, J., Polvani, L. M., Fyfe, J. C., and Smith, A. K.:
Insignificant influence of the 11-year solar cycle on the North Atlantic
Oscillation, Nat. Geosci., 12, 94–99,
https://doi.org/10.1038/s41561-018-0293-3, 2019.
Comas-Bru, L. and McDermott, F.: Impacts of the EA and SCA patterns on the
European twentieth century NAO–winter climate relationship, Q. J. Roy. Meteor. Soc., 140, 354–363,
https://doi.org/10.1002/qj.2158, 2014.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri,
M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis
Project, Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Copernicus: CMIP5 monthly data on single levels, Copernicus Climate Change Service [data set],
https://doi.org/10.24381/cds.9d44a987, 2021.
Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.-P., Iglesias,
A., Lange, M. A., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J.,
Snoussi, M., Toreti, A., Tsimplis, M. N., and Xoplaki, E.: Climate change
and interconnected risks to sustainable development in the Mediterranean, Nat. Clim. Change, 8,
972–980, https://doi.org/10.1038/s41558-018-0299-2, 2018.
DeGaetano, A. T. and Shulman, M. D.: A climatic classification of plant
hardiness in the United States and Canada, Agr. Forest
Meteorol., 51, 333–351, https://doi.org/10.1016/0168-1923(90)90117-O,
1990.
Dünkeloh, A. and Jacobeit, J.: Circulation dynamics of Mediterranean
precipitation variability 1948–98, Int. J. Climatol., 23, 1843–1866,
https://doi.org/10.1002/joc.973, 2003.
Durand, Y., Brun, E., Merindol, L., Guyomarc’h, G., Lesaffre, B., and Martin, E.: A meteorological estimation of relevant parameters for snow models, Ann. Glaciol., 18, 65–71, https://doi.org/10.3189/S0260305500011277, 1993.
Folton, N. and Lavabre, J.: Approche par modélisation PLUIE-DEBIT pour
la connaissance régionale de la ressource en eau: application à la
moitié du territoire français, Houille Blanche, 93, 64–70,
https://doi.org/10.1051/lhb:2007037, 2007.
Fovell, R. G. and Fovell, M.-Y. C.: Climate Zones of the Conterminous United
States Defined Using Cluster Analysis, J. Climate, 6, 2103–2135,
https://doi.org/10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2, 1993.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, L08707,
https://doi.org/10.1029/2006GL025734, 2006.
Giorgi, F., Torma, C., Coppola, E., Ban, N., Schär, C., and Somot, S.:
Enhanced summer convective rainfall at Alpine high elevations in response to
climate warming, Nat. Geosci., 9, 584–589,
https://doi.org/10.1038/ngeo2761, 2016.
Gonzalez-Hidalgo, J. C., Lopez-Bustins, J.-A., Štepánek, P.,
Martin-Vide, J., and Luis, M. de: Monthly precipitation trends on the
Mediterranean fringe of the Iberian Peninsula during the second-half of the
twentieth century (1951–2000), In. J. Climatol., 29, 1415–1429,
https://doi.org/10.1002/joc.1780, 2009.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
Habets, F., Boone, A., Champeaux, J. L., Etchevers, P., Franchistéguy,
L., Leblois, E., Ledoux, E., Moigne, P. L., Martin, E., Morel, S., Noilhan,
J., Seguí, P. Q., Rousset-Regimbeau, F., and Viennot, P.: The
SAFRAN-ISBA-MODCOU hydrometeorological model applied over France, J. Geophys. Res.-Atmos., 113, D06113,
https://doi.org/10.1029/2007JD008548, 2008.
Hausfather, Z. and Peters, G. P.: RCP8.5 is a problematic scenario for
near-term emissions, P. Natl. Acad. Sci. USA, 117, 27791–27792,
https://doi.org/10.1073/pnas.2017124117, 2020.
Holman, I. P., Rivas-Casado, M., Bloomfield, J. P., and Gurdak, J. J.:
Identifying non-stationary groundwater level response to North Atlantic
ocean-atmosphere teleconnection patterns using wavelet coherence, Hydrogeol.
J., 19, 1269, https://doi.org/10.1007/s10040-011-0755-9, 2011.
hydroweb: Hydrological Data Bank Hosted at the French Ministry of the Environment and of Sustainable Development,
http://www.hydro.eaufrance.fr/, last access: 9 June 2020.
IPCC: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Core Writing Team, Pachauri, R. K. and Meyer, L. A., Synthesis Report, Geneva, Switzerland, https://www.ipcc.ch/report/ar5/syr/
(last access: 12 July 2021) 2014.
Kalimeris, A. and Kolios, S.: TRMM-based rainfall variability over the
Central Mediterranean and its relationships with atmospheric and oceanic
climatic modes, Atmos. Res., 230, 104649,
https://doi.org/10.1016/j.atmosres.2019.104649, 2019.
Kang, S. and Lin, H.: Wavelet analysis of hydrological and water quality
signals in an agricultural watershed, J. Hydrol., 338, 1–14,
https://doi.org/10.1016/j.jhydrol.2007.01.047, 2007.
Kendall, M. G.: Rank correlation methods, Griffin, Oxford, England, ISBN 9780852641996, 1975.
Köppen, W.: Das geographisca System der Klimate, in: Handbuchder
Klimatologie, Borntraeger, 1–44, 1936.
Krichak, S. O., Breitgand, J. S., Gualdi, S., and Feldstein, S. B.:
Teleconnection–extreme precipitation relationships over the Mediterranean
region, Theor. Appl. Climatol., 117, 679–692,
https://doi.org/10.1007/s00704-013-1036-4, 2014.
Labrousse, C., Ludwig, W., Pinel, S., Sadaoui, M., and Lacquement, G.:
Unravelling Climate and Anthropogenic Forcings on the Evolution of Surface
Water Resources in Southern France, Water, 12, 3581,
https://doi.org/10.3390/w12123581, 2020.
Lespinas, F., Ludwig, W., and Heussner, S.: Impact of recent climate change
on the hydrology of coastal Mediterranean rivers in Southern France,
Climatic Change, 99, 425–456, https://doi.org/10.1007/s10584-009-9668-1,
2010.
Lespinas, F., Ludwig, W., and Heussner, S.: Hydrological and climatic
uncertainties associated with modeling the impact of climate change on water
resources of small Mediterranean coastal rivers, J. Hydrol., 511,
403–422, https://doi.org/10.1016/j.jhydrol.2014.01.033, 2014.
Liesch, T. and Wunsch, A.: Aquifer responses to long-term climatic
periodicities, J. Hydrol., 572, 226–242,
https://doi.org/10.1016/j.jhydrol.2019.02.060, 2019.
Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R.: Mediterranean Climate
Variability, Elsevier, 438 pp., ISBN 9780080460796, 2006.
Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theory, 28, 129–137,
https://doi.org/10.1109/TIT.1982.1056489, 1982.
Lopez-Bustins, J.-A., Martin-Vide, J., and Sanchez-Lorenzo, A.: Iberia
winter rainfall trends based upon changes in teleconnection and circulation
patterns, Global Planet. Change, 63, 171–176,
https://doi.org/10.1016/j.gloplacha.2007.09.002, 2008.
López-Moreno, J. I. and Vicente-Serrano, S. M.: Atmospheric circulation
influence on the interannual variability of snow pack in the Spanish
Pyrenees during the second half of the 20th century, Hydrol. Res., 38,
33–44, https://doi.org/10.2166/nh.2007.030, 2007.
López-Moreno, J. I., Vicente-Serrano, S. M., Morán-Tejeda, E.,
Lorenzo-Lacruz, J., Kenawy, A., and Beniston, M.: Effects of the North
Atlantic Oscillation (NAO) on combined temperature and precipitation winter
modes in the Mediterranean mountains: Observed relationships and projections
for the 21st century, Global Planet. Change, 77, 62–76,
https://doi.org/10.1016/j.gloplacha.2011.03.003, 2011.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean and Black Sea: Major drivers for
ecosystem changes during past and future decades?, Prog. Oceanogr.,
80, 199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Mann, H. B.: Nonparametric Tests Against Trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945.
Manzano, A., Clemente, M. A., Morata, A., Luna, M. Y., Beguería, S.,
Vicente-Serrano, S. M., and Martín, M. L.: Analysis of the atmospheric
circulation pattern effects over SPEI drought index in Spain, Atmos.
Res., 230, 104630, https://doi.org/10.1016/j.atmosres.2019.104630, 2019.
Martin-Vide, J. and Lopez-Bustins, J.-A.: The Western Mediterranean
Oscillation and rainfall in the Iberian Peninsula, Int. J. Climatol., 26, 1455–1475,
https://doi.org/10.1002/joc.1388, 2006.
Mathbout, S., Lopez-Bustins, J. A., Royé, D., Martin-Vide, J., and
Benhamrouche, A.: Spatiotemporal variability of daily precipitation
concentration and its relationship to teleconnection patterns over the
Mediterranean during 1975–2015, Int. J. Climatol., 40, 1435–1455,
https://doi.org/10.1002/joc.6278, 2020.
MOI data: Climate Research Unit. Mediterranean Oscillation Indices (MOI) and Saharan Oscillation Index (SaOI), https://crudata.uea.ac.uk/cru/data/moi/, last access: 21 February 2021.
Molinié, G., Ceresetti, D., Anquetin, S., Creutin, J. D., and
Boudevillain, B.: Rainfall Regime of a Mountainous Mediterranean Region:
Statistical Analysis at Short Time Steps, J. Appl. Meteorol. Clim., 51, 429–448,
https://doi.org/10.1175/2011JAMC2691.1, 2012.
NOAA: Climate Prediction Center,
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/teleconnections.shtml, last access: 21 February
2021.
NOAA Physical Sciences Laboratory: Climate Prediction Center,
https://psl.noaa.gov/data/20thC_Rean/timeseries/monthly/NAO/index.html, last access: 21 February 2021.
Nuissier, O., Joly, B., Joly, A., Ducrocq, V., and Arbogast, P.: A
statistical downscaling to identify the large-scale circulation patterns
associated with heavy precipitation events over southern France, Q. J. Royal Meteor. Soc., 137,
1812–1827, https://doi.org/10.1002/qj.866, 2011.
Pascual, D., Pla, E., Lopez-Bustins, J. A., Retana, J., and Terradas, J.:
Impacts of climate change on water resources in the Mediterranean Basin: a
case study in Catalonia, Spain, Hydrolog. Sci. J., 60, 2132–2147,
https://doi.org/10.1080/02626667.2014.947290, 2015.
Pearson, E. S.: The Test of Significance for the Correlation Coefficient, J. Am. Stat. Assoc.,
26, 128–134, https://doi.org/10.1080/01621459.1931.10503208, 1931.
Pike, J. G.: The estimation of annual run-off from meteorological data in a
tropical climate, J. Hydrol., 2, 116–123,
https://doi.org/10.1016/0022-1694(64)90022-8, 1964.
Polanco-Martínez, J. M., Fernández-Macho, J., and Medina-Elizalde,
M.: Dynamic wavelet correlation analysis for multivariate climate time
series, Sci. Rep.-UK, 10, 21277, https://doi.org/10.1038/s41598-020-77767-8,
2020.
Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., Canellas, C., Franchisteguy, L., and Morel, S.: Analysis of Near-Surface Atmospheric Variables: Validation of the SAFRAN Analysis over France, J. Appl. Meteor. Clim., 47, 92–107, https://doi.org/10.1175/2007JAMC1636.1, 2008.
Ricard, D., Ducrocq, V., and Auger, L.: A Climatology of the Mesoscale
Environment Associated with Heavily Precipitating Events over a Northwestern
Mediterranean Area, J. Appl. Meteorol. Clim., 51, 468–488, https://doi.org/10.1175/JAMC-D-11-017.1,
2012.
Sadaoui, M., Ludwig, W., Bourrin, F., and Romero, E.: The impact of
reservoir construction on riverine sediment and carbon fluxes to the
Mediterranean Sea, Prog. Oceanogr., 163, 94–111,
https://doi.org/10.1016/j.pocean.2017.08.003, 2018.
Sang, Y.-F.: A review on the applications of wavelet transform in hydrology
time series analysis, Atmos. Res., 122, 8–15,
https://doi.org/10.1016/j.atmosres.2012.11.003, 2013.
Schwalm, C. R., Glendon, S., and Duffy, P. B.: RCP8.5 tracks cumulative CO2
emissions, P. Natl. Acad. Sci. USA, 117, 19656–19657, https://doi.org/10.1073/pnas.2007117117,
2020.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968.
Smith, R. B.: The Influence of Mountains on the Atmosphere, in: Advances in
Geophysics, vol. 21, edited by: Saltzman, B., Elsevier, 87–230,
https://doi.org/10.1016/S0065-2687(08)60262-9, 1979.
Soubeyroux, J.-M., Martin, E., Franchisteguy, L., Habets, F., Noilhan, J.,
Baillon, M., Regimbeau, F., Vidal, J.-P., Moigne, P. L., and Morel, S.:
Safran-Isba-Modcou (SIM): Un outil pour le suivi
hydrométéorologique opérationnel et les études, La Météorologie, 63,
40–45,
2008.
Toreti, A., Desiato, F., Fioravanti, G., and Perconti, W.: Seasonal
temperatures over Italy and their relationship with low-frequency
atmospheric circulation patterns, Climatic Change, 99, 211–227,
https://doi.org/10.1007/s10584-009-9640-0, 2010.
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B. Am. Meteorol. Soc., 79,
61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Tsakiris, G., Pangalou, D., and Vangelis, H.: Regional Drought Assessment
Based on the Reconnaissance Drought Index (RDI), Water Resour. Manage., 21,
821–833, https://doi.org/10.1007/s11269-006-9105-4, 2007.
Tukey, J. W.: Comparing Individual Means in the Analysis of Variance, Biometrics, 5,
99–114, https://doi.org/10.2307/3001913, 1949.
Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P., Kuglitsch, F. G., Leckebusch, G. C., Luterbacher, J., Maugeri, M., Maheras, P., Nissen, K. M., Pavan, V., Pinto, J. G., Saaroni, H., Seubert, S., Toreti, A., Xoplaki, E., and Ziv, B.: Climate of the Mediterranean: Synoptic Patterns, Temperature, Precipitation, Winds, and Their Extremes, chap. 5, in: The Climate of the Mediterranean Region, edited by: Lionello, P., Elsevier, Oxford, 301–346, https://doi.org/10.1016/B978-0-12-416042-2.00005-7, ISBN 9780124160422, 2012.
Vautard, R., van Oldenborgh, G.-J., Thao, S., Dubuisson, B., Lenderink, G., Ribes, A., Planton, S., Soubeyroux, J.-M., and Yiou, P.: Extreme fall 2014 precipitation in the Cévennes mountains, B. Am. Meteorol. Soc., 96, S56–S60, 2015.
Verfaillie, D., Déqué, M., Morin, S., and Lafaysse, M.: The method ADAMONT v1.0 for statistical adjustment of climate projections applicable to energy balance land surface models, Geosci. Model Dev., 10, 4257–4283, https://doi.org/10.5194/gmd-10-4257-2017, 2017.
Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., Kenawy,
A. M. E., and Angulo-Martínez, M.: Daily atmospheric circulation events
and extreme precipitation risk in northeast Spain: Role of the North
Atlantic Oscillation, the Western Mediterranean Oscillation, and the
Mediterranean Oscillation, J. Geophys. Res.-Atmos., 114, D08106, https://doi.org/10.1029/2008JD011492, 2009.
Wang, M. and Tan, B.: Two Types of the Scandinavian Pattern: Their Formation
Mechanisms and Climate Impacts, J. Climate, 33, 2645–2661,
https://doi.org/10.1175/JCLI-D-19-0447.1, 2020.
Weingartner, R., Viviroli, D., and Schädler, B.: Water resources in
mountain regions: a methodological approach to assess the water balance in a
highland-lowland-system, Hydrol. Process., 21, 578–585, https://doi.org/10.1002/hyp.6268,
2007.
Williamson, G.: Ecbtools: Environmental Change Biology Tools, GitHub [code],
https://rdrr.io/github/ozjimbob/ecbtools/, 2016.
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
The interest of this study is to demonstrate that we identify two zones in our study area whose...